inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­hexa-μ-cyanido-cerium(III)ferrate(III)] dihydrate]

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 9 April 2012; accepted 18 April 2012; online 25 April 2012)

In the structure of the title complex, {[CeFe(CN)6(H2O)2]·2H2O}n, the CeIII and FeIII atoms exhibit square anti­prismatic [CeN6(H2O)2] (site symmetry m2m) and octahedral [FeC6] (site symmetry 2/m) coordination geometries, respectively. The metal atoms are linked alternately through the cyanide groups, forming a three-dimensional framework in which the {Ce2Fe2(CN)4} puckered square unit is the basic building block. The crystal packing is enforced by O—H⋯O and O—H⋯N hydrogen bonds, including the uncoordinated water molecule which is located on a mirror plane.

Related literature

For general background to hexa­cyanido­metalate(III)-based lanthanide complexes, see: Andruh et al. (2009[Andruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342-3359.]). For related structures, see: Gramlich et al. (1990[Gramlich, V., Petter, W. & Hulliger, F. (1990). Acta Cryst. C46, 724-726.]); Petter et al. (1989[Petter, W., Gramlich, V. & Hulliger, F. (1989). J. Solid State Chem. 82, 161-167.]).

[Scheme 1]

Experimental

Crystal data
  • [CeFe(CN)6(H2O)2]·2H2O

  • Mr = 424.15

  • Orthorhombic, C m c m

  • a = 7.3806 (11) Å

  • b = 12.7836 (19) Å

  • c = 13.619 (2) Å

  • V = 1285.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.64 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.428, Tmax = 0.506

  • 5578 measured reflections

  • 831 independent reflections

  • 785 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.06

  • 831 reflections

  • 51 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −2.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.85 2.08 2.807 (8) 144
O2—H2B⋯N1i 0.85 2.28 3.126 (11) 177
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, hexacyanometalate-based lanthanide assemblies have received much attention due to their intriguing topologies and interesting functionalities (Andruh et al., 2009). The chelated ligands have played an important role in the construction of low-dimensional complexes. Along this line, we have employed the K3Fe(CN)6 presusor to react with the Ce3+ ion in the presence of the bidentate chelated ligand 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen). Unexpectly, a new complex Ce(H2O)2Fe(CN)6.2H2O was obtained, in which the tmphen ligand was not involved. The structure of the title complex is similiar to those of LnFe(CN)6.4H2O (Ln = Sm—Lu) reported previously (Gramlich et al., 1990; Petter et al., 1989.).

Single crystal X-ray diffraction analysis revealed that the asymmetric unit of the title complex (Fig. 1) consists of one fourth of a [Ce(H2O)2]3+ cation, one fourth of a [Fe(CN)6]3- anion and one half of a water molecules of crystallization. Each iron(III) atom is six-coordinated by six bridging CN groups in a distorted octahedral geometry. The average Fe—C and C—N bond distances are 1.928 (5) and 1.166 (7) Å, respectively. The Fe—CN angles deviate slightly from the linearity, ranging from 178.3 (6) to 178.7 (8)°. Each cerium(III) atom is eight-coordinated with six cyano nitrogen atoms and two oxygen atoms from two coordinated water molecules, forming a square antiprismatic geometry. The Ce—O and the mean Ce—N bond distances are 2.351 (7) and 2.458 (5) Å, respectively. Due to the large ionic radii of the lanthanide atom, the cyanide bridges are exceptionally long and the Ce–N–C bonds are strongly bent with a mean angle of 160.0 (5)°, in opposition to the linearity of the Fe–C—N angle. As a consequence, adjacent Ce and Fe metals are connected through cyano groups to generate a three-dimensional open framework (Fig. 2). The 12-membered puckered square unit Ce2Fe2(CN)4 is the basic building block, in which the Ce and Fe atoms occupy the corners and the CN linkages the edges. The crystal structure is stabilized by O—H···O and O—H···N hydrogen bonds (Table 1).

Related literature top

For general background to hexacyanometalate(III)-based lanthanide complexes, see: Andruh et al. (2009). For related structures, see: Gramlich et al. (1990); Petter et al. (1989).

Experimental top

Single crystals of the title complex were prepared at room temperature by slow diffusion of an ethanol solution (3 ml) of Ce(NO3)3.6H2O (0.10 mmol) and tmphen (0.20 mmol) into an aqueous solution (15 ml) of K3[Fe(CN)6].H2O (0.10 mmol). After about one month, red block crystals were obtained.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The water H atoms were located from a difference Fourier map and refined as riding with O—H = 0.85 Å and U(H) set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title complex, showing 30% probability displacement ellipsoidw. Hydrogen atoms have been omitted for clarity. Symmetry codes: (i) -x + 5/2, -y + 1/2, z + 1/2; (ii) -x + 2, y, z; (iii) -x + 2, y, -z + 1/2; (iv) x, y, -z + 1/2; (v) -x + 2, -y, -z; (vi) x - 1/2, -y + 1/2, z - 1/2; (vii) -x + 5/2, y - 1/2, -z + 1/2; (viii) x - 1/2, y - 1/2, -z + 1/2; (ix) -x + 5/2, -y + 1/2, z - 1/2.
[Figure 2] Fig. 2. The three-dimensional open framework of the title complex. Hydrogen atoms and uncoordinated water molecules are omitted for clarity.
Poly[[diaquahexa-µ-cyanido-cerium(III)ferrate(III)] dihydrate] top
Crystal data top
[CeFe(CN)6(H2O)2]·2H2OF(000) = 808
Mr = 424.15Dx = 2.193 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 3234 reflections
a = 7.3806 (11) Åθ = 3.0–27.4°
b = 12.7836 (19) ŵ = 4.64 mm1
c = 13.619 (2) ÅT = 173 K
V = 1285.0 (3) Å3Block, red
Z = 40.22 × 0.20 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
831 independent reflections
Radiation source: fine-focus sealed tube785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
phi and ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.428, Tmax = 0.506k = 1616
5578 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0233P)2 + 48.4374P]
where P = (Fo2 + 2Fc2)/3
831 reflections(Δ/σ)max < 0.001
51 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 2.69 e Å3
Crystal data top
[CeFe(CN)6(H2O)2]·2H2OV = 1285.0 (3) Å3
Mr = 424.15Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 7.3806 (11) ŵ = 4.64 mm1
b = 12.7836 (19) ÅT = 173 K
c = 13.619 (2) Å0.22 × 0.20 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
785 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.506Rint = 0.088
5578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0233P)2 + 48.4374P]
where P = (Fo2 + 2Fc2)/3
831 reflectionsΔρmax = 1.08 e Å3
51 parametersΔρmin = 2.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00000.1368 (7)0.0590 (7)0.0204 (18)
C21.3141 (9)0.4530 (5)0.4106 (5)0.0208 (13)
Ce11.00000.32343 (4)0.25000.0064 (2)
Fe11.00000.00000.00000.0164 (4)
N11.00000.2186 (6)0.0965 (6)0.0254 (17)
N21.2003 (9)0.4229 (4)0.3582 (5)0.0285 (13)
O10.7401 (11)0.2171 (6)0.25000.0347 (17)
H1A0.71290.18790.30420.052*
O20.50000.1562 (6)0.3993 (6)0.0342 (17)
H2A0.50000.09140.41310.051*
H2B0.50000.19220.45180.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (5)0.022 (4)0.017 (4)0.0000.0000.001 (4)
C20.021 (3)0.021 (3)0.021 (3)0.002 (2)0.000 (3)0.003 (2)
Ce10.0053 (3)0.0080 (3)0.0058 (3)0.0000.0000.000
Fe10.0150 (8)0.0176 (8)0.0164 (9)0.0000.0000.0002 (6)
N10.025 (4)0.026 (4)0.025 (4)0.0000.0000.002 (3)
N20.026 (3)0.033 (3)0.026 (3)0.005 (2)0.001 (3)0.002 (2)
O10.029 (4)0.049 (4)0.026 (4)0.015 (4)0.0000.000
O20.035 (4)0.036 (4)0.032 (4)0.0000.0000.002 (3)
Geometric parameters (Å, º) top
C1—N11.163 (12)Ce1—N12.483 (8)
C1—Fe11.925 (9)Ce1—N1iv2.483 (8)
C2—N21.167 (9)Fe1—C1v1.925 (9)
C2—Fe1i1.930 (7)Fe1—C2vi1.930 (7)
Ce1—O12.351 (7)Fe1—C2vii1.930 (7)
Ce1—O1ii2.351 (7)Fe1—C2viii1.930 (7)
Ce1—N22.444 (6)Fe1—C2ix1.930 (7)
Ce1—N2iii2.444 (6)O1—H1A0.8503
Ce1—N2ii2.444 (6)O2—H2A0.8500
Ce1—N2iv2.444 (6)O2—H2B0.8500
N1—C1—Fe1178.7 (8)N2—Ce1—N1iv76.9 (2)
N2—C2—Fe1i178.3 (6)N2iii—Ce1—N1iv142.05 (16)
O1—Ce1—O1ii109.4 (4)N2ii—Ce1—N1iv76.9 (2)
O1—Ce1—N2142.58 (15)N2iv—Ce1—N1iv142.05 (16)
O1ii—Ce1—N278.9 (2)N1—Ce1—N1iv114.7 (4)
O1—Ce1—N2iii78.9 (2)C1v—Fe1—C1180.0 (5)
O1ii—Ce1—N2iii142.58 (15)C1v—Fe1—C2vi91.1 (3)
N2—Ce1—N2iii117.3 (3)C1—Fe1—C2vi88.9 (3)
O1—Ce1—N2ii78.9 (2)C1v—Fe1—C2vii88.9 (3)
O1ii—Ce1—N2ii142.58 (15)C1—Fe1—C2vii91.1 (3)
N2—Ce1—N2ii74.4 (3)C2vi—Fe1—C2vii180.0 (4)
N2iii—Ce1—N2ii74.2 (3)C1v—Fe1—C2viii88.9 (3)
O1—Ce1—N2iv142.58 (15)C1—Fe1—C2viii91.1 (3)
O1ii—Ce1—N2iv78.9 (2)C2vi—Fe1—C2viii89.4 (4)
N2—Ce1—N2iv74.2 (3)C2vii—Fe1—C2viii90.6 (4)
N2iii—Ce1—N2iv74.4 (3)C1v—Fe1—C2ix91.1 (3)
N2ii—Ce1—N2iv117.3 (3)C1—Fe1—C2ix88.9 (3)
O1—Ce1—N171.82 (14)C2vi—Fe1—C2ix90.6 (4)
O1ii—Ce1—N171.82 (14)C2vii—Fe1—C2ix89.4 (4)
N2—Ce1—N1142.05 (16)C2viii—Fe1—C2ix180.0 (4)
N2iii—Ce1—N176.9 (2)C1—N1—Ce1148.7 (8)
N2ii—Ce1—N1142.05 (16)C2—N2—Ce1167.2 (5)
N2iv—Ce1—N176.9 (2)Ce1—O1—H1A116.5
O1—Ce1—N1iv71.82 (14)H2A—O2—H2B110.0
O1ii—Ce1—N1iv71.82 (14)
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+2, y, z; (iii) x+2, y, z+1/2; (iv) x, y, z+1/2; (v) x+2, y, z; (vi) x1/2, y+1/2, z1/2; (vii) x+5/2, y1/2, z+1/2; (viii) x1/2, y1/2, z+1/2; (ix) x+5/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.852.082.807 (8)144
O2—H2B···N1x0.852.283.126 (11)177
Symmetry code: (x) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CeFe(CN)6(H2O)2]·2H2O
Mr424.15
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)173
a, b, c (Å)7.3806 (11), 12.7836 (19), 13.619 (2)
V3)1285.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.64
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.428, 0.506
No. of measured, independent and
observed [I > 2σ(I)] reflections
5578, 831, 785
Rint0.088
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.06
No. of reflections831
No. of parameters51
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0233P)2 + 48.4374P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 2.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.852.082.807 (8)144
O2—H2B···N1i0.852.283.126 (11)177
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China (No. BK2010343).

References

First citationAndruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342–3359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGramlich, V., Petter, W. & Hulliger, F. (1990). Acta Cryst. C46, 724–726.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetter, W., Gramlich, V. & Hulliger, F. (1989). J. Solid State Chem. 82, 161–167.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds