organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1483

6-Meth­­oxy-1-(4-meth­­oxy­phen­yl)-1,2,3,4-tetra­hydro-9H-β-carbolin-2-ium acetate

aCentre for Drug Research, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title compound, C19H21N2O2+·C2H3O2, the 1H-indole ring system is essentially planar [maximum deviation = 0.0257 (14) Å] and forms a dihedral angle of 87.92 (7) Å with the benzene ring attached to the tetra­hydro­pyridinium fragment. The tetra­hydro­pyridinium ring adopts a half-chair conformation. In the crystal, cations and anions are linked by inter­ionic N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds into chains along the a axis.

Related literature

For the biological activity of metal complexes with 6-meth­oxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole, see: Al-Allaf et al. (1990[Al-Allaf, T. A. K., Ayoub, M. T. & Rashan, L. J. (1990). J. Inorg. Biochem. 38, 47-56.]); Herraiz et al. (2003[Herraiz, T., Galisteo, J. & Chamorro, C. (2003). J. Agric. Food Chem. 51, 2168-2173.]). For a related tetra­chlorido­zincate structure, see: Goh et al. (2012[Goh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464-m465.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N2O2+·C2H3O2

  • Mr = 368.42

  • Monoclinic, P 21 /c

  • a = 9.1046 (4) Å

  • b = 19.8837 (8) Å

  • c = 12.0856 (5) Å

  • β = 123.281 (3)°

  • V = 1829.06 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.24 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.985

  • 21273 measured reflections

  • 6211 independent reflections

  • 4350 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.134

  • S = 1.03

  • 6211 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O3i 0.93 1.86 2.7762 (15) 169
N1—H2⋯O3 0.90 1.93 2.7895 (19) 160
N2—H3⋯O4ii 0.97 1.72 2.6800 (18) 171
C9—H9A⋯O3ii 0.99 2.52 3.285 (2) 134
C10—H10A⋯N1i 1.00 2.55 3.4038 (19) 143
C15—H15A⋯O4iii 0.95 2.60 3.5073 (19) 160
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The metal complexes of 6-methoxy-1-methyl-4,9-dihydro-3H-β-carboline and other carboline alkaloids were previously reported to have biological activity (Al-Allaf et al. 1990). It is now well established that these class of beta carboline alkaloids may occur under mild conditions in foods from a Pictet-Spengler condensation of indoleamines such as L-tryptophan and short aliphatic aldehydes (Herraiz et al. 2003). Our present work intend to synthesize this compound and prepare it in salt form to investigate its safety and antiproliferative efficacy in cancer cell line.

All bond lengths and angles in the title compound (Fig. 1) are within normal ranges and comparable with those observed for a related compound recently reported (Goh et al., 2012). The 1H-indole ring (C1—C7/C11/N1) is planar with a maximum deviation of 0.0257 (14) Å for atom C11 and forms a dihedral angle of 87.92 (7)° with the C13—C18 benzene ring. The tetrahydropyridinium ring show a half-chair conformation with puckering parameters Q = 0.5216 (16) Å, θ = 52.70 (18)° and ϕ = 23.4 (2)°. In the crystal structure, cations and anions are linked by intermolecular N—H···O, C—H···O and C—H···N interactions (Table 1) into one-dimensional chains along the a axis (Fig. 2).

Related literature top

For the biological activity of metal complexes with 6-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole, see: Al-Allaf et al. (1990); Herraiz et al. (2003). For a related tetrachloridozincate structure, see: Goh et al. (2012). For the stability of the temperature controller use in the data collection, see: Cosier & Glazer (1986).

Experimental top

6-Methoxy-1-(4-methoxyphenyl)-4,9-dihydro-3H-β-carboline (2.50 mmol, 770 mg) was dissolved in analytical grade dichloromethane (0.60 ml). Vortex was performed to aid mixing. Glacial acetic acid (99.5%, 2.50 mmol, 145 µl) was transferred by a micropipette (50–200 µl) and was then added to the 6-methoxy-1-(4-methoxyphenyl)-4,9-dihydro-3H-β-carboline solution dropwise in a 20 ml glass bottle. The side of the glass bottle was scratched with a small spatula and the bottle was kept in fridge at 4° C for 60 days before yielding colourless crystals of 6-methoxy-1-(4-methoxyphenyl)-4,9-dihydro-3H-β-carbolinium acetate which were filtered off, washed twice with acetone and air-dried. Crystals of the title compound suitable for X-ray diffraction analysis were selected directly from the sample as prepared.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined using a riding model with Uiso(H) = 1.2 Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. An interionic hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen interactions have been omitted for clarity.
6-Methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydro-9H-β-carbolin-2-ium acetate top
Crystal data top
C19H21N2O2+·C2H3O2F(000) = 784
Mr = 368.42Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5044 reflections
a = 9.1046 (4) Åθ = 2.5–31.4°
b = 19.8837 (8) ŵ = 0.09 mm1
c = 12.0856 (5) ÅT = 100 K
β = 123.281 (3)°Block, colourless
V = 1829.06 (15) Å30.28 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6211 independent reflections
Radiation source: fine-focus sealed tube4350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 31.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1013
Tmin = 0.974, Tmax = 0.985k = 2529
21273 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.5954P]
where P = (Fo2 + 2Fc2)/3
6211 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H21N2O2+·C2H3O2V = 1829.06 (15) Å3
Mr = 368.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1046 (4) ŵ = 0.09 mm1
b = 19.8837 (8) ÅT = 100 K
c = 12.0856 (5) Å0.28 × 0.24 × 0.16 mm
β = 123.281 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4350 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.985Rint = 0.045
21273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
6211 reflectionsΔρmin = 0.26 e Å3
247 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19801 (14)0.80635 (6)0.51962 (10)0.0206 (2)
O20.79721 (14)0.79841 (5)0.61132 (10)0.0178 (2)
N10.53529 (15)0.91336 (6)0.01734 (11)0.0134 (2)
H20.64450.92910.04000.016*
N20.21849 (15)0.94170 (6)0.07834 (11)0.0140 (2)
H10.17120.97490.01360.017*
H30.21140.95610.15180.017*
C10.47738 (18)0.88736 (7)0.14119 (13)0.0130 (3)
C20.56016 (19)0.88480 (7)0.20957 (14)0.0148 (3)
H2A0.67670.90100.17040.018*
C30.46785 (19)0.85799 (7)0.33659 (14)0.0153 (3)
H3A0.52180.85590.38510.018*
C40.29553 (19)0.83388 (7)0.39423 (14)0.0147 (3)
C50.21217 (19)0.83642 (7)0.32661 (14)0.0146 (3)
H5A0.09560.82010.36630.017*
C60.30332 (18)0.86348 (7)0.19869 (13)0.0121 (3)
C70.25808 (18)0.87570 (7)0.10371 (13)0.0134 (3)
C80.08984 (18)0.86327 (8)0.11207 (14)0.0151 (3)
H8A0.05320.81590.13710.018*
H8B0.00390.89260.18080.018*
C90.11639 (19)0.87798 (7)0.02130 (14)0.0151 (3)
H9A0.00070.88230.01030.018*
H9B0.18040.84020.08280.018*
C100.40804 (18)0.93513 (7)0.12006 (13)0.0127 (3)
H10A0.45820.98150.13520.015*
C110.40092 (18)0.90627 (7)0.00269 (13)0.0126 (3)
C120.2764 (2)0.80697 (9)0.59457 (15)0.0215 (3)
H12A0.19410.78790.68250.032*
H12B0.38430.78010.54890.032*
H12C0.30460.85340.60380.032*
C130.51581 (18)0.89668 (7)0.24838 (13)0.0129 (3)
C140.58947 (19)0.93146 (8)0.36854 (14)0.0148 (3)
H14A0.57340.97870.36800.018*
C150.68530 (19)0.89756 (8)0.48799 (14)0.0153 (3)
H15A0.73540.92150.56900.018*
C160.70801 (18)0.82823 (7)0.48899 (13)0.0145 (3)
C170.63921 (19)0.79301 (8)0.37083 (14)0.0157 (3)
H17A0.65720.74590.37160.019*
C180.54363 (18)0.82783 (7)0.25149 (14)0.0146 (3)
H18A0.49650.80400.17070.018*
C190.8048 (2)0.72675 (8)0.61618 (16)0.0229 (3)
H19A0.86050.71180.70800.034*
H19B0.87370.71080.58140.034*
H19C0.68550.70840.56250.034*
O30.88167 (13)0.95821 (5)0.11028 (10)0.0169 (2)
O41.16310 (14)0.97876 (6)0.26577 (10)0.0201 (2)
C201.00753 (19)0.96657 (7)0.23013 (14)0.0147 (3)
C210.9666 (2)0.96257 (9)0.33549 (16)0.0247 (4)
H21A1.07660.96120.42310.037*
H21B0.89840.92180.32230.037*
H21C0.89841.00220.32940.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (5)0.0309 (6)0.0152 (5)0.0070 (5)0.0118 (5)0.0087 (4)
O20.0180 (5)0.0186 (6)0.0123 (5)0.0002 (4)0.0055 (4)0.0019 (4)
N10.0116 (5)0.0171 (6)0.0119 (5)0.0026 (5)0.0068 (5)0.0014 (4)
N20.0131 (5)0.0170 (6)0.0120 (5)0.0009 (5)0.0071 (5)0.0009 (4)
C10.0138 (6)0.0131 (7)0.0121 (6)0.0008 (5)0.0072 (5)0.0006 (5)
C20.0129 (6)0.0167 (7)0.0166 (7)0.0008 (5)0.0091 (6)0.0000 (5)
C30.0168 (7)0.0168 (7)0.0172 (7)0.0009 (6)0.0124 (6)0.0006 (5)
C40.0160 (6)0.0158 (7)0.0135 (6)0.0011 (6)0.0090 (6)0.0017 (5)
C50.0135 (6)0.0167 (7)0.0148 (6)0.0014 (5)0.0085 (6)0.0015 (5)
C60.0122 (6)0.0129 (7)0.0124 (6)0.0008 (5)0.0075 (5)0.0010 (5)
C70.0134 (6)0.0157 (7)0.0134 (6)0.0000 (5)0.0088 (5)0.0002 (5)
C80.0132 (6)0.0189 (7)0.0149 (6)0.0029 (5)0.0088 (5)0.0029 (5)
C90.0130 (6)0.0186 (7)0.0159 (6)0.0019 (5)0.0092 (6)0.0020 (5)
C100.0118 (6)0.0144 (7)0.0128 (6)0.0005 (5)0.0073 (5)0.0009 (5)
C110.0130 (6)0.0137 (7)0.0126 (6)0.0002 (5)0.0081 (5)0.0004 (5)
C120.0241 (8)0.0294 (9)0.0168 (7)0.0058 (7)0.0149 (7)0.0066 (6)
C130.0112 (6)0.0163 (7)0.0127 (6)0.0008 (5)0.0077 (5)0.0005 (5)
C140.0151 (6)0.0146 (7)0.0159 (6)0.0012 (5)0.0093 (6)0.0016 (5)
C150.0149 (6)0.0185 (7)0.0121 (6)0.0037 (5)0.0072 (5)0.0042 (5)
C160.0107 (6)0.0202 (7)0.0125 (6)0.0007 (5)0.0063 (5)0.0009 (5)
C170.0173 (7)0.0146 (7)0.0154 (6)0.0006 (5)0.0091 (6)0.0004 (5)
C180.0160 (6)0.0155 (7)0.0124 (6)0.0019 (5)0.0078 (6)0.0033 (5)
C190.0244 (8)0.0191 (8)0.0199 (7)0.0013 (6)0.0088 (7)0.0042 (6)
O30.0134 (5)0.0211 (6)0.0150 (5)0.0002 (4)0.0071 (4)0.0001 (4)
O40.0139 (5)0.0313 (6)0.0166 (5)0.0045 (4)0.0092 (4)0.0069 (4)
C200.0152 (6)0.0157 (7)0.0152 (6)0.0003 (5)0.0097 (6)0.0008 (5)
C210.0240 (8)0.0365 (10)0.0200 (8)0.0023 (7)0.0163 (7)0.0010 (7)
Geometric parameters (Å, º) top
O1—C41.3811 (17)C9—H9B0.9900
O1—C121.4283 (17)C10—C111.4982 (18)
O2—C161.3708 (17)C10—C131.5108 (19)
O2—C191.4263 (19)C10—H10A1.0000
N1—C111.3784 (17)C12—H12A0.9800
N1—C11.3855 (17)C12—H12B0.9800
N1—H20.9001C12—H12C0.9800
N2—C91.4972 (19)C13—C181.389 (2)
N2—C101.5148 (17)C13—C141.4028 (19)
N2—H10.9296C14—C151.385 (2)
N2—H30.9674C14—H14A0.9500
C1—C21.3918 (18)C15—C161.393 (2)
C1—C61.4182 (19)C15—H15A0.9500
C2—C31.390 (2)C16—C171.3929 (19)
C2—H2A0.9500C17—C181.393 (2)
C3—C41.406 (2)C17—H17A0.9500
C3—H3A0.9500C18—H18A0.9500
C4—C51.3882 (18)C19—H19A0.9800
C5—C61.4001 (19)C19—H19B0.9800
C5—H5A0.9500C19—H19C0.9800
C6—C71.4371 (18)O3—C201.2717 (17)
C7—C111.3707 (19)O4—C201.2573 (17)
C7—C81.4993 (19)C20—C211.512 (2)
C8—C91.5213 (19)C21—H21A0.9800
C8—H8A0.9900C21—H21B0.9800
C8—H8B0.9900C21—H21C0.9800
C9—H9A0.9900
C4—O1—C12116.63 (11)C13—C10—N2111.40 (11)
C16—O2—C19117.59 (11)C11—C10—H10A107.7
C11—N1—C1107.65 (11)C13—C10—H10A107.7
C11—N1—H2127.8N2—C10—H10A107.7
C1—N1—H2124.4C7—C11—N1110.93 (12)
C9—N2—C10112.73 (11)C7—C11—C10125.72 (12)
C9—N2—H1109.2N1—C11—C10123.06 (12)
C10—N2—H1105.0O1—C12—H12A109.5
C9—N2—H3109.6O1—C12—H12B109.5
C10—N2—H3110.9H12A—C12—H12B109.5
H1—N2—H3109.2O1—C12—H12C109.5
N1—C1—C2130.25 (13)H12A—C12—H12C109.5
N1—C1—C6108.34 (11)H12B—C12—H12C109.5
C2—C1—C6121.36 (12)C18—C13—C14118.77 (13)
C3—C2—C1118.27 (13)C18—C13—C10122.18 (12)
C3—C2—H2A120.9C14—C13—C10119.04 (13)
C1—C2—H2A120.9C15—C14—C13120.61 (14)
C2—C3—C4120.81 (12)C15—C14—H14A119.7
C2—C3—H3A119.6C13—C14—H14A119.7
C4—C3—H3A119.6C14—C15—C16119.76 (13)
O1—C4—C5115.49 (12)C14—C15—H15A120.1
O1—C4—C3123.33 (12)C16—C15—H15A120.1
C5—C4—C3121.18 (13)O2—C16—C17123.73 (13)
C4—C5—C6118.67 (13)O2—C16—C15115.76 (12)
C4—C5—H5A120.7C17—C16—C15120.50 (13)
C6—C5—H5A120.7C18—C17—C16119.06 (14)
C5—C6—C1119.71 (12)C18—C17—H17A120.5
C5—C6—C7133.71 (13)C16—C17—H17A120.5
C1—C6—C7106.56 (12)C13—C18—C17121.27 (13)
C11—C7—C6106.50 (12)C13—C18—H18A119.4
C11—C7—C8123.00 (12)C17—C18—H18A119.4
C6—C7—C8130.41 (13)O2—C19—H19A109.5
C7—C8—C9109.54 (11)O2—C19—H19B109.5
C7—C8—H8A109.8H19A—C19—H19B109.5
C9—C8—H8A109.8O2—C19—H19C109.5
C7—C8—H8B109.8H19A—C19—H19C109.5
C9—C8—H8B109.8H19B—C19—H19C109.5
H8A—C8—H8B108.2O4—C20—O3123.85 (13)
N2—C9—C8110.37 (11)O4—C20—C21118.25 (13)
N2—C9—H9A109.6O3—C20—C21117.90 (13)
C8—C9—H9A109.6C20—C21—H21A109.5
N2—C9—H9B109.6C20—C21—H21B109.5
C8—C9—H9B109.6H21A—C21—H21B109.5
H9A—C9—H9B108.1C20—C21—H21C109.5
C11—C10—C13116.38 (12)H21A—C21—H21C109.5
C11—C10—N2105.57 (11)H21B—C21—H21C109.5
C11—N1—C1—C2177.32 (15)C6—C7—C11—N10.96 (16)
C11—N1—C1—C60.18 (15)C8—C7—C11—N1177.99 (13)
N1—C1—C2—C3177.32 (14)C6—C7—C11—C10173.05 (13)
C6—C1—C2—C30.1 (2)C8—C7—C11—C104.0 (2)
C1—C2—C3—C40.2 (2)C1—N1—C11—C70.73 (16)
C12—O1—C4—C5176.19 (13)C1—N1—C11—C10173.47 (13)
C12—O1—C4—C33.9 (2)C13—C10—C11—C7108.15 (16)
C2—C3—C4—O1179.57 (14)N2—C10—C11—C715.97 (19)
C2—C3—C4—C50.4 (2)C13—C10—C11—N178.52 (17)
O1—C4—C5—C6179.77 (13)N2—C10—C11—N1157.36 (13)
C3—C4—C5—C60.2 (2)C11—C10—C13—C1826.91 (19)
C4—C5—C6—C10.1 (2)N2—C10—C13—C1894.16 (15)
C4—C5—C6—C7177.79 (15)C11—C10—C13—C14153.50 (12)
N1—C1—C6—C5178.05 (13)N2—C10—C13—C1485.42 (15)
C2—C1—C6—C50.3 (2)C18—C13—C14—C151.2 (2)
N1—C1—C6—C70.39 (15)C10—C13—C14—C15178.38 (12)
C2—C1—C6—C7178.16 (13)C13—C14—C15—C160.4 (2)
C5—C6—C7—C11177.31 (16)C19—O2—C16—C176.2 (2)
C1—C6—C7—C110.82 (16)C19—O2—C16—C15172.50 (13)
C5—C6—C7—C80.6 (3)C14—C15—C16—O2176.91 (12)
C1—C6—C7—C8177.54 (14)C14—C15—C16—C171.8 (2)
C11—C7—C8—C99.9 (2)O2—C16—C17—C18177.02 (13)
C6—C7—C8—C9173.87 (14)C15—C16—C17—C181.6 (2)
C10—N2—C9—C869.07 (14)C14—C13—C18—C171.4 (2)
C7—C8—C9—N243.56 (16)C10—C13—C18—C17178.14 (13)
C9—N2—C10—C1151.16 (14)C16—C17—C18—C130.1 (2)
C9—N2—C10—C1376.04 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O3i0.931.862.7762 (15)169
N1—H2···O30.901.932.7895 (19)160
N2—H3···O4ii0.971.722.6800 (18)171
C9—H9A···O3ii0.992.523.285 (2)134
C10—H10A···N1i1.002.553.4038 (19)143
C15—H15A···O4iii0.952.603.5073 (19)160
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC19H21N2O2+·C2H3O2
Mr368.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1046 (4), 19.8837 (8), 12.0856 (5)
β (°) 123.281 (3)
V3)1829.06 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.24 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.974, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
21273, 6211, 4350
Rint0.045
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.134, 1.03
No. of reflections6211
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O3i0.93001.86002.7762 (15)169.00
N1—H2···O30.90001.93002.7895 (19)160.00
N2—H3···O4ii0.97001.72002.6800 (18)171.00
C9—H9A···O3ii0.99002.52003.285 (2)134.00
C10—H10A···N1i1.00002.55003.4038 (19)143.00
C15—H15A···O4iii0.95002.60003.5073 (19)160.00
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by USM Research University Grant No. 1001/CDADAH/815020 and the R&D Initiative Fund, Ministry of Science, Technology and Innovation, Malaysia (MOSTI). HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAl-Allaf, T. A. K., Ayoub, M. T. & Rashan, L. J. (1990). J. Inorg. Biochem. 38, 47–56.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, T. B., Mordi, M. N., Mansor, S. M., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, m464–m465.  CSD CrossRef IUCr Journals Google Scholar
First citationHerraiz, T., Galisteo, J. & Chamorro, C. (2003). J. Agric. Food Chem. 51, 2168–2173.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1483
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds