metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(benzyl­imino­meth­yl)pyrrol-1-ido-κ2N,N′]bis­­(di­methyl­amido-κN)titanium(IV)

aQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: liyahong@suda.edu.cn

(Received 19 March 2012; accepted 3 April 2012; online 13 April 2012)

The mononuclear title complex, [Ti(C2H6N)2(C12H11N2)2], was synthesized by the reaction of 1-phenyl-N-[(pyrrol-2-yl)methyl­idene]methanamine with Ti(NMe2)4. The TiIV atom is coordinated in a distorted octa­hedral geometry by four N atoms from two derivatized methanamine ligands and two N atoms from two dimethyl­amide ions. The dihedral angles between the pyrrole and phenyl rings in the bidentate ligands are 62.36 (9) and 78.32 (8)°. In the crystal, a weak ππ stacking inter­action [centroid–centroid distance = 3.864 (2) Å] involving centrosymmetrically related mol­ecules is observed.

Related literature

For the synthesis of N-[(pyrrol-2-yl)methyl­ene]-1-phenyl­methanamine, see: Brunner et al. (1998[Brunner, H., Nuber, B. & Tracht, T. (1998). Tetrahedron Asymmetry, 9, 3763-3771.]); Joly & Jacobsen (2004[Joly, G. D. & Jacobsen, E. N. (2004). J. Am. Chem. Soc. 126, 4102-4103.]); La Regina et al. (2007[La Regina, G., Silvestri, R., Artico, M., Lavecchia, A., Novellino, E., Befani, O., Turini, P. & Agostinelli, E. (2007). J. Med. Chem. 50, 922-931.]). For the structures of related complexes, see: Li et al. (2008[Li, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Huaxue Xuebao, 66, 2141-2145.]); Brunner et al. (2003[Brunner, H., Kollnberger, A. & Zabel, M. (2003). Polyhedron, 22, 2639-2646.]); Simpson et al. (2004[Simpson, J. L., Lombardo, D. J. & Fox, S. (2004). J. Undergrad. Chem. Res. 3, 71-77.]); Wansapura et al. (2003[Wansapura, C. M., Juyoung, C., Simpson, J. L., Szymanski, D., Eaton, G. R., Eaton, S. S. & Fox, S. (2003). J. Coord. Chem. 56, 975-993.]); Beer et al. (2003[Beer, P. D., Cheetham, A. G., Drew, M. G. B., Fox, O. D., Hayes, E. J. & Rolls, T. D. (2003). Dalton Trans. pp. 603-611.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C2H6N)2(C12H11N2)2]

  • Mr = 502.48

  • Triclinic, [P \overline 1]

  • a = 8.6363 (17) Å

  • b = 9.887 (2) Å

  • c = 16.666 (3) Å

  • α = 77.15 (3)°

  • β = 84.72 (3)°

  • γ = 71.82 (3)°

  • V = 1317.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.933

  • 6581 measured reflections

  • 4578 independent reflections

  • 3886 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.121

  • S = 1.08

  • 4578 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ligand N-[(pyrrol-2-yl)methylene]-1-phenylmethanamine can be synthesized by different methods (Brunner et al., 1998; Joly & Jacobsen, 2004; La Regina et al., 2007). This ligand has been used in the synthesis of a series of metal-organic complexes such as Ir(III) (Li et al., 2008), Rh(III) (Brunner et al., 2003), Pd(II) (Simpson et al., 2004), Cu(II) (Wansapura et al., 2003), Zn(II) and Ni(II) (Beer et al., 2003) by the reaction of the ligand with metal salts. Herein we report the synthesis and crystal structure of a titanium(IV) complex of this ligand.

The molecular structure of the mononuclear title complex is shown in Fig. 1. A distorted octahedral coordination geometry about the metal atom is provided by four nitrogen atoms from two N-[(pyrrol-2-yl)methylene]-1-phenylmethanamine ligands and two nitrogen atoms from two cis-arranged dimethylamino ions. In the bidentate ligands, the dihedral angles formed by the pyrrole and phenyl rings are 62.36 (9) and 78.32 (8)°. In the crystal structure, a weak ππ stacking interaction involving the C7–C12 phenyl rings of centrosymmetrically-related molecules with a centroid-to-centroid distance of 3.864 (2) Å is observed.

Related literature top

For the synthesis of N-[(pyrrol-2-yl)methylene]-1-phenylmethanamine, see: Brunner et al. (1998); Joly & Jacobsen (2004); La Regina et al. (2007). For the structures of related complexes, see: Li et al. (2008); Brunner et al. (2003); Simpson et al. (2004); Wansapura et al. (2003); Beer et al. (2003).

Experimental top

To a solution of Ti (NMe2)4 (0.112 g, 0.5 mmol) in THF (2 mL) was added N-((pyrrol-2-yl)methylene)-1 phenylmethanamine (0.184 g, 1 mmol) in THF (3 mL). After stirring at room temperature overnight, volatiles were removed in vacuo, resulting in an orange solid (0.236 g, yield 94 %). Single crystals suitable for X-ray diffraction were grown from a toluene/hexane (1:1 v/v) solution at -35°C.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
Bis[2-(benzyliminomethyl)pyrrol-1-ido- κ2N,N']bis(dimethylamido-κN)titanium(IV) top
Crystal data top
[Ti(C2H6N)2(C12H11N2)2]Z = 2
Mr = 502.48F(000) = 532
Triclinic, P1char
Hall symbol: -P 1Dx = 1.266 Mg m3
a = 8.6363 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.887 (2) ÅCell parameters from 5124 reflections
c = 16.666 (3) Åθ = 2.4–27.7°
α = 77.15 (3)°µ = 0.35 mm1
β = 84.72 (3)°T = 293 K
γ = 71.82 (3)°Block, yellow
V = 1317.8 (4) Å30.25 × 0.23 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
4578 independent reflections
Radiation source: fine-focus sealed tube3886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 109
Tmin = 0.917, Tmax = 0.933k = 1110
6581 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1031P]
where P = (Fo2 + 2Fc2)/3
4578 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ti(C2H6N)2(C12H11N2)2]γ = 71.82 (3)°
Mr = 502.48V = 1317.8 (4) Å3
Triclinic, P1Z = 2
a = 8.6363 (17) ÅMo Kα radiation
b = 9.887 (2) ŵ = 0.35 mm1
c = 16.666 (3) ÅT = 293 K
α = 77.15 (3)°0.25 × 0.23 × 0.20 mm
β = 84.72 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3886 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.933Rint = 0.024
6581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
4578 reflectionsΔρmin = 0.33 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti0.18544 (4)0.26945 (3)0.33887 (2)0.02838 (14)
N10.0595 (2)0.16019 (17)0.28584 (11)0.0320 (4)
N20.2912 (2)0.27040 (17)0.20770 (10)0.0320 (4)
N40.0277 (2)0.48183 (17)0.26901 (10)0.0304 (4)
N30.2968 (2)0.42386 (17)0.35233 (10)0.0309 (4)
N50.3662 (2)0.10471 (18)0.37812 (11)0.0359 (4)
N60.0465 (2)0.27976 (18)0.43391 (11)0.0371 (4)
C70.3511 (3)0.4759 (2)0.10416 (13)0.0347 (5)
C140.4206 (3)0.5713 (2)0.38831 (14)0.0393 (5)
H140.49520.60170.41100.047*
C170.0711 (2)0.5917 (2)0.27540 (13)0.0316 (5)
H170.01210.68530.25030.038*
C160.2107 (2)0.5676 (2)0.32156 (12)0.0294 (4)
C190.1969 (2)0.6496 (2)0.17407 (13)0.0323 (5)
C40.1141 (3)0.1328 (2)0.20891 (13)0.0330 (5)
C50.2381 (3)0.1951 (2)0.17016 (13)0.0342 (5)
H50.27950.18080.11820.041*
C130.4227 (3)0.4287 (2)0.39300 (13)0.0362 (5)
H130.50050.34730.42050.043*
C10.0532 (3)0.0895 (2)0.30949 (15)0.0401 (5)
H10.11080.08850.35950.048*
C200.3424 (3)0.7220 (2)0.20766 (14)0.0397 (5)
H200.38260.67680.25650.048*
C150.2844 (3)0.6603 (2)0.34270 (13)0.0359 (5)
H150.25020.76140.32930.043*
C60.4175 (3)0.3353 (2)0.16516 (14)0.0409 (5)
H6A0.49370.26570.13650.049*
H6B0.47760.35290.20620.049*
C20.0721 (3)0.0186 (2)0.25006 (16)0.0456 (6)
H20.14270.03670.25270.055*
C180.1036 (3)0.4969 (2)0.21361 (15)0.0417 (5)
H18A0.18030.45030.24480.050*
H18B0.05600.44400.17030.050*
C240.1388 (3)0.7203 (2)0.10202 (14)0.0420 (5)
H240.04060.67320.07840.050*
C120.2948 (3)0.4785 (3)0.02883 (14)0.0437 (6)
H120.29300.39220.01590.052*
C30.0349 (3)0.0461 (2)0.18578 (15)0.0415 (5)
H30.05040.01280.13680.050*
C220.3700 (3)0.9295 (2)0.09812 (16)0.0488 (6)
H220.42851.02300.07250.059*
C110.2411 (3)0.6078 (3)0.02778 (14)0.0480 (6)
H110.20270.60760.07810.058*
C80.3535 (3)0.6060 (2)0.12081 (14)0.0411 (5)
H80.39110.60690.17120.049*
C260.5335 (3)0.0771 (3)0.34638 (16)0.0516 (6)
H26A0.60710.03100.39110.077*
H26B0.55180.16750.31960.077*
H26C0.55180.01470.30760.077*
C100.2440 (3)0.7364 (3)0.01045 (15)0.0481 (6)
H100.20770.82320.04860.058*
C280.1310 (3)0.3356 (3)0.43669 (17)0.0521 (6)
H28A0.17400.26940.47670.078*
H28B0.17230.34510.38350.078*
H28C0.16370.42890.45170.078*
C210.4296 (3)0.8609 (3)0.16978 (16)0.0494 (6)
H210.52860.90810.19270.059*
C230.2250 (3)0.8598 (3)0.06492 (15)0.0507 (6)
H230.18380.90650.01690.061*
C90.3010 (3)0.7351 (3)0.06378 (16)0.0494 (6)
H90.30450.82140.07600.059*
C270.1122 (3)0.2549 (3)0.51480 (15)0.0514 (6)
H27A0.08060.34470.53390.077*
H27B0.22890.21850.51160.077*
H27C0.07050.18500.55250.077*
C250.3401 (3)0.0277 (2)0.42785 (17)0.0523 (6)
H25A0.35850.09900.39440.078*
H25B0.23020.00660.44940.078*
H25C0.41460.06480.47250.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.0237 (2)0.0252 (2)0.0335 (2)0.00713 (15)0.00057 (14)0.00083 (15)
N10.0292 (9)0.0253 (8)0.0399 (10)0.0091 (7)0.0005 (7)0.0025 (7)
N20.0262 (9)0.0274 (8)0.0372 (9)0.0070 (7)0.0035 (7)0.0006 (7)
N40.0239 (9)0.0276 (8)0.0377 (9)0.0066 (7)0.0042 (7)0.0027 (7)
N30.0256 (9)0.0301 (8)0.0362 (9)0.0094 (7)0.0019 (7)0.0034 (7)
N50.0333 (10)0.0314 (9)0.0390 (10)0.0051 (7)0.0053 (8)0.0041 (7)
N60.0346 (10)0.0323 (9)0.0417 (10)0.0106 (8)0.0048 (8)0.0036 (8)
C70.0294 (11)0.0392 (11)0.0359 (11)0.0150 (9)0.0092 (9)0.0055 (9)
C140.0357 (13)0.0491 (13)0.0412 (12)0.0212 (10)0.0009 (10)0.0135 (10)
C170.0295 (11)0.0238 (9)0.0388 (11)0.0038 (8)0.0022 (9)0.0063 (8)
C160.0284 (11)0.0293 (10)0.0295 (10)0.0081 (8)0.0014 (8)0.0055 (8)
C190.0280 (11)0.0297 (10)0.0397 (11)0.0088 (9)0.0087 (9)0.0048 (9)
C40.0310 (11)0.0231 (9)0.0406 (11)0.0034 (8)0.0017 (9)0.0041 (8)
C50.0320 (12)0.0293 (10)0.0346 (11)0.0031 (9)0.0037 (9)0.0034 (9)
C130.0282 (11)0.0407 (11)0.0381 (11)0.0107 (9)0.0051 (9)0.0025 (9)
C10.0340 (12)0.0320 (11)0.0532 (13)0.0132 (9)0.0050 (10)0.0044 (10)
C200.0345 (13)0.0414 (12)0.0406 (12)0.0122 (10)0.0007 (9)0.0024 (10)
C150.0390 (13)0.0340 (11)0.0376 (11)0.0135 (9)0.0010 (9)0.0099 (9)
C60.0291 (12)0.0436 (12)0.0463 (13)0.0133 (10)0.0064 (10)0.0011 (10)
C20.0352 (13)0.0329 (11)0.0731 (17)0.0155 (10)0.0012 (11)0.0132 (11)
C180.0368 (13)0.0297 (11)0.0583 (14)0.0097 (9)0.0198 (11)0.0014 (10)
C240.0363 (13)0.0433 (12)0.0456 (13)0.0113 (10)0.0054 (10)0.0106 (10)
C120.0536 (15)0.0445 (12)0.0419 (13)0.0275 (11)0.0040 (11)0.0110 (10)
C30.0397 (13)0.0320 (11)0.0529 (14)0.0067 (10)0.0047 (10)0.0135 (10)
C220.0508 (16)0.0305 (11)0.0593 (15)0.0058 (11)0.0192 (12)0.0007 (11)
C110.0499 (15)0.0611 (15)0.0364 (12)0.0279 (12)0.0007 (10)0.0011 (11)
C80.0461 (14)0.0471 (13)0.0350 (12)0.0212 (11)0.0086 (10)0.0117 (10)
C260.0335 (13)0.0563 (15)0.0520 (15)0.0058 (11)0.0068 (11)0.0097 (12)
C100.0436 (14)0.0430 (13)0.0499 (14)0.0144 (11)0.0071 (11)0.0052 (11)
C280.0389 (14)0.0562 (15)0.0612 (16)0.0160 (12)0.0146 (12)0.0160 (12)
C210.0310 (13)0.0436 (13)0.0650 (16)0.0033 (10)0.0035 (11)0.0137 (12)
C230.0675 (18)0.0457 (13)0.0394 (13)0.0263 (13)0.0039 (12)0.0049 (11)
C90.0580 (16)0.0380 (12)0.0550 (15)0.0216 (11)0.0110 (12)0.0101 (11)
C270.0571 (17)0.0521 (14)0.0419 (13)0.0155 (12)0.0052 (12)0.0072 (11)
C250.0592 (17)0.0276 (11)0.0680 (17)0.0105 (11)0.0166 (13)0.0034 (11)
Geometric parameters (Å, º) top
Ti—N61.8987 (18)C20—H200.9300
Ti—N51.9091 (19)C15—H150.9300
Ti—N32.1011 (17)C6—H6A0.9700
Ti—N12.1134 (19)C6—H6B0.9700
Ti—N42.2449 (19)C2—C31.386 (3)
Ti—N22.2897 (18)C2—H20.9300
N1—C11.350 (3)C18—H18A0.9700
N1—C41.379 (3)C18—H18B0.9700
N2—C51.277 (3)C24—C231.380 (3)
N2—C61.482 (3)C24—H240.9300
N4—C171.282 (3)C12—C111.384 (3)
N4—C181.479 (3)C12—H120.9300
N3—C131.351 (3)C3—H30.9300
N3—C161.387 (3)C22—C231.361 (4)
N5—C251.455 (3)C22—C211.377 (4)
N5—C261.456 (3)C22—H220.9300
N6—C271.451 (3)C11—C101.373 (4)
N6—C281.459 (3)C11—H110.9300
C7—C121.379 (3)C8—C91.385 (3)
C7—C81.382 (3)C8—H80.9300
C7—C61.508 (3)C26—H26A0.9600
C14—C131.389 (3)C26—H26B0.9600
C14—C151.399 (3)C26—H26C0.9600
C14—H140.9300C10—C91.369 (4)
C17—C161.419 (3)C10—H100.9300
C17—H170.9300C28—H28A0.9600
C16—C151.385 (3)C28—H28B0.9600
C19—C201.375 (3)C28—H28C0.9600
C19—C241.384 (3)C21—H210.9300
C19—C181.504 (3)C23—H230.9300
C4—C31.383 (3)C9—H90.9300
C4—C51.432 (3)C27—H27A0.9600
C5—H50.9300C27—H27B0.9600
C13—H130.9300C27—H27C0.9600
C1—C21.381 (3)C25—H25A0.9600
C1—H10.9300C25—H25B0.9600
C20—C211.382 (3)C25—H25C0.9600
N6—Ti—N5101.90 (8)C7—C6—H6A108.7
N6—Ti—N397.59 (8)N2—C6—H6B108.7
N5—Ti—N395.05 (7)C7—C6—H6B108.7
N6—Ti—N194.23 (8)H6A—C6—H6B107.6
N5—Ti—N197.39 (8)C1—C2—C3106.5 (2)
N3—Ti—N1160.70 (7)C1—C2—H2126.8
N6—Ti—N492.44 (7)C3—C2—H2126.8
N5—Ti—N4163.77 (7)N4—C18—C19116.14 (17)
N3—Ti—N475.34 (7)N4—C18—H18A108.3
N1—Ti—N489.00 (7)C19—C18—H18A108.3
N6—Ti—N2165.25 (8)N4—C18—H18B108.3
N5—Ti—N289.27 (8)C19—C18—H18B108.3
N3—Ti—N290.90 (7)H18A—C18—H18B107.4
N1—Ti—N274.60 (7)C23—C24—C19120.7 (2)
N4—Ti—N278.01 (7)C23—C24—H24119.6
C1—N1—C4105.19 (18)C19—C24—H24119.6
C1—N1—Ti137.79 (16)C7—C12—C11120.8 (2)
C4—N1—Ti116.42 (13)C7—C12—H12119.6
C5—N2—C6117.90 (18)C11—C12—H12119.6
C5—N2—Ti112.70 (13)C4—C3—C2106.4 (2)
C6—N2—Ti129.23 (15)C4—C3—H3126.8
C17—N4—C18121.51 (17)C2—C3—H3126.8
C17—N4—Ti113.45 (14)C23—C22—C21119.7 (2)
C18—N4—Ti124.76 (13)C23—C22—H22120.2
C13—N3—C16105.68 (17)C21—C22—H22120.2
C13—N3—Ti138.25 (14)C10—C11—C12120.7 (2)
C16—N3—Ti115.35 (13)C10—C11—H11119.7
C25—N5—C26110.80 (19)C12—C11—H11119.7
C25—N5—Ti120.62 (16)C7—C8—C9121.1 (2)
C26—N5—Ti126.40 (15)C7—C8—H8119.4
C27—N6—C28110.83 (19)C9—C8—H8119.4
C27—N6—Ti120.95 (16)N5—C26—H26A109.5
C28—N6—Ti127.38 (16)N5—C26—H26B109.5
C12—C7—C8117.9 (2)H26A—C26—H26B109.5
C12—C7—C6121.7 (2)N5—C26—H26C109.5
C8—C7—C6120.3 (2)H26A—C26—H26C109.5
C13—C14—C15106.6 (2)H26B—C26—H26C109.5
C13—C14—H14126.7C9—C10—C11119.1 (2)
C15—C14—H14126.7C9—C10—H10120.5
N4—C17—C16118.74 (18)C11—C10—H10120.5
N4—C17—H17120.6N6—C28—H28A109.5
C16—C17—H17120.6N6—C28—H28B109.5
C15—C16—N3110.44 (18)H28A—C28—H28B109.5
C15—C16—C17133.02 (19)N6—C28—H28C109.5
N3—C16—C17116.54 (17)H28A—C28—H28C109.5
C20—C19—C24118.36 (19)H28B—C28—H28C109.5
C20—C19—C18121.14 (19)C22—C21—C20120.0 (2)
C24—C19—C18120.5 (2)C22—C21—H21120.0
N1—C4—C3110.47 (19)C20—C21—H21120.0
N1—C4—C5116.31 (19)C22—C23—C24120.4 (2)
C3—C4—C5133.2 (2)C22—C23—H23119.8
N2—C5—C4119.35 (19)C24—C23—H23119.8
N2—C5—H5120.3C10—C9—C8120.4 (2)
C4—C5—H5120.3C10—C9—H9119.8
N3—C13—C14111.09 (19)C8—C9—H9119.8
N3—C13—H13124.5N6—C27—H27A109.5
C14—C13—H13124.5N6—C27—H27B109.5
N1—C1—C2111.5 (2)H27A—C27—H27B109.5
N1—C1—H1124.3N6—C27—H27C109.5
C2—C1—H1124.3H27A—C27—H27C109.5
C19—C20—C21120.8 (2)H27B—C27—H27C109.5
C19—C20—H20119.6N5—C25—H25A109.5
C21—C20—H20119.6N5—C25—H25B109.5
C16—C15—C14106.20 (18)H25A—C25—H25B109.5
C16—C15—H15126.9N5—C25—H25C109.5
C14—C15—H15126.9H25A—C25—H25C109.5
N2—C6—C7114.20 (18)H25B—C25—H25C109.5
N2—C6—H6A108.7

Experimental details

Crystal data
Chemical formula[Ti(C2H6N)2(C12H11N2)2]
Mr502.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6363 (17), 9.887 (2), 16.666 (3)
α, β, γ (°)77.15 (3), 84.72 (3), 71.82 (3)
V3)1317.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.917, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
6581, 4578, 3886
Rint0.024
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.121, 1.08
No. of reflections4578
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support by the Hundreds of Talents Program (2005012) of the CAS, the Natural Science Foundation of China (20872105), the Qinglan Project of Jiangsu Province (Bu109805) and the Open Project of the Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education of Lanzhou University (LZUMMM2010003).

References

First citationBeer, P. D., Cheetham, A. G., Drew, M. G. B., Fox, O. D., Hayes, E. J. & Rolls, T. D. (2003). Dalton Trans. pp. 603–611.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Kollnberger, A. & Zabel, M. (2003). Polyhedron, 22, 2639–2646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrunner, H., Nuber, B. & Tracht, T. (1998). Tetrahedron Asymmetry, 9, 3763–3771.  Web of Science CSD CrossRef CAS Google Scholar
First citationJoly, G. D. & Jacobsen, E. N. (2004). J. Am. Chem. Soc. 126, 4102–4103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLa Regina, G., Silvestri, R., Artico, M., Lavecchia, A., Novellino, E., Befani, O., Turini, P. & Agostinelli, E. (2007). J. Med. Chem. 50, 922–931.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Huaxue Xuebao, 66, 2141–2145.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, J. L., Lombardo, D. J. & Fox, S. (2004). J. Undergrad. Chem. Res. 3, 71–77.  CAS Google Scholar
First citationWansapura, C. M., Juyoung, C., Simpson, J. L., Szymanski, D., Eaton, G. R., Eaton, S. S. & Fox, S. (2003). J. Coord. Chem. 56, 975–993.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds