metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κO)bis­­(pyridine-2-aldoxime-κ2N,N′)nickel(II)

aUniversite de Europeenne de Bretagne, Universite de Bretagne Occidentale, CS 93837, 29238 Brest Cedex 3, France
*Correspondence e-mail: siyoutao@hotmail.com

(Received 26 March 2012; accepted 3 April 2012; online 13 April 2012)

In the mononuclear title compound, [Ni(CH3COO)2(C6H6N2O)2], the NiII atom is coordinated by two pyridine-2-aldoxime (PaoH) ligands and two acetate groups, with cis coordination for the pairs of identical ligands. While each acetate group binds to the NiII atom by one O atom, each PaoH chelates the NiII atom through two N atoms. The O atom on PaoH is not deprotonated and does not participate in bonding to the NiII atom. Thus, the NiII atom exhibits an octa­hedral environment. Intra­molecular O—H⋯O hydrogen-bonding inter­actions and inter­molecular C—H⋯O hydrogen-bonding inter­actions are present in the structure. Adjacent mol­ecules pack along [100] through van der Waals forces.

Related literature

For [Ni(PaoH)2Cl2], see: Krause & Busch (1960[Krause, R. A. & Busch, D. H. (1960). J. Am. Chem. Soc. 82, 4830-4834.]); Miyasaka et al. (2004[Miyasaka, H., Furukawa, S., Yanagida, S., Sugiura, K. & Yamashita, M. (2004). Inorg. Chim. Acta, 357, 1619-1626.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)2(C6H6N2O)2]

  • Mr = 421.05

  • Monoclinic, P 21 /c

  • a = 8.649 (4) Å

  • b = 13.707 (7) Å

  • c = 17.775 (7) Å

  • β = 119.051 (17)°

  • V = 1842.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) Tmin = 0.809, Tmax = 1.000

  • 14112 measured reflections

  • 4207 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.08

  • 4207 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4 2.059 (2)
Ni1—O6 2.061 (2)
Ni1—N4 2.081 (2)
Ni1—N2 2.084 (2)
Ni1—N1 2.096 (2)
Ni1—N3 2.122 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3 0.82 1.67 2.488 (4) 176
O2—H2A⋯O5 0.82 1.65 2.463 (3) 173
C3—H3A⋯O2i 0.93 2.43 3.307 (4) 157
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ni(PaoH)2Cl2 is a good coordination donor building for assembly with transition metal ions, like Mn2+. The reaction of Ni(PaoH)2Cl2 and Mn(OAc)2.4H2O afforded, unexpectedly, the title compound, in which AcO- is substituted for Cl-.

Cis coordination fashion was found for the identical ligands. The average Ni—N bond length is 2.095 (18) Å, and the average Fe—O bond length is 2.060 (1) Å. The O atoms on PaoH remain protonated, and intramolecular O—H···O hydrogen-bonds are present, with the acceptor O atom from acetate.

Related literature top

For related literature [on what subject?], see: Krause & Busch (1960); Miyasaka et al. (2004).

Experimental top

Ni(PaoH)2Cl2 (0.19 g, 0.5 mmol) and Mn(OAc)2.4H2O (0.24 g, 1 mmol) were dissolved in DMF (1 mL) and MeOH (15 mL), then the mixture was stirred for 1 h, followed by filtration. After standing in air for 3 days, well shaped light purple crystals were obtained from the solution.

Refinement top

Hydrogen atoms were placed at idealized positions and allowed to ride on their parent atoms, with OH, CH and CH3 bonds set equal to 0.82, 0.93 and 0.96 Å, respectively. For H atoms of CH3, Uiso(H) = 1.5Ueq(C). For other H atoms, Uiso(H) = 1.2Ueq(C or O). The highest residual peak was located at 0.70 Å from H15C.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 20% probability displacement ellipsoids for all non-H atoms (H atoms omitted).
Bis(acetato-κO)bis(pyridine-2-aldoxime- κ2N,N')nickel(II) top
Crystal data top
[Ni(C2H3O2)2(C6H6N2O)2]F(000) = 872
Mr = 421.05Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1810 reflections
a = 8.649 (4) Åθ = 2.7–27.5°
b = 13.707 (7) ŵ = 1.09 mm1
c = 17.775 (7) ÅT = 293 K
β = 119.051 (17)°Prism, light purple
V = 1842.1 (15) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4207 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD_Profile_fitting scansh = 911
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1617
Tmin = 0.809, Tmax = 1.000l = 2323
14112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.2764P]
where P = (Fo2 + 2Fc2)/3
4207 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C2H3O2)2(C6H6N2O)2]V = 1842.1 (15) Å3
Mr = 421.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.649 (4) ŵ = 1.09 mm1
b = 13.707 (7) ÅT = 293 K
c = 17.775 (7) Å0.20 × 0.20 × 0.20 mm
β = 119.051 (17)°
Data collection top
Rigaku Mercury2
diffractometer
4207 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3298 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.035
14112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
4207 reflectionsΔρmin = 0.37 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00171 (4)0.80019 (2)0.15100 (2)0.03476 (13)
O30.3495 (3)0.88769 (19)0.33957 (15)0.0740 (7)
O50.4089 (3)0.87646 (17)0.10176 (16)0.0686 (7)
O60.1317 (2)0.92515 (14)0.14997 (13)0.0499 (5)
O10.3372 (3)0.92561 (17)0.19987 (14)0.0627 (6)
H1A0.34530.91460.24700.094*
O40.1120 (3)0.79396 (15)0.28287 (12)0.0531 (5)
O20.3346 (2)0.70350 (14)0.13957 (13)0.0493 (5)
H2A0.36710.76020.12710.074*
N30.1359 (3)0.67005 (16)0.15232 (14)0.0391 (5)
N20.1841 (3)0.88691 (16)0.13709 (15)0.0408 (5)
N10.1082 (3)0.80866 (15)0.01696 (14)0.0370 (5)
N40.1728 (3)0.69206 (16)0.14512 (14)0.0385 (5)
C150.3523 (4)1.0447 (2)0.1205 (2)0.0618 (8)
H15A0.47731.04580.10040.093*
H15B0.32721.08070.08130.093*
H15C0.29091.07380.17660.093*
C30.2199 (5)0.8366 (3)0.1565 (2)0.0603 (8)
H3A0.25700.84510.21470.072*
C160.2919 (4)0.9406 (2)0.12523 (19)0.0482 (7)
C70.2866 (3)0.6588 (2)0.14993 (18)0.0443 (6)
H7A0.34720.71450.14900.053*
C40.0615 (4)0.8770 (2)0.0945 (2)0.0558 (8)
H4A0.00810.91390.11040.067*
C110.0493 (3)0.5883 (2)0.15438 (18)0.0428 (6)
C20.3204 (4)0.7842 (2)0.1307 (2)0.0547 (8)
H2B0.42770.75740.17110.066*
C140.2413 (4)0.8323 (2)0.34460 (18)0.0436 (6)
C10.2604 (3)0.7717 (2)0.04356 (18)0.0450 (6)
H1B0.32940.73580.02660.054*
C130.2694 (4)0.8122 (2)0.4337 (2)0.0619 (9)
H13A0.17930.76850.43020.093*
H13B0.26330.87230.45990.093*
H13C0.38350.78290.46790.093*
C50.0093 (4)0.86133 (19)0.00854 (18)0.0413 (6)
C120.1192 (4)0.6044 (2)0.15257 (19)0.0478 (7)
H12A0.18460.55280.15670.057*
C60.1540 (4)0.9011 (2)0.06049 (19)0.0463 (7)
H6A0.23300.93550.04910.056*
C90.2713 (4)0.4870 (2)0.1523 (2)0.0652 (9)
H9A0.31700.42560.15220.078*
C80.3571 (4)0.5693 (2)0.1487 (2)0.0549 (8)
H8A0.46110.56480.14560.066*
C100.1161 (4)0.4964 (2)0.1560 (2)0.0607 (9)
H10A0.05720.44130.15950.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03189 (19)0.0365 (2)0.0371 (2)0.00362 (13)0.01775 (15)0.00059 (14)
O30.0659 (14)0.0939 (19)0.0554 (14)0.0353 (14)0.0241 (11)0.0081 (13)
O50.0434 (12)0.0570 (14)0.1006 (19)0.0026 (10)0.0311 (12)0.0034 (13)
O60.0412 (10)0.0474 (11)0.0631 (13)0.0031 (8)0.0270 (9)0.0046 (10)
O10.0501 (12)0.0747 (15)0.0596 (14)0.0285 (11)0.0237 (10)0.0104 (11)
O40.0481 (11)0.0691 (14)0.0347 (11)0.0148 (10)0.0142 (9)0.0021 (9)
O20.0356 (10)0.0568 (13)0.0626 (13)0.0030 (8)0.0294 (9)0.0071 (10)
N30.0350 (11)0.0385 (12)0.0424 (13)0.0019 (9)0.0177 (9)0.0026 (10)
N20.0339 (11)0.0389 (12)0.0492 (14)0.0081 (9)0.0197 (10)0.0029 (10)
N10.0394 (11)0.0374 (12)0.0374 (12)0.0007 (9)0.0212 (9)0.0016 (9)
N40.0326 (11)0.0460 (13)0.0390 (12)0.0071 (9)0.0190 (9)0.0030 (10)
C150.0566 (18)0.0544 (19)0.069 (2)0.0126 (15)0.0265 (16)0.0026 (16)
C30.078 (2)0.064 (2)0.0404 (17)0.0078 (17)0.0296 (16)0.0033 (15)
C160.0484 (16)0.0555 (18)0.0450 (16)0.0083 (14)0.0262 (13)0.0021 (13)
C70.0359 (13)0.0438 (15)0.0555 (18)0.0003 (12)0.0239 (12)0.0057 (13)
C40.074 (2)0.0536 (19)0.0545 (19)0.0053 (15)0.0422 (17)0.0089 (15)
C110.0411 (14)0.0374 (14)0.0460 (16)0.0049 (11)0.0181 (12)0.0027 (12)
C20.0577 (18)0.0531 (18)0.0430 (17)0.0019 (14)0.0163 (14)0.0033 (14)
C140.0427 (14)0.0414 (15)0.0425 (16)0.0054 (12)0.0174 (12)0.0025 (12)
C10.0414 (14)0.0475 (16)0.0422 (16)0.0017 (12)0.0173 (12)0.0017 (13)
C130.064 (2)0.073 (2)0.0407 (17)0.0059 (16)0.0194 (15)0.0016 (15)
C50.0504 (15)0.0373 (14)0.0450 (16)0.0023 (12)0.0301 (13)0.0005 (12)
C120.0435 (15)0.0425 (16)0.0609 (19)0.0096 (12)0.0280 (13)0.0055 (13)
C60.0483 (15)0.0457 (16)0.0550 (18)0.0081 (12)0.0331 (14)0.0019 (13)
C90.0530 (18)0.0430 (17)0.093 (3)0.0070 (14)0.0307 (18)0.0010 (17)
C80.0417 (15)0.0550 (18)0.071 (2)0.0072 (13)0.0297 (15)0.0049 (16)
C100.0506 (17)0.0384 (16)0.089 (3)0.0057 (13)0.0307 (17)0.0003 (16)
Geometric parameters (Å, º) top
Ni1—O42.059 (2)C3—C21.367 (5)
Ni1—O62.061 (2)C3—C41.390 (5)
Ni1—N42.081 (2)C3—H3A0.9300
Ni1—N22.084 (2)C7—C81.375 (4)
Ni1—N12.096 (2)C7—H7A0.9300
Ni1—N32.122 (2)C4—C51.383 (4)
O3—C141.241 (3)C4—H4A0.9300
O5—C161.249 (4)C11—C101.380 (4)
O6—C161.252 (3)C11—C121.459 (4)
O1—N21.358 (3)C2—C11.384 (4)
O1—H1A0.8200C2—H2B0.9300
O4—C141.241 (3)C14—C131.507 (4)
O2—N41.364 (3)C1—H1B0.9300
O2—H2A0.8200C13—H13A0.9600
N3—C71.333 (3)C13—H13B0.9600
N3—C111.358 (3)C13—H13C0.9600
N2—C61.271 (3)C5—C61.454 (4)
N1—C11.331 (3)C12—H12A0.9300
N1—C51.355 (3)C6—H6A0.9300
N4—C121.272 (3)C9—C81.368 (4)
C15—C161.507 (4)C9—C101.381 (4)
C15—H15A0.9600C9—H9A0.9300
C15—H15B0.9600C8—H8A0.9300
C15—H15C0.9600C10—H10A0.9300
O4—Ni1—O689.56 (9)N3—C7—C8123.4 (3)
O4—Ni1—N487.21 (8)N3—C7—H7A118.3
O6—Ni1—N4101.66 (9)C8—C7—H7A118.3
O4—Ni1—N2101.53 (8)C5—C4—C3118.8 (3)
O6—Ni1—N288.73 (9)C5—C4—H4A120.6
N4—Ni1—N2166.55 (9)C3—C4—H4A120.6
O4—Ni1—N1179.06 (8)N3—C11—C10121.5 (3)
O6—Ni1—N190.05 (8)N3—C11—C12115.7 (2)
N4—Ni1—N193.71 (8)C10—C11—C12122.8 (3)
N2—Ni1—N177.60 (9)C3—C2—C1119.1 (3)
O4—Ni1—N390.23 (9)C3—C2—H2B120.4
O6—Ni1—N3179.02 (8)C1—C2—H2B120.4
N4—Ni1—N377.37 (9)O4—C14—O3125.7 (3)
N2—Ni1—N392.24 (9)O4—C14—C13117.9 (3)
N1—Ni1—N390.17 (8)O3—C14—C13116.4 (3)
C16—O6—Ni1131.6 (2)N1—C1—C2122.9 (3)
N2—O1—H1A109.5N1—C1—H1B118.5
C14—O4—Ni1135.2 (2)C2—C1—H1B118.5
N4—O2—H2A109.5C14—C13—H13A109.5
C7—N3—C11117.8 (2)C14—C13—H13B109.5
C7—N3—Ni1129.37 (19)H13A—C13—H13B109.5
C11—N3—Ni1112.80 (17)C14—C13—H13C109.5
C6—N2—O1115.6 (2)H13A—C13—H13C109.5
C6—N2—Ni1116.18 (18)H13B—C13—H13C109.5
O1—N2—Ni1128.13 (18)N1—C5—C4122.1 (3)
C1—N1—C5118.0 (2)N1—C5—C6115.5 (2)
C1—N1—Ni1128.49 (18)C4—C5—C6122.4 (3)
C5—N1—Ni1113.46 (17)N4—C12—C11117.0 (2)
C12—N4—O2115.2 (2)N4—C12—H12A121.5
C12—N4—Ni1116.72 (18)C11—C12—H12A121.5
O2—N4—Ni1127.99 (16)N2—C6—C5117.2 (2)
C16—C15—H15A109.5N2—C6—H6A121.4
C16—C15—H15B109.5C5—C6—H6A121.4
H15A—C15—H15B109.5C8—C9—C10119.1 (3)
C16—C15—H15C109.5C8—C9—H9A120.4
H15A—C15—H15C109.5C10—C9—H9A120.4
H15B—C15—H15C109.5C9—C8—C7118.7 (3)
C2—C3—C4119.0 (3)C9—C8—H8A120.6
C2—C3—H3A120.5C7—C8—H8A120.6
C4—C3—H3A120.5C11—C10—C9119.4 (3)
O5—C16—O6125.2 (3)C11—C10—H10A120.3
O5—C16—C15116.4 (3)C9—C10—H10A120.3
O6—C16—C15118.3 (3)
O4—Ni1—O6—C16108.2 (3)N2—Ni1—N4—C1246.2 (5)
N4—Ni1—O6—C1621.1 (3)N1—Ni1—N4—C1295.3 (2)
N2—Ni1—O6—C16150.2 (3)N3—Ni1—N4—C126.0 (2)
N1—Ni1—O6—C1672.6 (3)O4—Ni1—N4—O290.6 (2)
N3—Ni1—O6—C1630 (5)O6—Ni1—N4—O21.7 (2)
O6—Ni1—O4—C1483.6 (3)N2—Ni1—N4—O2138.3 (3)
N4—Ni1—O4—C14174.7 (3)N1—Ni1—N4—O289.1 (2)
N2—Ni1—O4—C145.0 (3)N3—Ni1—N4—O2178.5 (2)
N1—Ni1—O4—C1418 (5)Ni1—O6—C16—O57.5 (5)
N3—Ni1—O4—C1497.3 (3)Ni1—O6—C16—C15170.6 (2)
O4—Ni1—N3—C798.1 (2)C11—N3—C7—C80.6 (4)
O6—Ni1—N3—C7176 (100)Ni1—N3—C7—C8178.1 (2)
N4—Ni1—N3—C7174.8 (3)C2—C3—C4—C51.1 (5)
N2—Ni1—N3—C73.4 (2)C7—N3—C11—C101.5 (4)
N1—Ni1—N3—C781.0 (2)Ni1—N3—C11—C10179.7 (2)
O4—Ni1—N3—C1183.15 (19)C7—N3—C11—C12177.0 (2)
O6—Ni1—N3—C115 (5)Ni1—N3—C11—C121.8 (3)
N4—Ni1—N3—C113.93 (17)C4—C3—C2—C11.0 (5)
N2—Ni1—N3—C11175.29 (19)Ni1—O4—C14—O32.7 (5)
N1—Ni1—N3—C1197.69 (19)Ni1—O4—C14—C13176.1 (2)
O4—Ni1—N2—C6177.5 (2)C5—N1—C1—C20.4 (4)
O6—Ni1—N2—C693.2 (2)Ni1—N1—C1—C2178.6 (2)
N4—Ni1—N2—C647.8 (5)C3—C2—C1—N10.2 (5)
N1—Ni1—N2—C62.9 (2)C1—N1—C5—C40.2 (4)
N3—Ni1—N2—C686.8 (2)Ni1—N1—C5—C4178.6 (2)
O4—Ni1—N2—O11.8 (2)C1—N1—C5—C6179.1 (2)
O6—Ni1—N2—O191.1 (2)Ni1—N1—C5—C60.6 (3)
N4—Ni1—N2—O1128.0 (4)C3—C4—C5—N10.6 (4)
N1—Ni1—N2—O1178.6 (2)C3—C4—C5—C6179.8 (3)
N3—Ni1—N2—O188.9 (2)O2—N4—C12—C11177.0 (2)
O4—Ni1—N1—C1154 (5)Ni1—N4—C12—C116.9 (3)
O6—Ni1—N1—C188.5 (2)N3—C11—C12—N43.3 (4)
N4—Ni1—N1—C113.2 (2)C10—C11—C12—N4175.2 (3)
N2—Ni1—N1—C1177.2 (2)O1—N2—C6—C5179.6 (2)
N3—Ni1—N1—C190.6 (2)Ni1—N2—C6—C54.1 (3)
O4—Ni1—N1—C524 (5)N1—C5—C6—N23.2 (4)
O6—Ni1—N1—C589.74 (18)C4—C5—C6—N2176.1 (3)
N4—Ni1—N1—C5168.57 (18)C10—C9—C8—C70.7 (5)
N2—Ni1—N1—C51.04 (17)N3—C7—C8—C91.7 (5)
N3—Ni1—N1—C591.21 (18)N3—C11—C10—C92.3 (5)
O4—Ni1—N4—C1284.9 (2)C12—C11—C10—C9176.1 (3)
O6—Ni1—N4—C12173.8 (2)C8—C9—C10—C111.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.821.672.488 (4)176
O2—H2A···O50.821.652.463 (3)173
C3—H3A···O2i0.932.433.307 (4)157
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)2(C6H6N2O)2]
Mr421.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.649 (4), 13.707 (7), 17.775 (7)
β (°) 119.051 (17)
V3)1842.1 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14112, 4207, 3298
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.08
No. of reflections4207
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O42.059 (2)Ni1—N22.084 (2)
Ni1—O62.061 (2)Ni1—N12.096 (2)
Ni1—N42.081 (2)Ni1—N32.122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.821.672.488 (4)176
O2—H2A···O50.821.652.463 (3)173
C3—H3A···O2i0.932.433.307 (4)157
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank the Centre Nationale de la Recherche Scientique (CNRS) and the Université de Bretagne Occidentale (UBO) for financial support.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationKrause, R. A. & Busch, D. H. (1960). J. Am. Chem. Soc. 82, 4830-4834.  CrossRef CAS Web of Science
First citationMiyasaka, H., Furukawa, S., Yanagida, S., Sugiura, K. & Yamashita, M. (2004). Inorg. Chim. Acta, 357, 1619–1626.  Web of Science CSD CrossRef CAS
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds