organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1489

Bis(pyridinium) naphthalene-1,5-di­sulfonate dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 21 March 2012; accepted 18 April 2012; online 21 April 2012)

The asymmetric unit of the title organic salt, 2C5H6N+·C10H6O6S22−·2H2O, consists of a pyridinium cation, half a naphthalene-1,5-disulfonate dianion and a water mol­ecule. The dianion has a crystallographically imposed centre of symmetry. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link cations, anions and water mol­ecules into a three-dimensional network.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6N+·C10H6O6S22−·2H2O

  • Mr = 482.52

  • Monoclinic, P 21 /n

  • a = 9.5876 (19) Å

  • b = 12.065 (2) Å

  • c = 9.843 (2) Å

  • β = 103.51 (3)°

  • V = 1107.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.55 × 0.44 × 0.36 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.860, Tmax = 0.902

  • 11131 measured reflections

  • 2533 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.150

  • S = 1.10

  • 2533 reflections

  • 148 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1 0.82 2.07 2.801 (3) 148
O4—H4A⋯O2i 0.82 1.91 2.731 (3) 174
N1—H10⋯O4ii 0.86 1.82 2.667 (3) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids.(Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006). Unfortunately,the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (411k-412k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

The asymmetric unit of the title compound (Fig. 1) consists of a pyridinium cation, a half of a naphthalene-1,5-disulfonate anion and a free water molecule, the anion having crystallographically imposed centre of symmetry. The pyridinium and naphthalene rings are oriented to form a dihedral angle of 13.89 (6)°. In the crystal, cations, anions and water molecules are connected by N—H···O and O—H···O intermolecular hydrogen bonds into a three-dimensional structure (Fig. 2; Table 1)

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009).

Experimental top

The title compound was obtained by the addition of naphthalene-1,5-disulfonate acid (3.62 g, 0.01 mol) to a solution of pyridine (1.6 g, 0.02 mol) in methanol, in the stoichiometric ratio 1: 2. Good quality single crystals were obtained by slow evaporation of the solvent after six days (yield 52%).

Refinement top

The water H atoms were located in a difference Fourier map and refined as riding, with the O—H distances restrained to 0.82 Å and with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Atoms labelled with suffix A are generated by the symmetry operator (2-x, -y, 1-z).
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.
Bis(pyridinium) naphthalene-1,5-disulfonate dihydrate top
Crystal data top
2C5H6N+·C10H6O6S22·2H2OF(000) = 504
Mr = 482.52Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3638 reflections
a = 9.5876 (19) Åθ = 3.0–27.5°
b = 12.065 (2) ŵ = 0.29 mm1
c = 9.843 (2) ÅT = 293 K
β = 103.51 (3)°Block, colourless
V = 1107.0 (4) Å30.55 × 0.44 × 0.36 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2150 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.860, Tmax = 0.902l = 1212
11131 measured reflections2 standard reflections every 150 reflections
2533 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5924P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.52 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
2C5H6N+·C10H6O6S22·2H2OV = 1107.0 (4) Å3
Mr = 482.52Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5876 (19) ŵ = 0.29 mm1
b = 12.065 (2) ÅT = 293 K
c = 9.843 (2) Å0.55 × 0.44 × 0.36 mm
β = 103.51 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2150 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.902Rint = 0.072
11131 measured reflections2 standard reflections every 150 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.10Δρmax = 0.52 e Å3
2533 reflectionsΔρmin = 0.48 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.4852 (3)0.2836 (3)0.5829 (3)0.1102 (12)
H4A0.48060.29590.49990.19 (3)*
H4B0.56480.25990.62160.15 (2)*
S10.83962 (6)0.15020 (5)0.71768 (6)0.0461 (2)
C10.9846 (2)0.04729 (16)0.53702 (19)0.0316 (4)
C21.0533 (2)0.14879 (17)0.5220 (2)0.0411 (5)
H21.03500.21080.57120.049*
C40.8853 (2)0.03502 (17)0.6239 (2)0.0348 (4)
C31.1457 (3)0.15711 (19)0.4368 (3)0.0483 (6)
H31.18840.22490.42690.058*
O30.7426 (2)0.10851 (18)0.7975 (2)0.0700 (6)
C50.8229 (3)0.0643 (2)0.6363 (2)0.0450 (5)
H50.75880.07080.69370.054*
O20.9728 (2)0.19099 (18)0.8046 (2)0.0659 (6)
O10.7752 (2)0.23031 (17)0.6128 (2)0.0712 (6)
N10.7941 (3)0.0855 (3)0.1614 (3)0.0736 (8)
H100.86050.12830.14610.088*
C90.7696 (4)0.0066 (4)0.0948 (4)0.0811 (11)
H90.82400.02550.03140.097*
C60.6178 (5)0.0513 (4)0.2786 (4)0.0933 (13)
H60.56600.07180.34350.112*
C80.6691 (6)0.0745 (3)0.1146 (4)0.0943 (12)
H80.65210.14100.06560.113*
C110.7207 (4)0.1164 (3)0.2526 (4)0.0804 (10)
H110.74080.18380.29890.097*
C70.5903 (4)0.0464 (4)0.2074 (6)0.1002 (15)
H70.51830.09320.22230.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0640 (15)0.206 (4)0.0579 (14)0.0563 (18)0.0094 (11)0.0121 (17)
S10.0446 (3)0.0501 (4)0.0488 (4)0.0077 (2)0.0215 (3)0.0075 (2)
C10.0306 (9)0.0345 (10)0.0306 (9)0.0028 (7)0.0090 (7)0.0042 (8)
C20.0482 (12)0.0334 (10)0.0450 (12)0.0010 (9)0.0177 (10)0.0007 (8)
C40.0337 (10)0.0403 (11)0.0329 (10)0.0044 (8)0.0125 (8)0.0016 (8)
C30.0544 (14)0.0389 (11)0.0579 (14)0.0099 (10)0.0263 (12)0.0035 (10)
O30.0734 (12)0.0738 (13)0.0809 (14)0.0020 (11)0.0546 (11)0.0165 (11)
C50.0456 (12)0.0509 (13)0.0453 (12)0.0030 (10)0.0244 (10)0.0037 (10)
O20.0611 (11)0.0809 (13)0.0583 (11)0.0078 (10)0.0192 (9)0.0258 (10)
O10.0746 (14)0.0612 (12)0.0818 (14)0.0320 (10)0.0263 (11)0.0060 (10)
N10.0460 (13)0.094 (2)0.0767 (18)0.0075 (13)0.0056 (12)0.0324 (16)
C90.087 (2)0.102 (3)0.0581 (18)0.036 (2)0.0238 (17)0.0150 (18)
C60.080 (2)0.125 (4)0.087 (2)0.039 (2)0.046 (2)0.026 (2)
C80.116 (3)0.061 (2)0.091 (3)0.006 (2)0.005 (3)0.0072 (19)
C110.090 (3)0.0665 (19)0.074 (2)0.0054 (18)0.0035 (19)0.0072 (17)
C70.063 (2)0.091 (3)0.141 (4)0.017 (2)0.012 (2)0.050 (3)
Geometric parameters (Å, º) top
O4—H4A0.8207C5—C3i1.401 (3)
O4—H4B0.8202C5—H50.9300
S1—O31.4413 (19)N1—C91.283 (5)
S1—O11.443 (2)N1—C111.317 (5)
S1—O21.447 (2)N1—H100.8600
S1—C41.779 (2)C9—C81.314 (6)
C1—C21.415 (3)C9—H90.9300
C1—C1i1.422 (4)C6—C111.332 (6)
C1—C41.428 (3)C6—C71.365 (6)
C2—C31.358 (3)C6—H60.9300
C2—H20.9300C8—C71.357 (6)
C4—C51.358 (3)C8—H80.9300
C3—C5i1.401 (3)C11—H110.9300
C3—H30.9300C7—H70.9300
H4A—O4—H4B110.7C4—C5—H5119.8
O3—S1—O1113.62 (13)C3i—C5—H5119.8
O3—S1—O2112.87 (13)C9—N1—C11122.1 (3)
O1—S1—O2111.49 (14)C9—N1—H10119.0
O3—S1—C4106.19 (11)C11—N1—H10119.0
O1—S1—C4105.55 (11)N1—C9—C8121.1 (4)
O2—S1—C4106.42 (11)N1—C9—H9119.4
C2—C1—C1i118.9 (2)C8—C9—H9119.4
C2—C1—C4122.98 (18)C11—C6—C7118.3 (4)
C1i—C1—C4118.1 (2)C11—C6—H6120.9
C3—C2—C1121.0 (2)C7—C6—H6120.9
C3—C2—H2119.5C9—C8—C7119.1 (4)
C1—C2—H2119.5C9—C8—H8120.4
C5—C4—C1120.97 (19)C7—C8—H8120.4
C5—C4—S1118.43 (16)N1—C11—C6120.1 (4)
C1—C4—S1120.60 (16)N1—C11—H11120.0
C2—C3—C5i120.5 (2)C6—C11—H11120.0
C2—C3—H3119.8C8—C7—C6119.4 (4)
C5i—C3—H3119.8C8—C7—H7120.3
C4—C5—C3i120.48 (19)C6—C7—H7120.3
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O10.822.072.801 (3)148
O4—H4A···O2ii0.821.912.731 (3)174
N1—H10···O4iii0.861.822.667 (3)170
Symmetry codes: (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula2C5H6N+·C10H6O6S22·2H2O
Mr482.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.5876 (19), 12.065 (2), 9.843 (2)
β (°) 103.51 (3)
V3)1107.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.55 × 0.44 × 0.36
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.860, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
11131, 2533, 2150
Rint0.072
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.150, 1.10
No. of reflections2533
No. of parameters148
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.48

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O10.822.072.801 (3)148.2
O4—H4A···O2i0.821.912.731 (3)174.3
N1—H10···O4ii0.861.822.667 (3)170.3
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1489
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds