organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1461-o1462

1-{(E)-[4-(4-Meth­­oxy­phen­yl)butan-2-yl­­idene]amino}-3-methyl­thio­urea

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 April 2012; accepted 13 April 2012; online 21 April 2012)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C13H19N3OS, which differ in the conformations of the residues linking the thio­urea and the terminal benzene ring, as manifested in the Cm—Cm—Ca—Ca torsion angles [78.03 (16) and −93.64 (16)°, respectively; m = methyl­ene and a = aromatic]. The dihedral angles [84.40 (4) and 88.28 (5)°] formed between the thio­urea residue and the benzene ring indicate an almost orthogonal relationship. In each thio­urea residue, the N—H hydrogen atoms are anti, and the terminal N—H hydrogen atom forms an intra­molecular N—H⋯N hydrogen bond with the imine-N atom. In each case, the conformation about the imine C=N double bond [1.2812 (17) and 1.2801 (17) Å] is E. In the crystal, the mol­ecules are connected by N—H⋯S hydrogen bonds and these are connected into four mol­ecule aggregates via N—H⋯O hydrogen bonds, which are assembled into a two-dimensional array parallel to (011) via C—H⋯π and ππ inter­actions [ring centroid–centroid distance = 3.8344 (9) Å].

Related literature

For background to chalcone thio­semicarbazides, see: Zhang et al. (2011[Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702-4708.]). For background to hydrazinecarbodithio­ates, see: Khoo et al. (2005[Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441-o2443.]); Chan et al. (2008[Chan, M.-E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]); Ravoof et al. (2010[Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871-876.]). For related syntheses, see: Tian et al. (1997[Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247-1252.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19N3OS

  • Mr = 265.37

  • Triclinic, [P \overline 1]

  • a = 9.6344 (4) Å

  • b = 11.1759 (6) Å

  • c = 13.4619 (8) Å

  • α = 80.324 (5)°

  • β = 87.103 (4)°

  • γ = 76.360 (4)°

  • V = 1388.48 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 100 K

  • 0.41 × 0.23 × 0.14 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.51, Tmax = 0.75

  • 18287 measured reflections

  • 5312 independent reflections

  • 4995 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.01

  • 5312 reflections

  • 343 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.87 (1) 2.15 (1) 2.5931 (16) 111 (1)
N4—H4n⋯N6 0.87 (1) 2.13 (1) 2.5818 (17) 112 (1)
N2—H2n⋯S2 0.87 (1) 2.70 (1) 3.5686 (11) 176 (1)
N5—H5n⋯S1 0.88 (1) 2.65 (1) 3.5276 (11) 178 (1)
N1—H1n⋯O2i 0.87 (1) 2.51 (2) 3.0979 (16) 125 (1)
C1—H1BCg1ii 0.98 2.94 3.5930 (17) 125
Symmetry codes: (i) x+1, y-1, z+1; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model, 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

To initiate comparative studies between hydrazinecarbothioamide Schiff bases (Zhang et al., 2011) and hydrazinecarbodithioate derivatives synthesized in our laboratory in on-going investigations (Khoo et al. 2005; Chan et al. 2008; Ravoof et al., 2010), the title compound was synthesized and characterized crystallographically.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As evidenced from the overlay diagram, Fig. 2, while the thiourea residues are super-imposable, minor conformational differences are seen in the links between these and the terminal benzene rings. Significant differences are noted between the chemically equivalent C5—C6—C7—C8 and C18—C19—C20—C21 torsion angles of 78.03 (16) and -93.64 (16)°, respectively. The dihedral angles formed between the thiourea residues (N1,C1,S1,N2 and N4,C15,S2,N5) and the benzene rings are 84.40 (4) and 88.28 (5)°, respectively. In each case, the methoxy group is co-planar with the benzene ring to which it is connected as seen in the values of the C13—O1—C10—C9 and C26—O2—C23—C22 torsion angles of 175.41 (12) and -5.62 (19)°, respectively. In each thiourea residue, the N—H hydrogen atoms are anti, and the terminal N—H hydrogen atom forms an intramolecular N—H···N hydrogen bond with the imine-N atom, Table 1. The conformation about the imine CN double bond [N3C3 = 1.2812 (17) Å and N6C16 = 1.2801 (17) Å] is E in each case.

As indicated in Fig. 1, the independent molecules are connected by N—H···S hydrogen bonds leading to an eight-membered {···HNCS}2 synthon, Table 1. These are connected into four molecule aggregates via N—H···O hydrogen bonds, Table 1. The four molecule aggregates are assembled into a two-dimensional array parallel to (011) via C—H···π, Table 1, and ππ interactions occurring between the benzene rings [ring centroid(C7–C12)···centroid(C20–C25)i distance = 3.8344 (9) Å with a tilt angle = 2.08 (7)° for symmetry operation i: 1 + x, -1 + y, 1 + z). Layers stack without significant intermolecular interactions between them, Fig. 4.

Related literature top

For background to chalcone thiosemicarbazides, see: Zhang et al. (2011). For background to hydrazinecarbodithioates, see: Khoo et al. (2005); Chan et al. (2008); Ravoof et al. (2010). For related syntheses, see: Tian et al. (1997); Tarafder et al. (2002).

Experimental top

The title compound was synthesized following established literature procedures (Tian et al. 1997; Tarafder et al. 2002). To 4-methyl-3-thiosemicarbazide (1.05 g, 10 mmol) dissolved in hot absolute ethanol (25 ml) was added an equimolar amount of 4-(4-methoxyphenyl)butan-2-one (1.70 ml) also in hot absolute ethanol (20 ml). The mixture was stirred for about half an hour at ~340 K and then cooled to room temperature. The Schiff base precipitated was filtered and dried in vacuo over anhydrous silica gel. Colourless crystals were obtained after one week from a 1:1 mixture of 2-propanol and absolute ethanol. Yield 76%, M.pt. 356 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C). The amino H-atoms were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. An overlay diagram of two independent molecules in (I). The S1-containing molecule is illustrated in red and the S2-molecule in blue. Molecules have been aligned so that the N1,S1,N2 and N4,S2,N5 planes are overlapped.
[Figure 3] Fig. 3. A view of the supramolecular layer parallel to (011) in (I) mediated by N—H···S, N—H···O, C—H···π and ππ interactions shown as blue, orange, brown and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents for (I). The N—H···S, N—H···O, C—H···π and ππ interactions shown as blue, orange, brown and purple dashed lines, respectively.
1-{(E)-[4-(4-Methoxyphenyl)butan-2-ylidene]amino}-3-methylthiourea top
Crystal data top
C13H19N3OSZ = 4
Mr = 265.37F(000) = 568
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 9.6344 (4) ÅCell parameters from 10673 reflections
b = 11.1759 (6) Åθ = 3–71°
c = 13.4619 (8) ŵ = 2.01 mm1
α = 80.324 (5)°T = 100 K
β = 87.103 (4)°Prism, colourless
γ = 76.360 (4)°0.41 × 0.23 × 0.14 mm
V = 1388.48 (13) Å3
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5312 independent reflections
Radiation source: sealed X-ray tube4995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1952 pixels mm-1θmax = 71.6°, θmin = 3.3°
ω/2θ scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.51, Tmax = 0.75l = 1616
18287 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2 + 0.5168P]
where P = (Fo2 + 2Fc2)/3
5312 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H19N3OSγ = 76.360 (4)°
Mr = 265.37V = 1388.48 (13) Å3
Triclinic, P1Z = 4
a = 9.6344 (4) ÅCu Kα radiation
b = 11.1759 (6) ŵ = 2.01 mm1
c = 13.4619 (8) ÅT = 100 K
α = 80.324 (5)°0.41 × 0.23 × 0.14 mm
β = 87.103 (4)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
5312 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4995 reflections with I > 2σ(I)
Tmin = 0.51, Tmax = 0.75Rint = 0.022
18287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.29 e Å3
5312 reflectionsΔρmin = 0.41 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20415 (3)0.32321 (3)0.48243 (2)0.01907 (11)
O11.27782 (10)0.24724 (9)0.93804 (7)0.0204 (2)
N10.34458 (12)0.15989 (11)0.63195 (9)0.0183 (2)
H1N0.4267 (12)0.1245 (15)0.6602 (12)0.022*
N20.47979 (11)0.26896 (10)0.52508 (8)0.0144 (2)
H2N0.4854 (17)0.3310 (12)0.4776 (10)0.017*
N30.59623 (11)0.19555 (10)0.57947 (8)0.0145 (2)
C10.21511 (15)0.11973 (14)0.66758 (12)0.0241 (3)
H1A0.14130.19190.68170.036*
H1B0.23560.05840.72930.036*
H1C0.18130.08180.61570.036*
C20.34971 (14)0.24605 (12)0.55167 (10)0.0147 (3)
C30.71806 (14)0.22229 (12)0.56058 (10)0.0147 (3)
C40.74688 (14)0.32895 (13)0.48538 (10)0.0182 (3)
H4A0.72700.31720.41740.027*
H4B0.84720.33220.48920.027*
H4C0.68530.40720.50030.027*
C50.84347 (14)0.13959 (13)0.61947 (10)0.0170 (3)
H5A0.88080.19030.66070.020*
H5B0.91990.11020.57130.020*
C60.81204 (14)0.02645 (13)0.68873 (11)0.0206 (3)
H6A0.73140.05450.73430.025*
H6B0.78240.02860.64760.025*
C70.93936 (14)0.04719 (13)0.75113 (10)0.0174 (3)
C80.97580 (14)0.00550 (13)0.83614 (10)0.0174 (3)
H80.92110.07090.85340.021*
C91.08986 (14)0.07296 (13)0.89598 (10)0.0165 (3)
H91.11280.04270.95350.020*
C101.17070 (14)0.18502 (13)0.87166 (10)0.0164 (3)
C111.13875 (15)0.22751 (13)0.78626 (11)0.0206 (3)
H111.19450.30330.76850.025*
C121.02383 (16)0.15758 (13)0.72690 (11)0.0209 (3)
H121.00280.18640.66820.025*
C131.35572 (17)0.36669 (14)0.91966 (12)0.0280 (3)
H13A1.29090.42320.92440.042*
H13B1.43110.40030.96990.042*
H13C1.39880.35880.85210.042*
S20.50040 (3)0.51322 (3)0.32073 (2)0.01570 (10)
O20.50895 (10)0.90797 (9)0.24093 (7)0.0197 (2)
N40.35843 (12)0.67030 (11)0.16874 (9)0.0175 (2)
H4N0.2787 (13)0.6966 (15)0.1361 (12)0.021*
N50.22689 (12)0.55527 (10)0.27342 (8)0.0151 (2)
H5N0.2193 (17)0.4984 (13)0.3255 (9)0.018*
N60.11708 (12)0.60815 (10)0.20570 (8)0.0156 (2)
C140.48459 (14)0.71634 (14)0.13471 (11)0.0214 (3)
H14A0.51470.75510.18750.032*
H14B0.46230.77820.07350.032*
H14C0.56180.64670.12020.032*
C150.35546 (14)0.58411 (12)0.24972 (10)0.0140 (3)
C160.00410 (14)0.58042 (12)0.22484 (10)0.0152 (3)
C170.04030 (15)0.49618 (14)0.31617 (11)0.0209 (3)
H17A0.01480.41070.31470.031*
H17B0.14260.49820.31660.031*
H17C0.01680.52440.37700.031*
C180.11934 (14)0.63481 (13)0.14771 (10)0.0181 (3)
H18A0.19990.68880.17930.022*
H18B0.15500.56570.12870.022*
C190.07400 (15)0.71084 (14)0.05199 (11)0.0225 (3)
H19A0.04290.78270.07000.027*
H19B0.00880.65840.02120.027*
C200.19197 (14)0.75844 (13)0.02456 (10)0.0189 (3)
C210.20533 (16)0.69260 (14)0.10058 (12)0.0241 (3)
H210.14120.61420.10270.029*
C220.31004 (16)0.73782 (13)0.17421 (11)0.0229 (3)
H220.31620.69110.22600.027*
C230.40494 (14)0.85161 (12)0.17094 (10)0.0161 (3)
C240.39597 (14)0.91792 (13)0.09373 (10)0.0166 (3)
H240.46200.99520.09050.020*
C250.29074 (14)0.87139 (13)0.02154 (10)0.0183 (3)
H250.28580.91730.03100.022*
C260.50890 (16)0.84812 (14)0.32718 (11)0.0236 (3)
H26A0.41530.83930.36090.035*
H26B0.58280.89870.37400.035*
H26C0.52860.76550.30560.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01121 (17)0.02285 (19)0.01953 (19)0.00212 (13)0.00427 (12)0.00540 (14)
O10.0189 (5)0.0203 (5)0.0185 (5)0.0022 (4)0.0064 (4)0.0012 (4)
N10.0115 (5)0.0217 (6)0.0190 (6)0.0038 (4)0.0029 (4)0.0054 (5)
N20.0122 (5)0.0158 (6)0.0133 (5)0.0030 (4)0.0032 (4)0.0036 (4)
N30.0124 (5)0.0160 (5)0.0134 (5)0.0012 (4)0.0033 (4)0.0007 (4)
C10.0135 (6)0.0271 (8)0.0276 (8)0.0058 (6)0.0012 (6)0.0089 (6)
C20.0122 (6)0.0166 (6)0.0147 (6)0.0021 (5)0.0018 (5)0.0020 (5)
C30.0131 (6)0.0177 (6)0.0130 (6)0.0036 (5)0.0012 (5)0.0010 (5)
C40.0138 (6)0.0226 (7)0.0164 (6)0.0055 (5)0.0020 (5)0.0046 (5)
C50.0120 (6)0.0200 (7)0.0171 (6)0.0038 (5)0.0024 (5)0.0032 (5)
C60.0152 (6)0.0220 (7)0.0224 (7)0.0057 (5)0.0056 (5)0.0060 (6)
C70.0139 (6)0.0188 (7)0.0176 (6)0.0059 (5)0.0019 (5)0.0056 (5)
C80.0151 (6)0.0160 (6)0.0187 (7)0.0024 (5)0.0014 (5)0.0019 (5)
C90.0165 (6)0.0192 (7)0.0136 (6)0.0055 (5)0.0002 (5)0.0001 (5)
C100.0134 (6)0.0197 (7)0.0142 (6)0.0039 (5)0.0014 (5)0.0031 (5)
C110.0221 (7)0.0181 (7)0.0192 (7)0.0007 (5)0.0024 (5)0.0017 (5)
C120.0253 (7)0.0209 (7)0.0166 (7)0.0060 (6)0.0059 (6)0.0003 (5)
C130.0268 (8)0.0250 (8)0.0263 (8)0.0076 (6)0.0089 (6)0.0044 (6)
S20.01168 (16)0.01806 (18)0.01548 (17)0.00205 (12)0.00432 (12)0.00184 (13)
O20.0198 (5)0.0215 (5)0.0161 (5)0.0002 (4)0.0070 (4)0.0032 (4)
N40.0121 (5)0.0198 (6)0.0181 (6)0.0039 (4)0.0049 (4)0.0057 (5)
N50.0121 (5)0.0171 (6)0.0139 (5)0.0029 (4)0.0038 (4)0.0042 (4)
N60.0132 (5)0.0169 (6)0.0149 (5)0.0021 (4)0.0042 (4)0.0014 (4)
C140.0158 (6)0.0245 (7)0.0231 (7)0.0090 (6)0.0034 (5)0.0058 (6)
C150.0132 (6)0.0136 (6)0.0150 (6)0.0018 (5)0.0016 (5)0.0032 (5)
C160.0134 (6)0.0162 (6)0.0151 (6)0.0026 (5)0.0014 (5)0.0005 (5)
C170.0150 (6)0.0270 (8)0.0191 (7)0.0076 (6)0.0027 (5)0.0051 (6)
C180.0138 (6)0.0224 (7)0.0176 (7)0.0067 (5)0.0030 (5)0.0030 (5)
C190.0152 (6)0.0299 (8)0.0199 (7)0.0077 (6)0.0044 (5)0.0077 (6)
C200.0147 (6)0.0236 (7)0.0165 (7)0.0073 (5)0.0010 (5)0.0061 (5)
C210.0217 (7)0.0197 (7)0.0258 (7)0.0027 (6)0.0046 (6)0.0015 (6)
C220.0256 (7)0.0211 (7)0.0211 (7)0.0012 (6)0.0049 (6)0.0054 (6)
C230.0146 (6)0.0181 (7)0.0143 (6)0.0050 (5)0.0026 (5)0.0031 (5)
C240.0153 (6)0.0172 (7)0.0157 (6)0.0027 (5)0.0002 (5)0.0005 (5)
C250.0186 (6)0.0248 (7)0.0129 (6)0.0095 (5)0.0007 (5)0.0009 (5)
C260.0269 (7)0.0262 (8)0.0181 (7)0.0043 (6)0.0084 (6)0.0045 (6)
Geometric parameters (Å, º) top
S1—C21.6943 (13)S2—C151.6881 (13)
O1—C101.3759 (16)O2—C231.3736 (16)
O1—C131.4236 (17)O2—C261.4341 (16)
N1—C21.3284 (18)N4—C151.3319 (18)
N1—C11.4556 (17)N4—C141.4530 (17)
N1—H1N0.871 (9)N4—H4n0.869 (9)
N2—C21.3563 (17)N5—C151.3616 (17)
N2—N31.3837 (15)N5—N61.3860 (15)
N2—H2N0.870 (9)N5—H5n0.875 (9)
N3—C31.2812 (17)N6—C161.2801 (17)
C1—H1A0.9800C14—H14A0.9800
C1—H1B0.9800C14—H14B0.9800
C1—H1C0.9800C14—H14C0.9800
C3—C41.4983 (18)C16—C171.4974 (19)
C3—C51.5054 (17)C16—C181.5055 (17)
C4—H4A0.9800C17—H17A0.9800
C4—H4B0.9800C17—H17B0.9800
C4—H4C0.9800C17—H17C0.9800
C5—C61.5217 (19)C18—C191.5242 (19)
C5—H5A0.9900C18—H18A0.9900
C5—H5B0.9900C18—H18B0.9900
C6—C71.5110 (18)C19—C201.5119 (18)
C6—H6A0.9900C19—H19A0.9900
C6—H6B0.9900C19—H19B0.9900
C7—C121.388 (2)C20—C211.384 (2)
C7—C81.395 (2)C20—C251.396 (2)
C8—C91.3855 (19)C21—C221.396 (2)
C8—H80.9500C21—H210.9500
C9—C101.3908 (19)C22—C231.3863 (19)
C9—H90.9500C22—H220.9500
C10—C111.3893 (19)C23—C241.3911 (19)
C11—C121.3952 (19)C24—C251.3870 (19)
C11—H110.9500C24—H240.9500
C12—H120.9500C25—H250.9500
C13—H13A0.9800C26—H26A0.9800
C13—H13B0.9800C26—H26B0.9800
C13—H13C0.9800C26—H26C0.9800
C10—O1—C13116.80 (11)C23—O2—C26116.28 (10)
C2—N1—C1123.67 (11)C15—N4—C14123.68 (11)
C2—N1—H1N114.8 (11)C15—N4—H4N114.8 (11)
C1—N1—H1N121.4 (11)C14—N4—H4N121.5 (11)
C2—N2—N3117.48 (11)C15—N5—N6117.04 (11)
C2—N2—H2N119.0 (11)C15—N5—H5N119.8 (11)
N3—N2—H2N123.5 (11)N6—N5—H5N122.7 (11)
C3—N3—N2118.22 (11)C16—N6—N5118.43 (11)
N1—C1—H1A109.5N4—C14—H14A109.5
N1—C1—H1B109.5N4—C14—H14B109.5
H1A—C1—H1B109.5H14A—C14—H14B109.5
N1—C1—H1C109.5N4—C14—H14C109.5
H1A—C1—H1C109.5H14A—C14—H14C109.5
H1B—C1—H1C109.5H14B—C14—H14C109.5
N1—C2—N2116.68 (11)N4—C15—N5116.10 (11)
N1—C2—S1123.03 (10)N4—C15—S2123.13 (10)
N2—C2—S1120.28 (10)N5—C15—S2120.77 (10)
N3—C3—C4125.83 (12)N6—C16—C17125.70 (12)
N3—C3—C5117.16 (11)N6—C16—C18117.21 (11)
C4—C3—C5117.01 (11)C17—C16—C18117.07 (11)
C3—C4—H4A109.5C16—C17—H17A109.5
C3—C4—H4B109.5C16—C17—H17B109.5
H4A—C4—H4B109.5H17A—C17—H17B109.5
C3—C4—H4C109.5C16—C17—H17C109.5
H4A—C4—H4C109.5H17A—C17—H17C109.5
H4B—C4—H4C109.5H17B—C17—H17C109.5
C3—C5—C6115.30 (11)C16—C18—C19115.25 (11)
C3—C5—H5A108.4C16—C18—H18A108.5
C6—C5—H5A108.4C19—C18—H18A108.5
C3—C5—H5B108.4C16—C18—H18B108.5
C6—C5—H5B108.4C19—C18—H18B108.5
H5A—C5—H5B107.5H18A—C18—H18B107.5
C7—C6—C5112.58 (11)C20—C19—C18112.97 (11)
C7—C6—H6A109.1C20—C19—H19A109.0
C5—C6—H6A109.1C18—C19—H19A109.0
C7—C6—H6B109.1C20—C19—H19B109.0
C5—C6—H6B109.1C18—C19—H19B109.0
H6A—C6—H6B107.8H19A—C19—H19B107.8
C12—C7—C8117.58 (12)C21—C20—C25117.58 (12)
C12—C7—C6121.97 (12)C21—C20—C19121.45 (13)
C8—C7—C6120.45 (12)C25—C20—C19120.97 (13)
C9—C8—C7121.52 (12)C20—C21—C22122.09 (13)
C9—C8—H8119.2C20—C21—H21119.0
C7—C8—H8119.2C22—C21—H21119.0
C8—C9—C10119.84 (12)C23—C22—C21119.25 (13)
C8—C9—H9120.1C23—C22—H22120.4
C10—C9—H9120.1C21—C22—H22120.4
O1—C10—C11124.80 (12)O2—C23—C22124.70 (12)
O1—C10—C9115.30 (12)O2—C23—C24115.59 (12)
C11—C10—C9119.89 (12)C22—C23—C24119.69 (12)
C10—C11—C12119.18 (13)C25—C24—C23120.07 (12)
C10—C11—H11120.4C25—C24—H24120.0
C12—C11—H11120.4C23—C24—H24120.0
C7—C12—C11121.94 (13)C24—C25—C20121.28 (13)
C7—C12—H12119.0C24—C25—H25119.4
C11—C12—H12119.0C20—C25—H25119.4
O1—C13—H13A109.5O2—C26—H26A109.5
O1—C13—H13B109.5O2—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
O1—C13—H13C109.5O2—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C2—N2—N3—C3174.61 (11)C15—N5—N6—C16178.41 (11)
C1—N1—C2—N2176.85 (13)C14—N4—C15—N5177.38 (12)
C1—N1—C2—S11.81 (19)C14—N4—C15—S22.45 (19)
N3—N2—C2—N14.06 (17)N6—N5—C15—N46.56 (17)
N3—N2—C2—S1174.64 (9)N6—N5—C15—S2173.61 (9)
N2—N3—C3—C41.38 (19)N5—N6—C16—C171.1 (2)
N2—N3—C3—C5178.93 (10)N5—N6—C16—C18177.38 (11)
N3—C3—C5—C65.04 (18)N6—C16—C18—C193.64 (18)
C4—C3—C5—C6175.24 (12)C17—C16—C18—C19174.98 (12)
C3—C5—C6—C7175.80 (11)C16—C18—C19—C20177.51 (12)
C5—C6—C7—C12102.04 (15)C18—C19—C20—C2193.64 (16)
C5—C6—C7—C878.03 (16)C18—C19—C20—C2587.00 (16)
C12—C7—C8—C91.6 (2)C25—C20—C21—C222.1 (2)
C6—C7—C8—C9178.36 (12)C19—C20—C21—C22177.31 (13)
C7—C8—C9—C100.1 (2)C20—C21—C22—C230.7 (2)
C13—O1—C10—C113.41 (19)C26—O2—C23—C225.62 (19)
C13—O1—C10—C9175.41 (12)C26—O2—C23—C24172.95 (12)
C8—C9—C10—O1177.48 (11)C21—C22—C23—O2177.50 (13)
C8—C9—C10—C111.4 (2)C21—C22—C23—C241.0 (2)
O1—C10—C11—C12177.71 (12)O2—C23—C24—C25177.41 (11)
C9—C10—C11—C121.1 (2)C22—C23—C24—C251.2 (2)
C8—C7—C12—C111.9 (2)C23—C24—C25—C200.2 (2)
C6—C7—C12—C11178.01 (13)C21—C20—C25—C241.8 (2)
C10—C11—C12—C70.6 (2)C19—C20—C25—C24177.55 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.87 (1)2.15 (1)2.5931 (16)111 (1)
N4—H4n···N60.87 (1)2.13 (1)2.5818 (17)112 (1)
N2—H2n···S20.87 (1)2.70 (1)3.5686 (11)176 (1)
N5—H5n···S10.88 (1)2.65 (1)3.5276 (11)178 (1)
N1—H1n···O2i0.87 (1)2.51 (2)3.0979 (16)125 (1)
C1—H1B···Cg1ii0.982.943.5930 (17)125
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H19N3OS
Mr265.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6344 (4), 11.1759 (6), 13.4619 (8)
α, β, γ (°)80.324 (5), 87.103 (4), 76.360 (4)
V3)1388.48 (13)
Z4
Radiation typeCu Kα
µ (mm1)2.01
Crystal size (mm)0.41 × 0.23 × 0.14
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.51, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
18287, 5312, 4995
Rint0.022
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.01
No. of reflections5312
No. of parameters343
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N30.871 (14)2.150 (14)2.5931 (16)111.0 (13)
N4—H4n···N60.868 (14)2.132 (14)2.5818 (17)111.6 (13)
N2—H2n···S20.870 (14)2.700 (13)3.5686 (11)175.9 (13)
N5—H5n···S10.876 (13)2.652 (13)3.5276 (11)178.4 (12)
N1—H1n···O2i0.871 (14)2.511 (16)3.0979 (16)125.4 (12)
C1—H1B···Cg1ii0.982.943.5930 (17)125
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: kacrouse@gmail.com.

Acknowledgements

Support for the project came from Universiti Putra Malaysia (UPM) under their research University Grant Scheme (RUGS Nos. 9199834 and 9174000) and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). MYT wishes to thank UPM for a Graduate Research Fellowship award. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChan, M.-E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model, 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247–1252.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1461-o1462
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds