organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1365

5-Chloro-2-nitro­phenol

aSecurity and Environment Engineering College, Capital University of Economics and Business, Beijing 10070, People's Republic of China
*Correspondence e-mail: nanoren@126.com

(Received 1 April 2012; accepted 4 April 2012; online 13 April 2012)

The asymmetric unit of the title compound, C6H4ClNO3, contains two independent mol­ecules in which the dihedral angles between the benzene ring and the nitro groups are 2.5 (1) and 8.5 (1)°. Intra­molecular O—H⋯O hydrogen bonds involving the hy­droxy and nitro substituents result in the formation of S(6) six-membered rings. In the crystal, O—H⋯O, O—H⋯Cl and C—H⋯O hydrogen bonds together with Cl⋯O contacts [3.238 (3) and 3.207 (3) Å] generate a three-dimensional network.

Related literature

For background to applications of the title compound and its synthesis, see: Richard (1971[Richard, L. J. (1971). J. Org. Chem. 36, 242-243.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4ClNO3

  • Mr = 173.55

  • Triclinic, [P \overline 1]

  • a = 7.5390 (15) Å

  • b = 8.1640 (16) Å

  • c = 13.132 (3) Å

  • α = 94.75 (3)°

  • β = 96.48 (3)°

  • γ = 116.46 (3)°

  • V = 710.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.953

  • 2808 measured reflections

  • 2596 independent reflections

  • 1833 reflections with I > 2σ(I)

  • Rint = 0.075

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.171

  • S = 1.01

  • 2596 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.91 2.605 (5) 142
O6—H6A⋯O4 0.82 1.88 2.581 (4) 143
O3—H3A⋯O6i 0.82 2.71 3.350 (5) 136
O6—H6A⋯Cl2ii 0.82 2.70 3.207 (3) 121
C2—H2A⋯O5iii 0.93 2.49 3.155 (5) 129
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y-1, z; (iii) -x+1, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 5-chloro-2-nitrophenol, is an important intermediate in the preparation of commercially important materials such as lamprecides, agricultural chemicals and dyestuffs (Richard, 1971). We report here the crystal structure of the title compound, (I).

The asymmetric unit contains two molecules of 5-chloro-2-nitrophenol, Fig. 1. The dihedral angles between the C1—C6 ring plane and that of the nitro group N1/O1/O2 is 2.5 (1)° while that between the C7—C12 plane and that of N2/04/05 is 8.5 (1)°. Intramolecular O3—H3A···O2 and O6—H6A···O4 hydrogen bonds form S(6) rings in both molecules (Bernstein et al., 1995). Bond distances in both molecules are normal (Allen et al. 1987).

In the crystal structure intermolecular O—H···O, O—H···Cl, and C—H···O hydrogen bonds, Table 1, together with and Cl2···O2 and Cl2···O6 contacts with distances 3.238 (3) and 3.207 (3) Å respectively generate a three dimensional network structure, Fig 2.

Related literature top

The title compound is an important intermediate in organic synthesis. For background to applications of the title compound and its synthesis, see: Richard (1971). For bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Richard, 1971). Crystals were obtained by dissolving (I) (0.1 g) in methanol (30 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.82 Å for O—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I) with hydrogen bonds drawn as dashed lines.
5-Chloro-2-nitrophenol top
Crystal data top
C6H4ClNO3Z = 4
Mr = 173.55F(000) = 352
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5390 (15) ÅCell parameters from 25 reflections
b = 8.1640 (16) Åθ = 9–13°
c = 13.132 (3) ŵ = 0.49 mm1
α = 94.75 (3)°T = 293 K
β = 96.48 (3)°Block, colourless
γ = 116.46 (3)°0.20 × 0.10 × 0.10 mm
V = 710.9 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1833 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 98
Tmin = 0.909, Tmax = 0.953l = 1515
2808 measured reflections3 standard reflections every 200 reflections
2596 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2596 reflectionsΔρmax = 0.32 e Å3
200 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.45 (3)
Crystal data top
C6H4ClNO3γ = 116.46 (3)°
Mr = 173.55V = 710.9 (2) Å3
Triclinic, P1Z = 4
a = 7.5390 (15) ÅMo Kα radiation
b = 8.1640 (16) ŵ = 0.49 mm1
c = 13.132 (3) ÅT = 293 K
α = 94.75 (3)°0.20 × 0.10 × 0.10 mm
β = 96.48 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1833 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.075
Tmin = 0.909, Tmax = 0.9533 standard reflections every 200 reflections
2808 measured reflections intensity decay: 1%
2596 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
2596 reflectionsΔρmin = 0.36 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09701 (18)0.12155 (17)0.84727 (9)0.0829 (5)
O10.9021 (5)0.6279 (4)1.0905 (2)0.0826 (10)
O20.7781 (5)0.5201 (4)1.2241 (2)0.0782 (9)
O30.4570 (5)0.2037 (4)1.2061 (2)0.0767 (9)
H3A0.55260.29621.23980.115*
N10.7735 (5)0.5097 (4)1.1288 (3)0.0597 (8)
C10.4447 (6)0.2008 (6)0.8902 (3)0.0629 (11)
H1A0.43940.19590.81880.075*
C20.5999 (6)0.3446 (5)0.9564 (3)0.0583 (10)
H2A0.70010.43810.92990.070*
C30.6081 (5)0.3513 (5)1.0626 (3)0.0489 (8)
C40.4593 (6)0.2115 (5)1.1042 (3)0.0539 (9)
C50.3021 (6)0.0657 (5)1.0360 (3)0.0580 (10)
H5A0.20210.02941.06170.070*
C60.2954 (6)0.0625 (5)0.9309 (3)0.0590 (10)
Cl20.29044 (16)0.23975 (12)0.58973 (8)0.0630 (4)
O40.1840 (5)0.5736 (4)0.3805 (2)0.0739 (9)
O50.2094 (5)0.4362 (4)0.2464 (2)0.0739 (9)
O60.2463 (5)0.3927 (4)0.5626 (2)0.0687 (8)
H6A0.22950.48250.52220.103*
N20.2030 (5)0.4369 (4)0.3381 (2)0.0540 (8)
C70.2170 (5)0.1315 (5)0.3516 (3)0.0497 (9)
H7A0.20340.14250.27980.060*
C80.2359 (5)0.0268 (5)0.4076 (3)0.0506 (9)
H8A0.23340.12250.37460.061*
C90.2591 (5)0.0401 (4)0.5151 (3)0.0460 (8)
C100.2595 (5)0.1007 (5)0.5650 (3)0.0481 (8)
H10A0.27230.08900.63680.058*
C110.2407 (5)0.2611 (5)0.5086 (3)0.0474 (8)
C120.2176 (5)0.2746 (4)0.4005 (2)0.0440 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0728 (8)0.0827 (8)0.0728 (8)0.0264 (6)0.0025 (6)0.0195 (6)
O10.085 (2)0.0652 (19)0.070 (2)0.0088 (16)0.0131 (16)0.0168 (15)
O20.095 (2)0.0759 (19)0.0435 (17)0.0233 (17)0.0098 (14)0.0014 (13)
O30.093 (2)0.0755 (19)0.0431 (15)0.0196 (16)0.0213 (14)0.0132 (13)
N10.070 (2)0.0529 (18)0.054 (2)0.0260 (17)0.0112 (16)0.0083 (15)
C10.082 (3)0.068 (3)0.038 (2)0.033 (2)0.0116 (18)0.0072 (18)
C20.070 (2)0.058 (2)0.046 (2)0.027 (2)0.0173 (18)0.0112 (17)
C30.060 (2)0.0470 (19)0.0414 (18)0.0262 (17)0.0073 (16)0.0053 (15)
C40.066 (2)0.059 (2)0.0397 (19)0.0295 (19)0.0159 (16)0.0077 (16)
C50.063 (2)0.053 (2)0.057 (2)0.0231 (19)0.0211 (18)0.0118 (17)
C60.063 (2)0.059 (2)0.056 (2)0.032 (2)0.0067 (18)0.0028 (18)
Cl20.0752 (7)0.0489 (6)0.0650 (7)0.0330 (5)0.0030 (5)0.0050 (4)
O40.114 (3)0.0442 (15)0.0637 (18)0.0359 (16)0.0214 (16)0.0060 (13)
O50.099 (2)0.0729 (19)0.0451 (16)0.0352 (17)0.0187 (14)0.0026 (13)
O60.113 (2)0.0499 (15)0.0509 (16)0.0420 (16)0.0173 (15)0.0176 (12)
N20.0596 (19)0.0457 (17)0.0481 (18)0.0176 (14)0.0108 (14)0.0003 (13)
C70.054 (2)0.051 (2)0.0372 (18)0.0180 (17)0.0070 (15)0.0076 (15)
C80.057 (2)0.0414 (18)0.052 (2)0.0206 (16)0.0084 (16)0.0141 (15)
C90.0472 (19)0.0419 (18)0.0468 (19)0.0198 (15)0.0061 (15)0.0022 (14)
C100.058 (2)0.0481 (19)0.0352 (17)0.0223 (17)0.0073 (15)0.0050 (14)
C110.058 (2)0.0421 (18)0.0399 (18)0.0186 (16)0.0129 (15)0.0115 (14)
C120.0454 (19)0.0372 (17)0.0412 (18)0.0112 (14)0.0101 (14)0.0055 (14)
Geometric parameters (Å, º) top
Cl1—C61.748 (4)Cl2—C91.736 (3)
O1—N11.217 (4)O4—N21.247 (4)
O2—N11.242 (4)O5—N21.210 (4)
O3—C41.347 (4)O6—C111.349 (4)
O3—H3A0.8200O6—H6A0.8200
N1—C31.454 (5)N2—C121.452 (4)
C1—C21.371 (5)C7—C81.373 (5)
C1—C61.389 (6)C7—C121.380 (5)
C1—H1A0.9300C7—H7A0.9300
C2—C31.385 (5)C8—C91.392 (5)
C2—H2A0.9300C8—H8A0.9300
C3—C41.399 (5)C9—C101.370 (5)
C4—C51.397 (6)C10—C111.391 (5)
C5—C61.373 (5)C10—H10A0.9300
C5—H5A0.9300C11—C121.399 (5)
C4—O3—H3A109.5C11—O6—H6A109.5
O1—N1—O2121.8 (3)O5—N2—O4121.6 (3)
O1—N1—C3120.0 (3)O5—N2—C12119.3 (3)
O2—N1—C3118.2 (3)O4—N2—C12119.0 (3)
C2—C1—C6119.2 (3)C8—C7—C12120.9 (3)
C2—C1—H1A120.4C8—C7—H7A119.5
C6—C1—H1A120.4C12—C7—H7A119.5
C1—C2—C3120.3 (4)C7—C8—C9118.1 (3)
C1—C2—H2A119.8C7—C8—H8A121.0
C3—C2—H2A119.8C9—C8—H8A121.0
C2—C3—C4120.7 (3)C10—C9—C8121.8 (3)
C2—C3—N1117.8 (3)C10—C9—Cl2118.3 (3)
C4—C3—N1121.5 (3)C8—C9—Cl2119.9 (3)
O3—C4—C5116.6 (3)C9—C10—C11120.3 (3)
O3—C4—C3125.0 (3)C9—C10—H10A119.9
C5—C4—C3118.4 (3)C11—C10—H10A119.9
C6—C5—C4120.0 (4)O6—C11—C10117.2 (3)
C6—C5—H5A120.0O6—C11—C12124.8 (3)
C4—C5—H5A120.0C10—C11—C12118.0 (3)
C5—C6—C1121.3 (4)C7—C12—C11120.9 (3)
C5—C6—Cl1119.1 (3)C7—C12—N2118.8 (3)
C1—C6—Cl1119.7 (3)C11—C12—N2120.2 (3)
C6—C1—C2—C30.3 (6)C12—C7—C8—C91.0 (5)
C1—C2—C3—C40.3 (6)C7—C8—C9—C101.2 (5)
C1—C2—C3—N1178.4 (4)C7—C8—C9—Cl2178.3 (3)
O1—N1—C3—C22.3 (5)C8—C9—C10—C111.4 (5)
O2—N1—C3—C2177.5 (4)Cl2—C9—C10—C11178.1 (3)
O1—N1—C3—C4179.0 (4)C9—C10—C11—O6178.7 (3)
O2—N1—C3—C41.2 (5)C9—C10—C11—C121.3 (5)
C2—C3—C4—O3178.3 (4)C8—C7—C12—C110.9 (5)
N1—C3—C4—O33.0 (6)C8—C7—C12—N2178.2 (3)
C2—C3—C4—C50.2 (5)O6—C11—C12—C7178.9 (3)
N1—C3—C4—C5178.5 (3)C10—C11—C12—C71.0 (5)
O3—C4—C5—C6179.2 (4)O6—C11—C12—N21.6 (5)
C3—C4—C5—C60.5 (6)C10—C11—C12—N2178.3 (3)
C4—C5—C6—C11.2 (6)O5—N2—C12—C76.9 (5)
C4—C5—C6—Cl1180.0 (3)O4—N2—C12—C7173.2 (3)
C2—C1—C6—C51.1 (6)O5—N2—C12—C11170.4 (3)
C2—C1—C6—Cl1179.9 (3)O4—N2—C12—C119.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.912.605 (5)142
O6—H6A···O40.821.882.581 (4)143
O3—H3A···O6i0.822.713.350 (5)136
O6—H6A···Cl2ii0.822.703.207 (3)121
C2—H2A···O5iii0.932.493.155 (5)129
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H4ClNO3
Mr173.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5390 (15), 8.1640 (16), 13.132 (3)
α, β, γ (°)94.75 (3), 96.48 (3), 116.46 (3)
V3)710.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
2808, 2596, 1833
Rint0.075
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.171, 1.01
No. of reflections2596
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.82001.91002.605 (5)142.00
O6—H6A···O40.82001.88002.581 (4)143.00
O3—H3A···O6i0.82002.71303.350 (5)136.00
O6—H6A···Cl2ii0.82002.70003.207 (3)121.00
C2—H2A···O5iii0.93002.49003.155 (5)129.00
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z; (iii) x+1, y, z+1.
 

Acknowledgements

This study was supported financially by the Capital University of Economics and Business (00891162721716) and the Scientific Research Level Project of the Beijing Education Commission Foundation. The author thanks the Center of Testing and Analysis, Beijing University of Science and Technology, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRichard, L. J. (1971). J. Org. Chem. 36, 242–243.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1365
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds