organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1285-o1286

Creatininium 2-chloro­acetate

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology, Tirunelveli, Nagercoil 629 004, India, and cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
*Correspondence e-mail: athi81s@yahoo.co.in

(Received 17 March 2012; accepted 20 March 2012; online 4 April 2012)

In the title compound (systematic name: 2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 2-chloro­acetate), C4H8N3O+·C2H2ClO2, the mol­ecular aggregations are stabil­ized through classical (N—H⋯O) and non-classical (C—H⋯O and C—H⋯N) hydrogen-bonding inter­actions. The cations are linked to the anions, forming ion pairs through two N—H⋯O bonds that produce characteristic R22(8) ring motifs. These cation–anion pairs are connected through another N—H⋯O hydrogen bond, leading to an R42(8) ring motif. Further weak C—H⋯N inter­actions link the mol­ecules along the a axis, while other C—H⋯O inter­actions generate zigzag chains extending along b.

Related literature

For related structures, see: Ali et al. (2011a[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011a). Acta Cryst. E67, o2905.],b[Ali, A. J., Athimoolam, S. & Bahadur, S. A. (2011b). Acta Cryst. E67, o1376.]); Bahadur, Kannan et al. (2007[Bahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387-o2389.]); Bahadur, Sivapragasam et al. (2007[Bahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.]); Bahadur, Rajalakshmi et al. (2007[Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological importance of creatinine, see: Madaras & Buck (1996[Madaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832-3839.]); Sharma et al. (2004[Sharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971-2977.]); Narayanan & Appleton (1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8N3O+·C2H2ClO2

  • Mr = 207.62

  • Monoclinic, P 21 /n

  • a = 5.7993 (8) Å

  • b = 13.934 (2) Å

  • c = 11.2205 (16) Å

  • β = 95.326 (2)°

  • V = 902.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 294 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 8205 measured reflections

  • 1587 independent reflections

  • 1472 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.05

  • 1587 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H1N⋯O22i 0.81 (3) 2.02 (3) 2.762 (2) 152 (2)
N15—H2N⋯O22 0.94 (3) 1.82 (3) 2.758 (2) 179 (2)
N14—H14N⋯O21 0.86 (3) 1.83 (3) 2.686 (2) 173 (2)
C11—H11A⋯O13ii 0.96 2.46 3.305 (3) 147
C11—H11B⋯O13iii 0.96 2.55 3.448 (3) 156
C12—H12A⋯N15iv 0.97 2.78 3.695 (3) 157
C12—H12B⋯O21iii 0.97 2.36 3.208 (2) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Creatinine, a nitrogenous organic acid, is found in the muscle tissue of vertebrates mainly in the form of phosphocreatine and supplies energy for muscle contraction. Also, it is a blood metabolite of considerable importance in clinical chemistry, particularly as an indicator of renal function. It has been proven that determination of creatinine is more valuable for the detection of renal dysfunction than that of urea (Sharma et al., 2004). In renal physiology, creatinine clearance rate, CCr, (Madaras & Buck, 1996) is the volume of blood plasma that is cleared of creatinine per unit time. Clinically, creatinine clearance is a useful measure for estimating the glomerular filtration rate (GFR) of the kidneys. An abnormal level of creatinine in biological fluids is an indicator of various disease states (Narayanan & Appleton, 1980). Also, the effective protonation site on the creatinine molecule (N atoms) can form intermolecular interactions such as hydrogen bonds that play an essential role in the formation of supramolecular systems. As we have stated in our previous papers, we are interested on the the specificity of recognition between inorganic / organic acids and the cretinine molecule. Hence, the title compound is reported here.

The asymmetric unit of the title compound, (I), contains one protonated creatinine molecule as the creatininium cation and one deprotonated monochloroacetic acid as the monochloroacetate anion (Fig.1). Protonation of the N site of the cation is evident from C—N bond distances and the C—N—C bond angle. Other bond distances and angles are comparable with those found in creatininium hydrogen maleate (Ali et al., 2011a), creatininium cinnamate (Ali et al., 2011b), creatininium hydrogen oxalate monohydrate (Bahadur, Kannan et al., 2007), creatininium benzoate (Bahadur, Sivapragasam et al., 2007) and bis(creatininium) sulfate (Bahadur, Rajalakshmi et al., 2007). The deprotonation on the –COOH groups of the monochloroacetic acid is confirmed from the –COO- bond geometry. The plane of the five membered ring in the cation and that of the carboxylate group of the anion are oriented at an angle of 9.5 (1)°.

In the crystal structure, molecular aggregations are stabilized through classical (N—H···O) and non-classical (C—H···O and C—H···N) hydrogen bonding interactions (Table 1). Cations are linked to anions forming ion pairs through two N—H···O bonds that produce characterestic R22(8) ring motifs (Bernstein et al., 1995). This type of ring motif is observed in most structures of creatinine salts of inorganic/organic acids, especially when carboxylate anions are present (Fig. 2). These cation-anion pairs are connected through another N—H···O hydrogen bond leading to an R42(8) ring motif around the inversion centres of the unit cell. These centrosymmetric ring motifs are almost planar and oriented with an angle of 78.1 (1)° to each other and lie in the (131) and (131) planes respectively. leading to strong diffraction peaks for the planes. These molecular aggregates are further connected through three C—H···O and one C—H···N interactions. The C—H···N contacts link the molecules along the a axis. Further, other C—H···O interactions generate zigzag chains extending along b. Notably, the electronegative Cl atoms are not involved in any classical or non-classical hydrogen bonding interactions.

Related literature top

For related structures, see: Ali et al. (2011a,b); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological importance of creatinine, see: Madaras & Buck (1996); Sharma et al. (2004); Narayanan & Appleton (1980).

Experimental top

The title compound was crystallized from an aqueous mixture containing creatinine and monochloroacetic acid in a 1:1 stoichiometric ratio at room temperature by the slow evaporation technique.

Refinement top

H atoms bound to N and involved in hydrogen bonds were located from a difference Fourier map and refined isotropically. Other H atoms except were positioned geometrically and refined using a riding model, with C—H = 0.93 (–CH) and 0.96 Å (–CH3) and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H-bonds (dashed lines) are omitted for clarity.
2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium monochloroacetate top
Crystal data top
C4H8N3O+·C2H2ClO2F(000) = 432
Mr = 207.62Dx = 1.527 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2516 reflections
a = 5.7993 (8) Åθ = 2.2–23.4°
b = 13.934 (2) ŵ = 0.40 mm1
c = 11.2205 (16) ÅT = 294 K
β = 95.326 (2)°Block, colourless
V = 902.8 (2) Å30.24 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1472 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 66
8205 measured reflectionsk = 1616
1587 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.3396P]
where P = (Fo2 + 2Fc2)/3
1587 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C4H8N3O+·C2H2ClO2V = 902.8 (2) Å3
Mr = 207.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7993 (8) ŵ = 0.40 mm1
b = 13.934 (2) ÅT = 294 K
c = 11.2205 (16) Å0.24 × 0.22 × 0.19 mm
β = 95.326 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1472 reflections with I > 2σ(I)
8205 measured reflectionsRint = 0.031
1587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
1587 reflectionsΔρmin = 0.27 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.0950 (2)0.16015 (11)0.55491 (13)0.0435 (4)
C111.1347 (4)0.13325 (16)0.67962 (17)0.0517 (5)
H11A1.04910.17530.72700.078*
H11B1.29690.13830.70520.078*
H11C1.08450.06830.68950.078*
C121.2339 (3)0.22831 (14)0.49571 (17)0.0474 (5)
H12A1.39260.20640.49570.057*
H12B1.23280.29080.53360.057*
C131.1149 (3)0.23140 (13)0.37071 (18)0.0471 (5)
O131.1682 (3)0.27677 (12)0.28629 (14)0.0668 (5)
N140.9267 (3)0.17187 (11)0.37131 (14)0.0434 (4)
C150.9179 (3)0.13198 (12)0.48112 (15)0.0390 (4)
N150.7527 (3)0.07372 (13)0.50395 (16)0.0482 (4)
H1N0.741 (4)0.0498 (17)0.569 (2)0.063 (7)*
H2N0.636 (4)0.0637 (17)0.441 (2)0.062 (6)*
H14N0.835 (4)0.1546 (17)0.311 (2)0.062 (7)*
C210.4400 (3)0.07309 (13)0.22026 (16)0.0434 (4)
C220.2464 (4)0.04780 (17)0.12518 (18)0.0561 (5)
H22A0.09950.06140.15640.067*
H22B0.25200.02060.10990.067*
O210.6111 (2)0.11830 (11)0.19341 (13)0.0578 (4)
O220.4072 (2)0.04254 (11)0.32210 (12)0.0547 (4)
Cl10.25524 (10)0.10901 (5)0.01176 (5)0.0725 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0406 (8)0.0488 (8)0.0392 (8)0.0010 (6)0.0055 (6)0.0015 (6)
C110.0518 (11)0.0622 (12)0.0390 (10)0.0059 (9)0.0074 (8)0.0025 (9)
C120.0363 (9)0.0517 (11)0.0536 (11)0.0030 (7)0.0016 (8)0.0055 (8)
C130.0405 (9)0.0501 (10)0.0510 (11)0.0005 (8)0.0067 (8)0.0015 (8)
O130.0589 (9)0.0813 (11)0.0612 (10)0.0129 (7)0.0108 (7)0.0176 (8)
N140.0409 (8)0.0507 (9)0.0373 (8)0.0039 (6)0.0028 (6)0.0016 (6)
C150.0382 (9)0.0401 (8)0.0379 (9)0.0037 (7)0.0009 (7)0.0010 (7)
N150.0462 (10)0.0556 (10)0.0414 (9)0.0097 (7)0.0043 (8)0.0082 (7)
C210.0448 (10)0.0456 (9)0.0380 (9)0.0027 (7)0.0056 (8)0.0014 (7)
C220.0539 (11)0.0694 (13)0.0427 (10)0.0161 (10)0.0087 (9)0.0053 (9)
O210.0544 (8)0.0748 (10)0.0418 (8)0.0223 (7)0.0081 (6)0.0098 (6)
O220.0545 (8)0.0661 (9)0.0413 (8)0.0140 (7)0.0068 (6)0.0123 (6)
Cl10.0710 (4)0.0998 (5)0.0426 (3)0.0207 (3)0.0164 (3)0.0133 (3)
Geometric parameters (Å, º) top
N11—C151.318 (2)N14—C151.357 (2)
N11—C121.446 (2)N14—H14N0.86 (3)
N11—C111.446 (2)C15—N151.299 (2)
C11—H11A0.9600N15—H1N0.81 (3)
C11—H11B0.9600N15—H2N0.94 (3)
C11—H11C0.9600C21—O211.236 (2)
C12—C131.505 (3)C21—O221.251 (2)
C12—H12A0.9700C21—C221.517 (2)
C12—H12B0.9700C22—Cl11.762 (2)
C13—O131.203 (2)C22—H22A0.9700
C13—N141.371 (2)C22—H22B0.9700
C15—N11—C12109.98 (15)C15—N14—C13110.45 (16)
C15—N11—C11125.12 (16)C15—N14—H14N122.0 (16)
C12—N11—C11124.71 (15)C13—N14—H14N127.1 (16)
N11—C11—H11A109.5N15—C15—N11127.46 (17)
N11—C11—H11B109.5N15—C15—N14121.71 (16)
H11A—C11—H11B109.5N11—C15—N14110.83 (16)
N11—C11—H11C109.5C15—N15—H1N124.1 (18)
H11A—C11—H11C109.5C15—N15—H2N116.0 (14)
H11B—C11—H11C109.5H1N—N15—H2N120 (2)
N11—C12—C13102.72 (14)O21—C21—O22126.16 (17)
N11—C12—H12A111.2O21—C21—C22120.37 (16)
C13—C12—H12A111.2O22—C21—C22113.46 (16)
N11—C12—H12B111.2C21—C22—Cl1114.92 (14)
C13—C12—H12B111.2C21—C22—H22A108.5
H12A—C12—H12B109.1Cl1—C22—H22A108.5
O13—C13—N14125.77 (19)C21—C22—H22B108.5
O13—C13—C12128.30 (18)Cl1—C22—H22B108.5
N14—C13—C12105.92 (16)H22A—C22—H22B107.5
C15—N11—C12—C133.13 (19)C11—N11—C15—N152.4 (3)
C11—N11—C12—C13178.40 (16)C12—N11—C15—N142.9 (2)
N11—C12—C13—O13178.5 (2)C11—N11—C15—N14178.17 (16)
N11—C12—C13—N142.23 (19)C13—N14—C15—N15179.15 (17)
O13—C13—N14—C15179.97 (19)C13—N14—C15—N111.4 (2)
C12—C13—N14—C150.7 (2)O21—C21—C22—Cl113.4 (3)
C12—N11—C15—N15177.63 (18)O22—C21—C22—Cl1167.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H1N···O22i0.81 (3)2.02 (3)2.762 (2)152 (2)
N15—H2N···O220.94 (3)1.82 (3)2.758 (2)179 (2)
N14—H14N···O210.86 (3)1.83 (3)2.686 (2)173 (2)
C11—H11A···O13ii0.962.463.305 (3)147
C11—H11B···O13iii0.962.553.448 (3)156
C12—H12A···N15iv0.972.783.695 (3)157
C12—H12B···O21iii0.972.363.208 (2)146
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H8N3O+·C2H2ClO2
Mr207.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.7993 (8), 13.934 (2), 11.2205 (16)
β (°) 95.326 (2)
V3)902.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8205, 1587, 1472
Rint0.031
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.05
No. of reflections1587
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H1N···O22i0.81 (3)2.02 (3)2.762 (2)152 (2)
N15—H2N···O220.94 (3)1.82 (3)2.758 (2)179 (2)
N14—H14N···O210.86 (3)1.83 (3)2.686 (2)173 (2)
C11—H11A···O13ii0.962.463.305 (3)147.1
C11—H11B···O13iii0.962.553.448 (3)155.7
C12—H12A···N15iv0.972.783.695 (3)156.7
C12—H12B···O21iii0.972.363.208 (2)146.2
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and the Management of the National College of Engineering for their support.

References

First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2011a). Acta Cryst. E67, o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, A. J., Athimoolam, S. & Bahadur, S. A. (2011b). Acta Cryst. E67, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o2387–o2389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. & Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. A., Sivapragasam, S., Kannan, R. S. & Sridhar, B. (2007). Acta Cryst. E63, o1714–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMadaras, M. B. & Buck, R. P. (1996). Anal. Chem. 68, 3832–3839.  CrossRef CAS PubMed Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationSharma, A. C., Jana, T., Kesavamoorthy, R., Shi, L., Virji, M. A., Finegold, D. N. & Asher, S. A. (2004). J. Am. Chem. Soc. 126, 2971–2977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1285-o1286
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds