organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1303

2-[(3-Bromo­anilino)meth­yl]-1,2-benzo­thia­zol-3(2H)-one

aInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China, bInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China
*Correspondence e-mail: linqianggroup@163.com_yangjxmail@sohu.com

(Received 12 March 2012; accepted 21 March 2012; online 4 April 2012)

The title compound, C14H11BrN2OS, was synthesized by the reaction of 1,2-benzothia­zol-3(2H)-one with formalin and 3-bromo­aniline in ethanol. The 1,2-benzothia­zolone ring system is approximately planar [maximum deviation = 0.0142 (s.u.?) Å] and forms a dihedral angle of 79.19 (5)° with the benzene ring. In the crystal, molecules are linked by N—H⋯O, C—H⋯O and C—H⋯Br interactions.

Related literature

For background to the synthesis of benzoisothia­zolone deriv­atives, see: Davis (1972[Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.]); Elgazwy & Abdel-Sattar (2003[Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.]). For the biological activity of 1,2-benzoisothia­zolone derivatives, see: Taubert et al. (2002[Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81.]). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate derivatives, see: Wang et al. (2011[Wang, X., Lin, Q. & Yang, J. (2011). Acta Cryst. E67, o2477.]); Wang, Yang et al. (2011a[Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.],b[Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.])

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2OS

  • Mr = 335.22

  • Monoclinic, P 21 /c

  • a = 7.351 (2) Å

  • b = 22.781 (7) Å

  • c = 8.559 (3) Å

  • β = 109.580 (4)°

  • V = 1350.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 153 K

  • 0.38 × 0.37 × 0.31 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.374, Tmax = 0.436

  • 11631 measured reflections

  • 3587 independent reflections

  • 2709 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.00

  • 3587 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.82 (2) 2.14 (2) 2.939 (2) 167 (2)
C3—H3⋯O1ii 0.95 2.59 3.484 (3) 157
C10—H10⋯Br1iii 0.95 2.93 3.545 (3) 124
C14—H14⋯O1i 0.95 2.46 3.207 (3) 135
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y, z+1; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The work presented herein is part of our interest in synthesizing various benzisothiazolone derivatives and confirming their structures by X-ray analysis (Wang et al., 2011; Wang, Yang et al., 2011a,b). These compounds will be utilized for the study of comparative bioactivity.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the benzisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0142 A ° for the atom C1, and the dihedral angle between the benzene ring and the benzisothiazolone ring is 79.169 (5)°. In the crystal structure, intermolecular N—H···O, C—H···O and C—H···Br hydrogen bonds (Table 1) link molecules into a three-dimensional network (Fig. 2).

Related literature top

For background to the synthesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For the biological activity of 1,2-benzoisothiazolone derivatives, see: Taubert et al. (2002). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate derivatives, see: Wang et al. (2011); Wang, Yang et al. (2011a,b)

Experimental top

An ethanol solution (20 ml) containing 1,2-benzothiazol-3(2H)-one (1.51 g, 0.01 mol), formalin (1 mL) and 3-bromoaniline (1.72 g, 0.01 mol) was stirred at room temperature for 4.5 h to afford the title compound (1.97 g, yield 58.8%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from trichloromethane/methanol (1:1 v/v) at room temperature.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined in riding mode, with C—H = 0.95–0.99 Å. The Uiso(H) values were constrained to be 1.5Ueq(C) for the methyl H atoms or 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···Br interactions (dashed lines) in the crystal structure of the title compound.
2-[(3-Bromoanilino)methyl]-1,2-benzothiazol-3(2H)-one top
Crystal data top
C14H11BrN2OSF(000) = 672
Mr = 335.22Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4184 reflections
a = 7.351 (2) Åθ = 2.7–29.1°
b = 22.781 (7) ŵ = 3.19 mm1
c = 8.559 (3) ÅT = 153 K
β = 109.580 (4)°Block, colourless
V = 1350.5 (7) Å30.38 × 0.37 × 0.31 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3587 independent reflections
Radiation source: Rotating Anode2709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 2.7°
phi and ω scansh = 109
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3130
Tmin = 0.374, Tmax = 0.436l = 1111
11631 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.160P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C14H11BrN2OSV = 1350.5 (7) Å3
Mr = 335.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.351 (2) ŵ = 3.19 mm1
b = 22.781 (7) ÅT = 153 K
c = 8.559 (3) Å0.38 × 0.37 × 0.31 mm
β = 109.580 (4)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3587 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2709 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.436Rint = 0.037
11631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.44 e Å3
3587 reflectionsΔρmin = 0.52 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.37553 (3)0.693276 (11)0.83530 (3)0.03101 (8)
O11.1959 (2)0.47887 (6)1.16801 (16)0.0223 (3)
S11.30876 (8)0.60263 (2)1.48237 (6)0.02068 (12)
N11.2660 (2)0.56804 (7)1.29651 (19)0.0181 (4)
C130.6410 (3)0.69583 (9)0.9710 (3)0.0220 (4)
C71.2302 (3)0.50892 (9)1.2939 (2)0.0174 (4)
N21.0771 (2)0.60956 (8)1.0275 (2)0.0184 (4)
C51.2107 (3)0.43397 (10)1.5099 (3)0.0218 (4)
H51.18210.40251.43270.026*
C31.2648 (3)0.47107 (10)1.7852 (3)0.0253 (5)
H31.27160.46381.89630.030*
C11.2822 (3)0.53648 (9)1.5741 (2)0.0181 (4)
C90.9559 (3)0.65290 (9)1.0506 (2)0.0172 (4)
C101.0203 (3)0.69745 (9)1.1676 (3)0.0261 (5)
H101.15190.69851.23680.031*
C140.7614 (3)0.65249 (9)0.9498 (2)0.0182 (4)
H140.71340.62290.86820.022*
C61.2401 (3)0.49047 (9)1.4604 (2)0.0168 (4)
C81.2648 (3)0.59860 (9)1.1440 (2)0.0184 (4)
H8A1.33280.63661.17550.022*
H8B1.33840.57471.08910.022*
C21.2955 (3)0.52715 (10)1.7396 (3)0.0237 (5)
H21.32460.55841.81740.028*
C41.2239 (3)0.42447 (10)1.6723 (3)0.0259 (5)
H41.20510.38611.70780.031*
C120.7015 (3)0.74034 (11)1.0860 (3)0.0324 (5)
H120.61490.76971.09730.039*
C110.8935 (4)0.74030 (11)1.1840 (3)0.0349 (6)
H110.94020.77031.26450.042*
H2N1.017 (3)0.5816 (10)0.975 (3)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02204 (12)0.03134 (14)0.03771 (15)0.00613 (10)0.00744 (9)0.00158 (11)
O10.0263 (8)0.0235 (8)0.0165 (8)0.0016 (7)0.0064 (6)0.0054 (6)
S10.0272 (3)0.0200 (3)0.0155 (3)0.0026 (2)0.0080 (2)0.0035 (2)
N10.0253 (9)0.0177 (9)0.0124 (9)0.0007 (7)0.0076 (7)0.0009 (7)
C130.0227 (10)0.0203 (11)0.0235 (12)0.0014 (9)0.0083 (9)0.0035 (9)
C70.0150 (9)0.0194 (11)0.0166 (11)0.0010 (8)0.0038 (8)0.0013 (8)
N20.0189 (9)0.0179 (9)0.0162 (9)0.0000 (7)0.0029 (7)0.0024 (7)
C50.0182 (10)0.0234 (11)0.0229 (12)0.0000 (9)0.0059 (8)0.0005 (9)
C30.0220 (11)0.0365 (13)0.0191 (12)0.0016 (10)0.0092 (9)0.0068 (10)
C10.0137 (9)0.0231 (11)0.0178 (11)0.0009 (8)0.0054 (8)0.0001 (8)
C90.0207 (10)0.0151 (10)0.0164 (10)0.0000 (8)0.0071 (8)0.0024 (8)
C100.0239 (11)0.0211 (11)0.0289 (13)0.0026 (10)0.0032 (9)0.0066 (9)
C140.0228 (11)0.0176 (10)0.0150 (11)0.0001 (8)0.0073 (8)0.0006 (8)
C60.0128 (9)0.0212 (10)0.0155 (10)0.0019 (8)0.0038 (7)0.0014 (8)
C80.0208 (10)0.0215 (11)0.0154 (10)0.0010 (9)0.0095 (8)0.0005 (8)
C20.0229 (11)0.0314 (13)0.0177 (11)0.0002 (9)0.0079 (9)0.0016 (9)
C40.0232 (11)0.0277 (12)0.0279 (13)0.0004 (10)0.0098 (9)0.0081 (10)
C120.0337 (13)0.0256 (12)0.0389 (14)0.0061 (11)0.0134 (11)0.0091 (11)
C110.0392 (14)0.0251 (13)0.0382 (14)0.0003 (11)0.0100 (11)0.0165 (11)
Geometric parameters (Å, º) top
Br1—C131.908 (2)C3—C41.398 (3)
O1—C71.229 (2)C3—H30.9500
S1—N11.7074 (17)C1—C61.393 (3)
S1—C11.740 (2)C1—C21.403 (3)
N1—C71.371 (3)C9—C101.393 (3)
N1—C81.476 (2)C9—C141.401 (3)
C13—C141.378 (3)C10—C111.389 (3)
C13—C121.379 (3)C10—H100.9500
C7—C61.464 (3)C14—H140.9500
N2—C91.388 (3)C8—H8A0.9900
N2—C81.427 (2)C8—H8B0.9900
N2—H2N0.82 (2)C2—H20.9500
C5—C41.378 (3)C4—H40.9500
C5—C61.394 (3)C12—C111.379 (3)
C5—H50.9500C12—H120.9500
C3—C21.376 (3)C11—H110.9500
N1—S1—C190.41 (9)C11—C10—H10119.8
C7—N1—C8120.30 (16)C9—C10—H10119.8
C7—N1—S1116.28 (13)C13—C14—C9118.83 (19)
C8—N1—S1123.42 (13)C13—C14—H14120.6
C14—C13—C12123.6 (2)C9—C14—H14120.6
C14—C13—Br1117.97 (16)C1—C6—C5120.22 (18)
C12—C13—Br1118.46 (17)C1—C6—C7113.01 (18)
O1—C7—N1122.90 (18)C5—C6—C7126.76 (18)
O1—C7—C6128.46 (19)N2—C8—N1114.72 (16)
N1—C7—C6108.64 (17)N2—C8—H8A108.6
C9—N2—C8122.78 (18)N1—C8—H8A108.6
C9—N2—H2N112.0 (16)N2—C8—H8B108.6
C8—N2—H2N117.8 (16)N1—C8—H8B108.6
C4—C5—C6119.1 (2)H8A—C8—H8B107.6
C4—C5—H5120.5C3—C2—C1117.7 (2)
C6—C5—H5120.5C3—C2—H2121.2
C2—C3—C4121.8 (2)C1—C2—H2121.2
C2—C3—H3119.1C5—C4—C3120.3 (2)
C4—C3—H3119.1C5—C4—H4119.9
C6—C1—C2121.0 (2)C3—C4—H4119.9
C6—C1—S1111.65 (15)C13—C12—C11116.9 (2)
C2—C1—S1127.33 (17)C13—C12—H12121.5
N2—C9—C10122.76 (19)C11—C12—H12121.5
N2—C9—C14118.63 (19)C12—C11—C10121.6 (2)
C10—C9—C14118.60 (19)C12—C11—H11119.2
C11—C10—C9120.5 (2)C10—C11—H11119.2
C1—S1—N1—C70.55 (16)S1—C1—C6—C70.5 (2)
C1—S1—N1—C8179.97 (16)C4—C5—C6—C10.1 (3)
C8—N1—C7—O10.0 (3)C4—C5—C6—C7179.39 (19)
S1—N1—C7—O1179.45 (15)O1—C7—C6—C1179.89 (19)
C8—N1—C7—C6179.87 (16)N1—C7—C6—C10.1 (2)
S1—N1—C7—C60.4 (2)O1—C7—C6—C50.4 (3)
N1—S1—C1—C60.57 (15)N1—C7—C6—C5179.41 (18)
N1—S1—C1—C2179.34 (19)C9—N2—C8—N174.6 (2)
C8—N2—C9—C1014.7 (3)C7—N1—C8—N276.3 (2)
C8—N2—C9—C14166.54 (18)S1—N1—C8—N2103.16 (19)
N2—C9—C10—C11179.0 (2)C4—C3—C2—C10.7 (3)
C14—C9—C10—C110.3 (3)C6—C1—C2—C30.2 (3)
C12—C13—C14—C90.5 (3)S1—C1—C2—C3178.47 (16)
Br1—C13—C14—C9178.70 (15)C6—C5—C4—C30.4 (3)
N2—C9—C14—C13179.28 (18)C2—C3—C4—C50.9 (3)
C10—C9—C14—C130.5 (3)C14—C13—C12—C110.3 (4)
C2—C1—C6—C50.2 (3)Br1—C13—C12—C11178.94 (18)
S1—C1—C6—C5179.05 (15)C13—C12—C11—C100.0 (4)
C2—C1—C6—C7179.34 (18)C9—C10—C11—C120.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.82 (2)2.14 (2)2.939 (2)167 (2)
C3—H3···O1ii0.952.593.484 (3)157
C10—H10···Br1iii0.952.933.545 (3)124
C14—H14···O1i0.952.463.207 (3)135
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2OS
Mr335.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.351 (2), 22.781 (7), 8.559 (3)
β (°) 109.580 (4)
V3)1350.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.38 × 0.37 × 0.31
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.374, 0.436
No. of measured, independent and
observed [I > 2σ(I)] reflections
11631, 3587, 2709
Rint0.037
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.00
No. of reflections3587
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.52

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.82 (2)2.14 (2)2.939 (2)167 (2)
C3—H3···O1ii0.952.593.484 (3)157
C10—H10···Br1iii0.952.933.545 (3)124
C14—H14···O1i0.952.463.207 (3)135
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+3/2, z+1/2.
 

Acknowledgements

This work was supproted by the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of Hainan University 211 project.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.  CrossRef CAS Google Scholar
First citationElgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.  CrossRef CAS Google Scholar
First citationWang, X., Lin, Q. & Yang, J. (2011). Acta Cryst. E67, o2477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1303
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds