metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbonyl­bis­­(tri­phenyl­phosphane-κP)(η2-1-vinyl­pyrrolidin-2-one-κO)ruthenium(0)

aDepartment of Preventive Medicine, School of Public Health, Xiamen University, Xiamen 361005, Fujian, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
*Correspondence e-mail: niupo1119@hotmail.com

(Received 28 March 2012; accepted 4 April 2012; online 18 April 2012)

The 1-vinyl­pyrrolidin-2-one ligand in the title compound, [Ru(C6H9NO)(C18H15P)2(CO)], coordinates to the Ru0 atom with the olefin double bond and the ketone O atom. The Ru0 atom adopts a distorted trigonal–bipyramidal coordination geometry, with the C≡O ligand and the ketone O atom occupying the axial positions. The two triphenyl­phosphane ligands are cis to each other. The olefinic C=C bond is almost coplanar with the Ru0 atom and the two P atoms (maximum deviation of 0.0516 Å from the mean plane defined by the five constituent atoms). The coordinated C=C bond has a length of 1.449 (3) Å, which is significantly longer than that of a free C=C bond (1.34 Å). There are two C—H⋯π inter­actions involving neighbouring phenyl rings in the mol­ecule. In the crystal, mol­ecules are linked via two further C—H⋯π inter­actions.

Related literature

For general background to ruthenium(0)-catalysed C—H activation, see: Murai et al. (1993[Murai, S., Kakiuchi, F., Sekine, S., Tnaka, Y., Kamatani, A., Sonoda, M. & Chatani, N. (1993). Nature (London), 366, 529-531.]). For C=C bond lengths for free olefinic double bonds, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton. Trans. pp. 81-83.]). For structurally related compounds, see: Lu et al. (1998[Lu, P., Paulasaari, K. J., Bau, R. & Weber, W. P. (1998). Organometallics, 17, 584-588.]); Jazzar et al. (2001[Jazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, 20, 3745-3751.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C6H9NO)(C18H15P)2(CO)]

  • Mr = 764.76

  • Triclinic, [P \overline 1]

  • a = 10.765 (2) Å

  • b = 12.577 (3) Å

  • c = 13.878 (3) Å

  • α = 76.91 (3)°

  • β = 88.43 (3)°

  • γ = 83.89 (3)°

  • V = 1819.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.753, Tmax = 1.000

  • 15733 measured reflections

  • 7113 independent reflections

  • 6570 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.084

  • S = 1.15

  • 7113 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C41–C46 and C61–C66 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36ACg3 0.95 2.68 3.490 (2) 144
C66—H66ACg1 0.95 2.61 3.384 (3) 139
C4—H4BCg2i 0.99 2.67 3.585 (3) 154
C14—H14ACg3ii 0.95 2.90 3.693 (3) 142
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y-1, -z.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ortho-alkylation of acetophenone with vinyl silanes via ruthenium catalyzed C—H activation has been reported by (Murai et al., 1993) Cylometallation of the aromatic ketone with the catalytically active ruthenium(0) species, Ru(CO)(PPh3)3, generated from dehydrogenation of RuH2(CO)(PPh3)3, is proposed as the key step (Murai et al., 1993). On exploring the feasibility of cyclometallation of N-vinyl-2-pyrrolidone with the ruthenium hydride complex RuH2(CO)(PPh3)3, the title compound was obtained instead of the cyclometallated product.

The molecular structure of the title compound is illustrated in Fig. 1. The N-Vinyl-2-pyrrolidone ligand is bound to the ruthenium(0) center via the olefin double bond (C6C7) and the ketone O atom (O2). The ruthenium(0) atom, Ru1, adopts a distorted trigonal bipyramidal coordination geometry with the carbonyl ligand (C1O1) and the ketone O atom, O2, occupying the axial positions. The two triphenylphosphane ligands are cis to each other. The olefin C6C7 double bond is almost coplanar with atom Ru1 and the two P atoms (P1 and P2), as reflected by the small mean deviation of 0.0516 Å from the mean plane defined by the five constituent atoms.

The Ru1—C6 and Ru1—C7 bond distances (2.127 (2) and 2.157 (2) Å, respectively) are similar to those reported for related olefin coordinated ruthenium complexes, such as Ru(η2-o-acetylstyrene-O)(CO) (PPh3)2 [2.121 (8) and 2.167 (9) Å; Lu et al., 1998], and Ru(PPh3)3(CO)(C2H4) [2.199 (8) and 2.213 (10) Å; Jazzar et al., 2001]. The C6—C7 bond length of 1.449 (3) Å is significantly longer than that for a free olefinic double bond [1.34 Å; Orpen et al., 1989], but is typical for a coordinated CC double bond, for example as in Ru(η2-o-acetylstyrene-O)(CO)(PPh3)2 [1.43 (1) Å; Lu et al. 1998] and Ru(PPh3)3(CO)(C2H4) [1.451 (11) Å; Jazzar et al. 2001].

There are two C-H···π interactions involving neighbouring phenyl rings in the molecule, and in the crystal, molecules are linked via two further C-H···π interactions (Table 1).

Related literature top

For general backgroun to ruthenium(0)-catalysed C—H activation, see: Murai et al. (1993). For CC bond lengths for free olefinic double bonds, see: Orpen et al. (1989). For structurally related compounds, see: Lu et al. (1998); Jazzar et al. (2001).

Experimental top

To a solution of RuH2(CO)(PPh3)3 (0.40 g, 0.44 mmol) in toluene (20 ml) and under a nitrogen atmosphere was added N-vinyl-2-pyrrolidone (0.40 ml, 3.6 mmol). The reaction mixture was then refluxed for 1 h to give a yellow solution. After filtration, the filtrate was concentrated to ca. 1 ml under reduced pressure. 20 ml n-hexane were added to the residue with stirring to give a yellow solid. The solid was collected by filtration, washed with n-hexane and diethyl ether, and dried under vacuum [Yield: 0.24 g, 72%]. Yellow block-like crystals, suitable for X-ray analysis, were obtained by layering a dichloromethane solution of the title compound with hexane.

Refinement top

The H atoms were included in calculated positions and treated as rding atoms: C—H = 0.95, 0.99, 0.99 and 1.00 Å for phenyl, pyrrolidone, CH2 and CH H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for pyrrolidone H atoms, and = 1.2 for other H atoms. In the final difference Fourier map the highest and lowest residual electron density peaks were 0.94 and 0.92 Å, respectively, from atom Ru1.

Structure description top

Ortho-alkylation of acetophenone with vinyl silanes via ruthenium catalyzed C—H activation has been reported by (Murai et al., 1993) Cylometallation of the aromatic ketone with the catalytically active ruthenium(0) species, Ru(CO)(PPh3)3, generated from dehydrogenation of RuH2(CO)(PPh3)3, is proposed as the key step (Murai et al., 1993). On exploring the feasibility of cyclometallation of N-vinyl-2-pyrrolidone with the ruthenium hydride complex RuH2(CO)(PPh3)3, the title compound was obtained instead of the cyclometallated product.

The molecular structure of the title compound is illustrated in Fig. 1. The N-Vinyl-2-pyrrolidone ligand is bound to the ruthenium(0) center via the olefin double bond (C6C7) and the ketone O atom (O2). The ruthenium(0) atom, Ru1, adopts a distorted trigonal bipyramidal coordination geometry with the carbonyl ligand (C1O1) and the ketone O atom, O2, occupying the axial positions. The two triphenylphosphane ligands are cis to each other. The olefin C6C7 double bond is almost coplanar with atom Ru1 and the two P atoms (P1 and P2), as reflected by the small mean deviation of 0.0516 Å from the mean plane defined by the five constituent atoms.

The Ru1—C6 and Ru1—C7 bond distances (2.127 (2) and 2.157 (2) Å, respectively) are similar to those reported for related olefin coordinated ruthenium complexes, such as Ru(η2-o-acetylstyrene-O)(CO) (PPh3)2 [2.121 (8) and 2.167 (9) Å; Lu et al., 1998], and Ru(PPh3)3(CO)(C2H4) [2.199 (8) and 2.213 (10) Å; Jazzar et al., 2001]. The C6—C7 bond length of 1.449 (3) Å is significantly longer than that for a free olefinic double bond [1.34 Å; Orpen et al., 1989], but is typical for a coordinated CC double bond, for example as in Ru(η2-o-acetylstyrene-O)(CO)(PPh3)2 [1.43 (1) Å; Lu et al. 1998] and Ru(PPh3)3(CO)(C2H4) [1.451 (11) Å; Jazzar et al. 2001].

There are two C-H···π interactions involving neighbouring phenyl rings in the molecule, and in the crystal, molecules are linked via two further C-H···π interactions (Table 1).

For general backgroun to ruthenium(0)-catalysed C—H activation, see: Murai et al. (1993). For CC bond lengths for free olefinic double bonds, see: Orpen et al. (1989). For structurally related compounds, see: Lu et al. (1998); Jazzar et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling. The displacement ellipsoids are drawn at the 40% probability level displacement ellipsoids (H atoms have been omitted for clarity).
Carbonylbis(triphenylphosphane-κP)(η2-1-vinylpyrrolidin-2-one- κO)ruthenium(0) top
Crystal data top
[Ru(C6H9NO)(C18H15P)2(CO)]Z = 2
Mr = 764.76F(000) = 788
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.765 (2) ÅCell parameters from 16802 reflections
b = 12.577 (3) Åθ = 6.0–55.0°
c = 13.878 (3) ŵ = 0.56 mm1
α = 76.91 (3)°T = 173 K
β = 88.43 (3)°Block, yellow
γ = 83.89 (3)°0.30 × 0.30 × 0.20 mm
V = 1819.7 (6) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
7113 independent reflections
Radiation source: fine-focus sealed tube6570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Oscillation scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.753, Tmax = 1.000k = 1415
15733 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4957P]
where P = (Fo2 + 2Fc2)/3
7113 reflections(Δ/σ)max = 0.002
442 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ru(C6H9NO)(C18H15P)2(CO)]γ = 83.89 (3)°
Mr = 764.76V = 1819.7 (6) Å3
Triclinic, P1Z = 2
a = 10.765 (2) ÅMo Kα radiation
b = 12.577 (3) ŵ = 0.56 mm1
c = 13.878 (3) ÅT = 173 K
α = 76.91 (3)°0.30 × 0.30 × 0.20 mm
β = 88.43 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
7113 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6570 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 1.000Rint = 0.025
15733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.15Δρmax = 0.66 e Å3
7113 reflectionsΔρmin = 0.80 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru11.093351 (13)0.114104 (11)0.257193 (10)0.01529 (7)
P11.25572 (5)0.07132 (4)0.15043 (4)0.01623 (11)
P21.13168 (5)0.28498 (4)0.28814 (4)0.01797 (11)
C10.99017 (19)0.17719 (16)0.15533 (15)0.0203 (4)
O10.92111 (15)0.21343 (14)0.08981 (12)0.0338 (4)
O21.21345 (13)0.00891 (11)0.37587 (10)0.0218 (3)
N11.08507 (17)0.11518 (14)0.35553 (13)0.0254 (4)
C21.1837 (2)0.08766 (17)0.39478 (15)0.0234 (4)
C31.2510 (2)0.18642 (19)0.46185 (18)0.0340 (5)
H3A1.23130.18810.53220.041*
H3B1.34250.18860.45190.041*
C41.1982 (3)0.28127 (19)0.42819 (19)0.0411 (6)
H4A1.25250.30610.37710.049*
H4B1.19060.34430.48480.049*
C51.0699 (3)0.23248 (18)0.38591 (19)0.0359 (6)
H5A1.04980.26240.32870.043*
H5B1.00360.24660.43670.043*
C60.9984 (2)0.02938 (17)0.29936 (16)0.0244 (4)
H6A0.94700.04860.24800.029*
C70.9423 (2)0.05170 (18)0.35122 (16)0.0257 (4)
H7A0.95640.03610.42350.031*
H7B0.85680.08500.33110.031*
C111.2866 (2)0.07769 (16)0.15914 (15)0.0207 (4)
C121.4022 (2)0.13692 (18)0.18325 (16)0.0280 (5)
H12A1.47060.10040.19620.034*
C131.4186 (3)0.24953 (19)0.18854 (18)0.0377 (6)
H13A1.49810.28940.20500.045*
C141.3193 (3)0.30354 (19)0.16991 (18)0.0387 (6)
H14A1.33040.38050.17440.046*
C151.2040 (3)0.24510 (19)0.14469 (18)0.0357 (6)
H15A1.13620.28180.13080.043*
C161.1871 (2)0.13309 (18)0.13966 (17)0.0282 (5)
H16A1.10750.09360.12290.034*
C211.41278 (18)0.10880 (15)0.16887 (15)0.0202 (4)
C221.4889 (2)0.15284 (17)0.09011 (16)0.0238 (4)
H22A1.46390.15740.02410.029*
C231.6017 (2)0.19015 (18)0.10803 (18)0.0289 (5)
H23A1.65260.22130.05420.035*
C241.6393 (2)0.1817 (2)0.20374 (19)0.0334 (5)
H24A1.71590.20760.21580.040*
C251.5658 (2)0.1357 (2)0.28275 (18)0.0330 (5)
H25A1.59310.12850.34870.040*
C261.4523 (2)0.10020 (18)0.26531 (16)0.0255 (4)
H26A1.40140.06990.31950.031*
C311.23428 (18)0.12472 (16)0.01664 (14)0.0194 (4)
C321.2646 (2)0.06049 (17)0.05196 (16)0.0249 (4)
H32A1.29390.01490.02960.030*
C331.2523 (2)0.10559 (19)0.15253 (16)0.0289 (5)
H33A1.27270.06090.19860.035*
C341.2106 (2)0.2149 (2)0.18598 (16)0.0313 (5)
H34A1.20240.24550.25500.038*
C351.1807 (2)0.28009 (18)0.11915 (16)0.0302 (5)
H35A1.15280.35560.14230.036*
C361.1914 (2)0.23534 (17)0.01796 (15)0.0239 (4)
H36A1.16950.28020.02770.029*
C411.2382 (2)0.28262 (18)0.39059 (16)0.0255 (4)
C421.3214 (2)0.3601 (2)0.39016 (19)0.0385 (6)
H42A1.32490.42010.33480.046*
C431.3997 (3)0.3501 (3)0.4707 (2)0.0536 (8)
H43A1.45700.40290.46950.064*
C441.3949 (3)0.2651 (3)0.5516 (2)0.0562 (9)
H44A1.44850.25890.60630.067*
C451.3116 (3)0.1881 (2)0.5534 (2)0.0517 (8)
H45A1.30770.12910.60950.062*
C461.2340 (3)0.1969 (2)0.47356 (17)0.0354 (5)
H46A1.17710.14370.47540.042*
C510.9930 (2)0.37120 (16)0.31970 (15)0.0214 (4)
C520.8757 (2)0.35118 (18)0.29333 (17)0.0289 (5)
H52A0.86810.28950.26590.035*
C530.7688 (2)0.4197 (2)0.30621 (19)0.0340 (5)
H53A0.68960.40580.28600.041*
C540.7788 (2)0.50788 (18)0.34849 (16)0.0304 (5)
H54A0.70640.55480.35760.037*
C550.8944 (2)0.52760 (18)0.37747 (17)0.0309 (5)
H55A0.90090.58750.40750.037*
C561.0012 (2)0.46060 (17)0.36303 (16)0.0270 (5)
H56A1.08030.47550.38260.032*
C611.1924 (2)0.38446 (15)0.18363 (14)0.0203 (4)
C621.1122 (2)0.46428 (17)0.12252 (17)0.0266 (5)
H62A1.02700.47540.14080.032*
C631.1553 (2)0.52794 (18)0.03498 (17)0.0317 (5)
H63A1.09930.58190.00600.038*
C641.2787 (3)0.51297 (18)0.00759 (18)0.0346 (6)
H64A1.30780.55610.05240.042*
C651.3605 (2)0.43484 (18)0.06782 (17)0.0313 (5)
H65A1.44580.42490.04920.038*
C661.3180 (2)0.37086 (17)0.15569 (17)0.0257 (4)
H66A1.37460.31780.19680.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01573 (10)0.01426 (10)0.01555 (10)0.00144 (6)0.00113 (6)0.00286 (6)
P10.0171 (3)0.0156 (2)0.0165 (2)0.00204 (19)0.00124 (18)0.00476 (18)
P20.0192 (3)0.0173 (2)0.0182 (2)0.00184 (19)0.00067 (19)0.00559 (19)
C10.0208 (10)0.0194 (10)0.0207 (10)0.0041 (8)0.0045 (8)0.0042 (8)
O10.0273 (9)0.0407 (9)0.0286 (9)0.0019 (7)0.0075 (7)0.0005 (7)
O20.0219 (8)0.0212 (7)0.0209 (7)0.0007 (6)0.0007 (6)0.0028 (6)
N10.0294 (10)0.0167 (8)0.0279 (10)0.0049 (7)0.0051 (8)0.0000 (7)
C20.0249 (11)0.0238 (11)0.0182 (10)0.0034 (8)0.0075 (8)0.0014 (8)
C30.0386 (14)0.0280 (12)0.0285 (12)0.0070 (10)0.0027 (10)0.0031 (9)
C40.0614 (18)0.0222 (12)0.0332 (13)0.0057 (11)0.0091 (12)0.0020 (9)
C50.0495 (16)0.0192 (11)0.0362 (13)0.0083 (10)0.0134 (11)0.0003 (9)
C60.0218 (11)0.0217 (10)0.0277 (11)0.0074 (8)0.0005 (8)0.0006 (8)
C70.0204 (11)0.0281 (11)0.0239 (11)0.0009 (8)0.0050 (8)0.0024 (8)
C110.0276 (11)0.0158 (9)0.0191 (10)0.0021 (8)0.0039 (8)0.0051 (7)
C120.0317 (12)0.0238 (11)0.0285 (11)0.0016 (9)0.0012 (9)0.0075 (9)
C130.0511 (16)0.0242 (12)0.0348 (13)0.0109 (11)0.0053 (11)0.0068 (10)
C140.0672 (19)0.0179 (11)0.0310 (13)0.0007 (11)0.0009 (12)0.0077 (9)
C150.0520 (16)0.0239 (12)0.0363 (13)0.0141 (11)0.0054 (11)0.0134 (10)
C160.0313 (12)0.0238 (11)0.0316 (12)0.0037 (9)0.0023 (9)0.0106 (9)
C210.0163 (10)0.0156 (9)0.0298 (11)0.0004 (7)0.0019 (8)0.0079 (8)
C220.0226 (11)0.0235 (10)0.0260 (11)0.0016 (8)0.0046 (8)0.0082 (8)
C230.0228 (11)0.0257 (11)0.0390 (13)0.0062 (9)0.0098 (9)0.0086 (9)
C240.0201 (11)0.0335 (12)0.0498 (15)0.0077 (9)0.0007 (10)0.0134 (11)
C250.0272 (12)0.0412 (13)0.0328 (12)0.0040 (10)0.0073 (9)0.0119 (10)
C260.0231 (11)0.0276 (11)0.0263 (11)0.0041 (9)0.0008 (8)0.0061 (9)
C310.0182 (10)0.0222 (10)0.0185 (10)0.0034 (8)0.0011 (7)0.0057 (8)
C320.0273 (11)0.0234 (10)0.0244 (11)0.0006 (9)0.0000 (8)0.0076 (8)
C330.0349 (13)0.0356 (12)0.0186 (10)0.0004 (10)0.0015 (9)0.0125 (9)
C340.0364 (13)0.0357 (12)0.0201 (11)0.0017 (10)0.0015 (9)0.0035 (9)
C350.0387 (14)0.0233 (11)0.0255 (11)0.0009 (9)0.0003 (9)0.0010 (9)
C360.0293 (12)0.0227 (10)0.0201 (10)0.0028 (9)0.0030 (8)0.0062 (8)
C410.0236 (11)0.0332 (11)0.0217 (10)0.0034 (9)0.0004 (8)0.0133 (9)
C420.0341 (14)0.0547 (16)0.0339 (13)0.0127 (12)0.0008 (10)0.0214 (12)
C430.0308 (15)0.091 (2)0.0545 (19)0.0096 (15)0.0020 (13)0.0469 (18)
C440.0420 (17)0.095 (2)0.0378 (16)0.0257 (16)0.0180 (13)0.0404 (17)
C450.072 (2)0.0553 (17)0.0258 (13)0.0253 (15)0.0134 (13)0.0173 (12)
C460.0477 (15)0.0344 (12)0.0244 (12)0.0089 (11)0.0024 (10)0.0131 (10)
C510.0247 (11)0.0187 (10)0.0205 (10)0.0000 (8)0.0034 (8)0.0053 (8)
C520.0259 (12)0.0287 (11)0.0356 (12)0.0001 (9)0.0007 (9)0.0161 (9)
C530.0250 (12)0.0362 (13)0.0420 (14)0.0026 (10)0.0012 (10)0.0141 (11)
C540.0353 (13)0.0252 (11)0.0266 (11)0.0078 (9)0.0087 (9)0.0030 (9)
C550.0446 (14)0.0199 (10)0.0292 (12)0.0016 (10)0.0092 (10)0.0092 (9)
C560.0332 (13)0.0219 (10)0.0276 (11)0.0047 (9)0.0028 (9)0.0083 (9)
C610.0281 (11)0.0163 (9)0.0186 (10)0.0050 (8)0.0015 (8)0.0073 (7)
C620.0296 (12)0.0208 (10)0.0304 (12)0.0023 (9)0.0028 (9)0.0079 (9)
C630.0460 (15)0.0203 (10)0.0280 (12)0.0054 (10)0.0069 (10)0.0020 (9)
C640.0521 (16)0.0235 (11)0.0295 (12)0.0174 (11)0.0070 (10)0.0032 (9)
C650.0354 (13)0.0257 (11)0.0347 (12)0.0119 (10)0.0121 (10)0.0079 (9)
C660.0277 (11)0.0170 (10)0.0341 (12)0.0043 (8)0.0032 (9)0.0085 (8)
Geometric parameters (Å, º) top
Ru1—P12.3578 (9)C24—H24A0.9500
Ru1—P22.3643 (7)C25—C261.391 (3)
Ru1—O22.2135 (17)C25—H25A0.9500
Ru1—C11.803 (2)C26—H26A0.9500
Ru1—C62.127 (2)C31—C321.393 (3)
Ru1—C72.157 (2)C31—C361.397 (3)
P1—C311.838 (2)C32—C331.387 (3)
P1—C211.842 (2)C32—H32A0.9500
P1—C111.845 (2)C33—C341.378 (3)
P2—C611.843 (2)C33—H33A0.9500
P2—C411.844 (2)C34—C351.381 (3)
P2—C511.852 (2)C34—H34A0.9500
C1—O11.168 (3)C35—C361.393 (3)
O2—C21.257 (3)C35—H35A0.9500
N1—C21.318 (3)C36—H36A0.9500
N1—C61.445 (3)C41—C461.391 (3)
N1—C51.465 (3)C41—C421.392 (3)
C2—C31.502 (3)C42—C431.393 (4)
C3—C41.541 (4)C42—H42A0.9500
C3—H3A0.9900C43—C441.368 (5)
C3—H3B0.9900C43—H43A0.9500
C4—C51.526 (4)C44—C451.384 (5)
C4—H4A0.9900C44—H44A0.9500
C4—H4B0.9900C45—C461.383 (4)
C5—H5A0.9900C45—H45A0.9500
C5—H5B0.9900C46—H46A0.9500
C6—C71.449 (3)C51—C521.388 (3)
C6—H6A1.0000C51—C561.401 (3)
C7—H7A0.9900C52—C531.395 (3)
C7—H7B0.9900C52—H52A0.9500
C11—C121.388 (3)C53—C541.382 (3)
C11—C161.402 (3)C53—H53A0.9500
C12—C131.394 (3)C54—C551.383 (4)
C12—H12A0.9500C54—H54A0.9500
C13—C141.385 (4)C55—C561.389 (3)
C13—H13A0.9500C55—H55A0.9500
C14—C151.385 (4)C56—H56A0.9500
C14—H14A0.9500C61—C621.393 (3)
C15—C161.387 (3)C61—C661.400 (3)
C15—H15A0.9500C62—C631.393 (3)
C16—H16A0.9500C62—H62A0.9500
C21—C261.393 (3)C63—C641.377 (4)
C21—C221.395 (3)C63—H63A0.9500
C22—C231.396 (3)C64—C651.387 (4)
C22—H22A0.9500C64—H64A0.9500
C23—C241.377 (3)C65—C661.396 (3)
C23—H23A0.9500C65—H65A0.9500
C24—C251.387 (3)C66—H66A0.9500
C1—Ru1—C694.36 (9)C21—C22—H22A119.9
C1—Ru1—C792.91 (9)C23—C22—H22A119.9
C6—Ru1—C739.52 (9)C24—C23—C22120.0 (2)
C1—Ru1—O2169.82 (7)C24—C23—H23A120.0
C6—Ru1—O277.10 (7)C22—C23—H23A120.0
C7—Ru1—O284.04 (7)C23—C24—C25120.4 (2)
C1—Ru1—P192.41 (7)C23—C24—H24A119.8
C6—Ru1—P1105.69 (7)C25—C24—H24A119.8
C7—Ru1—P1145.13 (6)C24—C25—C26119.9 (2)
O2—Ru1—P184.72 (5)C24—C25—H25A120.0
C1—Ru1—P292.95 (7)C26—C25—H25A120.0
C6—Ru1—P2147.84 (6)C25—C26—C21120.3 (2)
C7—Ru1—P2108.87 (7)C25—C26—H26A119.8
O2—Ru1—P297.22 (5)C21—C26—H26A119.8
P1—Ru1—P2105.23 (3)C32—C31—C36118.67 (19)
C31—P1—C21101.69 (10)C32—C31—P1122.55 (16)
C31—P1—C11101.93 (9)C36—C31—P1118.72 (15)
C21—P1—C11101.87 (10)C33—C32—C31120.6 (2)
C31—P1—Ru1118.18 (7)C33—C32—H32A119.7
C21—P1—Ru1118.42 (7)C31—C32—H32A119.7
C11—P1—Ru1112.27 (7)C34—C33—C32120.3 (2)
C61—P2—C41103.74 (10)C34—C33—H33A119.8
C61—P2—C5199.15 (10)C32—C33—H33A119.8
C41—P2—C51101.51 (10)C33—C34—C35119.9 (2)
C61—P2—Ru1116.54 (7)C33—C34—H34A120.0
C41—P2—Ru1117.30 (8)C35—C34—H34A120.0
C51—P2—Ru1115.93 (7)C34—C35—C36120.2 (2)
O1—C1—Ru1176.85 (17)C34—C35—H35A119.9
C2—O2—Ru1110.30 (13)C36—C35—H35A119.9
C2—N1—C6118.82 (17)C35—C36—C31120.3 (2)
C2—N1—C5113.4 (2)C35—C36—H36A119.9
C6—N1—C5127.36 (19)C31—C36—H36A119.9
O2—C2—N1122.62 (19)C46—C41—C42118.4 (2)
O2—C2—C3127.0 (2)C46—C41—P2117.04 (17)
N1—C2—C3110.39 (19)C42—C41—P2124.53 (18)
C2—C3—C4101.8 (2)C41—C42—C43120.2 (3)
C2—C3—H3A111.4C41—C42—H42A119.9
C4—C3—H3A111.4C43—C42—H42A119.9
C2—C3—H3B111.4C44—C43—C42120.6 (3)
C4—C3—H3B111.4C44—C43—H43A119.7
H3A—C3—H3B109.3C42—C43—H43A119.7
C5—C4—C3104.42 (19)C43—C44—C45119.7 (3)
C5—C4—H4A110.9C43—C44—H44A120.1
C3—C4—H4A110.9C45—C44—H44A120.1
C5—C4—H4B110.9C46—C45—C44120.1 (3)
C3—C4—H4B110.9C46—C45—H45A119.9
H4A—C4—H4B108.9C44—C45—H45A119.9
N1—C5—C4102.4 (2)C45—C46—C41120.9 (3)
N1—C5—H5A111.3C45—C46—H46A119.6
C4—C5—H5A111.3C41—C46—H46A119.6
N1—C5—H5B111.3C52—C51—C56118.2 (2)
C4—C5—H5B111.3C52—C51—P2118.60 (15)
H5A—C5—H5B109.2C56—C51—P2123.10 (17)
N1—C6—C7116.14 (19)C51—C52—C53121.4 (2)
N1—C6—Ru1107.40 (13)C51—C52—H52A119.3
C7—C6—Ru171.35 (11)C53—C52—H52A119.3
N1—C6—H6A117.6C54—C53—C52119.6 (2)
C7—C6—H6A117.6C54—C53—H53A120.2
Ru1—C6—H6A117.6C52—C53—H53A120.2
C6—C7—Ru169.13 (11)C53—C54—C55119.8 (2)
C6—C7—H7A116.7C53—C54—H54A120.1
Ru1—C7—H7A116.7C55—C54—H54A120.1
C6—C7—H7B116.7C54—C55—C56120.6 (2)
Ru1—C7—H7B116.7C54—C55—H55A119.7
H7A—C7—H7B113.8C56—C55—H55A119.7
C12—C11—C16118.81 (19)C55—C56—C51120.4 (2)
C12—C11—P1123.66 (16)C55—C56—H56A119.8
C16—C11—P1117.53 (17)C51—C56—H56A119.8
C11—C12—C13120.5 (2)C62—C61—C66118.4 (2)
C11—C12—H12A119.8C62—C61—P2121.09 (17)
C13—C12—H12A119.8C66—C61—P2119.89 (16)
C14—C13—C12120.2 (2)C63—C62—C61121.0 (2)
C14—C13—H13A119.9C63—C62—H62A119.5
C12—C13—H13A119.9C61—C62—H62A119.5
C15—C14—C13119.8 (2)C64—C63—C62120.2 (2)
C15—C14—H14A120.1C64—C63—H63A119.9
C13—C14—H14A120.1C62—C63—H63A119.9
C14—C15—C16120.2 (2)C63—C64—C65119.9 (2)
C14—C15—H15A119.9C63—C64—H64A120.1
C16—C15—H15A119.9C65—C64—H64A120.1
C15—C16—C11120.5 (2)C64—C65—C66120.2 (2)
C15—C16—H16A119.8C64—C65—H65A119.9
C11—C16—H16A119.8C66—C65—H65A119.9
C26—C21—C22119.16 (18)C65—C66—C61120.4 (2)
C26—C21—P1118.23 (15)C65—C66—H66A119.8
C22—C21—P1122.43 (16)C61—C66—H66A119.8
C21—C22—C23120.2 (2)
C1—Ru1—P1—C316.89 (9)P1—C11—C12—C13179.94 (18)
C6—Ru1—P1—C31102.11 (10)C11—C12—C13—C140.1 (4)
C7—Ru1—P1—C31105.47 (13)C12—C13—C14—C150.8 (4)
O2—Ru1—P1—C31177.11 (8)C13—C14—C15—C161.1 (4)
P2—Ru1—P1—C3186.83 (8)C14—C15—C16—C110.6 (4)
C1—Ru1—P1—C21130.35 (10)C12—C11—C16—C150.2 (3)
C6—Ru1—P1—C21134.43 (10)P1—C11—C16—C15179.86 (17)
C7—Ru1—P1—C21131.07 (13)C31—P1—C21—C26167.81 (17)
O2—Ru1—P1—C2159.43 (9)C11—P1—C21—C2687.17 (17)
P2—Ru1—P1—C2136.63 (8)Ru1—P1—C21—C2636.48 (18)
C1—Ru1—P1—C11111.33 (10)C31—P1—C21—C227.30 (19)
C6—Ru1—P1—C1116.11 (10)C11—P1—C21—C2297.73 (18)
C7—Ru1—P1—C1112.75 (13)Ru1—P1—C21—C22138.62 (15)
O2—Ru1—P1—C1158.89 (9)C26—C21—C22—C231.5 (3)
P2—Ru1—P1—C11154.95 (7)P1—C21—C22—C23173.53 (16)
C1—Ru1—P2—C6156.04 (10)C21—C22—C23—C241.2 (3)
C6—Ru1—P2—C61159.05 (13)C22—C23—C24—C250.4 (4)
C7—Ru1—P2—C61150.13 (10)C23—C24—C25—C261.5 (4)
O2—Ru1—P2—C61123.73 (9)C24—C25—C26—C211.1 (4)
P1—Ru1—P2—C6137.27 (8)C22—C21—C26—C250.4 (3)
C1—Ru1—P2—C41179.86 (10)P1—C21—C26—C25174.87 (18)
C6—Ru1—P2—C4177.12 (14)C21—P1—C31—C3293.05 (18)
C7—Ru1—P2—C4186.05 (10)C11—P1—C31—C3211.92 (19)
O2—Ru1—P2—C410.09 (9)Ru1—P1—C31—C32135.47 (16)
P1—Ru1—P2—C4186.56 (8)C21—P1—C31—C3683.90 (17)
C1—Ru1—P2—C5160.09 (10)C11—P1—C31—C36171.13 (16)
C6—Ru1—P2—C5142.92 (14)Ru1—P1—C31—C3647.57 (18)
C7—Ru1—P2—C5134.00 (10)C36—C31—C32—C330.0 (3)
O2—Ru1—P2—C51120.14 (9)P1—C31—C32—C33176.98 (17)
P1—Ru1—P2—C51153.40 (7)C31—C32—C33—C340.4 (3)
C6—Ru1—C1—O112 (3)C32—C33—C34—C350.1 (4)
C7—Ru1—C1—O152 (3)C33—C34—C35—C360.6 (4)
O2—Ru1—C1—O120 (4)C34—C35—C36—C311.0 (3)
P1—Ru1—C1—O194 (3)C32—C31—C36—C350.7 (3)
P2—Ru1—C1—O1161 (3)P1—C31—C36—C35176.41 (17)
C1—Ru1—O2—C220.1 (4)C61—P2—C41—C46165.70 (17)
C6—Ru1—O2—C213.36 (14)C51—P2—C41—C4691.78 (19)
C7—Ru1—O2—C252.86 (14)Ru1—P2—C41—C4635.6 (2)
P1—Ru1—O2—C294.08 (13)C61—P2—C41—C4214.3 (2)
P2—Ru1—O2—C2161.18 (13)C51—P2—C41—C4288.3 (2)
Ru1—O2—C2—N17.1 (2)Ru1—P2—C41—C42144.35 (19)
Ru1—O2—C2—C3172.56 (18)C46—C41—C42—C431.1 (4)
C6—N1—C2—O28.6 (3)P2—C41—C42—C43178.9 (2)
C5—N1—C2—O2178.5 (2)C41—C42—C43—C440.8 (4)
C6—N1—C2—C3171.72 (18)C42—C43—C44—C450.1 (4)
C5—N1—C2—C31.1 (3)C43—C44—C45—C460.3 (4)
O2—C2—C3—C4162.1 (2)C44—C45—C46—C410.0 (4)
N1—C2—C3—C417.6 (2)C42—C41—C46—C450.7 (4)
C2—C3—C4—C526.3 (2)P2—C41—C46—C45179.3 (2)
C2—N1—C5—C416.1 (3)C61—P2—C51—C52105.11 (18)
C6—N1—C5—C4171.8 (2)C41—P2—C51—C52148.73 (18)
C3—C4—C5—N125.8 (2)Ru1—P2—C51—C5220.5 (2)
C2—N1—C6—C757.9 (3)C61—P2—C51—C5670.44 (19)
C5—N1—C6—C7113.8 (2)C41—P2—C51—C5635.7 (2)
C2—N1—C6—Ru119.4 (2)Ru1—P2—C51—C56164.00 (15)
C5—N1—C6—Ru1168.89 (18)C56—C51—C52—C532.1 (3)
C1—Ru1—C6—N1158.30 (15)P2—C51—C52—C53173.67 (19)
C7—Ru1—C6—N1112.4 (2)C51—C52—C53—C541.7 (4)
O2—Ru1—C6—N116.09 (13)C52—C53—C54—C550.1 (4)
P1—Ru1—C6—N164.56 (15)C53—C54—C55—C561.0 (3)
P2—Ru1—C6—N199.09 (16)C54—C55—C56—C510.7 (3)
C1—Ru1—C6—C789.28 (13)C52—C51—C56—C550.9 (3)
O2—Ru1—C6—C796.33 (13)P2—C51—C56—C55174.67 (17)
P1—Ru1—C6—C7176.98 (11)C41—P2—C61—C62135.17 (17)
P2—Ru1—C6—C713.33 (19)C51—P2—C61—C6230.84 (18)
N1—C6—C7—Ru1100.72 (16)Ru1—P2—C61—C6294.29 (17)
C1—Ru1—C7—C693.33 (13)C41—P2—C61—C6654.18 (18)
O2—Ru1—C7—C676.93 (12)C51—P2—C61—C66158.51 (16)
P1—Ru1—C7—C65.09 (18)Ru1—P2—C61—C6676.36 (17)
P2—Ru1—C7—C6172.55 (11)C66—C61—C62—C631.0 (3)
C31—P1—C11—C12109.99 (19)P2—C61—C62—C63169.81 (16)
C21—P1—C11—C125.2 (2)C61—C62—C63—C640.2 (3)
Ru1—P1—C11—C12122.56 (17)C62—C63—C64—C650.5 (3)
C31—P1—C11—C1669.70 (18)C63—C64—C65—C660.5 (3)
C21—P1—C11—C16174.53 (17)C64—C65—C66—C610.3 (3)
Ru1—P1—C11—C1657.76 (18)C62—C61—C66—C651.0 (3)
C16—C11—C12—C130.4 (3)P2—C61—C66—C65169.86 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C41–C46 and C61–C66 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C36—H36A···Cg30.952.683.490 (2)144
C66—H66A···Cg10.952.613.384 (3)139
C4—H4B···Cg2i0.992.673.585 (3)154
C14—H14A···Cg3ii0.952.903.693 (3)142
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ru(C6H9NO)(C18H15P)2(CO)]
Mr764.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.765 (2), 12.577 (3), 13.878 (3)
α, β, γ (°)76.91 (3), 88.43 (3), 83.89 (3)
V3)1819.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.753, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15733, 7113, 6570
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.084, 1.15
No. of reflections7113
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.80

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C21–C26, C41–C46 and C61–C66 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C36—H36A···Cg30.952.683.490 (2)144
C66—H66A···Cg10.952.613.384 (3)139
C4—H4B···Cg2i0.992.673.585 (3)154
C14—H14A···Cg3ii0.952.903.693 (3)142
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the Program for New Century Excellent Talents in the Universities of China (NCET-08–0471).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, 20, 3745–3751.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, P., Paulasaari, K. J., Bau, R. & Weber, W. P. (1998). Organometallics, 17, 584–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurai, S., Kakiuchi, F., Sekine, S., Tnaka, Y., Kamatani, A., Sonoda, M. & Chatani, N. (1993). Nature (London), 366, 529–531.  CrossRef CAS Web of Science Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton. Trans. pp. 81–83.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds