metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(2-bromo-6-{[3-(di­methyl­aza­nium­yl)propyl­imino-κN]meth­yl}phenolato-κO)(thio­cyanato-κN)zinc

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: chengli_han@126.com

(Received 10 April 2012; accepted 20 April 2012; online 25 April 2012)

In the title compound, [Zn(CH3COO)(NCS)(C12H17BrN2O)], the ZnII atom is four-coordinated in a distorted tetra­hedral geometry, binding to a phenolate O and an imine N atom of the Schiff base ligand, the O atom of an acetate ligand and one thio­cyanate N atom. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For a zinc Schiff base complex reported previously by the author, see: Han (2009[Han, C.-L. (2009). Acta Cryst. E65, m418.]). For related zinc complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); You (2005[You, Z.-L. (2005). Acta Cryst. E61, m1571-m1573.]); Zhu & Yang (2008[Zhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1090-m1091.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)(NCS)(C12H17BrN2O)]

  • Mr = 467.68

  • Triclinic, [P \overline 1]

  • a = 9.3091 (6) Å

  • b = 10.2687 (6) Å

  • c = 11.8353 (7) Å

  • α = 66.299 (2)°

  • β = 79.891 (2)°

  • γ = 88.122 (2)°

  • V = 1018.96 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.605, Tmax = 0.639

  • 9684 measured reflections

  • 3720 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.201

  • S = 1.07

  • 3720 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.91 1.81 2.703 (6) 168
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Continuing our research into the synthesis of Schiff base zinc(II) complexes (Han, 2009), we report herein on the crystal structure of the title complex. It was synthesized by the reaction of equimolar quantities of 3-bromosalicyaldehyde, N,N-dimethylpropane-1,3-diamine, ammonium thiocyanate, and zinc acetate in methanol.

In the title complex (Fig. 1), the ZnII atom is four-coordinate in a tetrahedral geometry, with one O and one imine N atoms of the Schiff base ligand, one O atom of an acetate ligand, and one thiocyanate N atom. The tetrahedral geometry is severely distorted, as evidenced by the coordinate bond lengths [1.931 (4) - 1.994 (5) Å] and bond angles [96.3 (2) - 124.1 (2)°]. They are however comparable to those in similar zinc(II) complexes (Ali et al., 2008; You, 2005; Zhu & Yang, 2008).

In the crystal, molecules are linked through N–H···O hydrogen bonds to form inversion dimers (Table 1 and Fig. 2).

Related literature top

For a Schiff base–zinc(II) complex reported previously by the author, see: Han (2009). For the structures of related zinc(II) complexes, see: Ali et al. (2008); You (2005); Zhu & Yang (2008).

Experimental top

Equimolar quantities (1.0 mmol each) of 3-bromosalicyaldehyde, N,N-dimethylpropane-1,3-diamine, ammonium thiocyanate, and zinc acetate were mixed in methanol. The mixture was stirred at reflux for 30 min and filtered. The filtrate was left to evaporate slowly for a few days, yielding colourless block-like crystals.

Refinement top

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.91 Å, C-H = 93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H-atoms. A region of disordered electron density (ca. 1.3 Å3) was located at position 0,0,0.5 but it could not be identified and was not taken into consideration during refinement; it corresponds to the position of a small void in the unit cell of ca. 83 Å3, as detected by checkcif (PLATON; Spek, 2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering.
[Figure 2] Fig. 2. The crystal packing of the title complex viewed along the a axis, showing the formation of the inversion dimers. The N-H···O hydrogen bonds are shown as dashed lines.
(Acetato-κO)(2-bromo-6-{[3-(dimethylazaniumyl)propylimino- κN]methyl}phenolato-κO)(thiocyanato-κN)zinc top
Crystal data top
[Zn(C2H3O2)(NCS)(C12H17BrN2O)]Z = 2
Mr = 467.68F(000) = 472
Triclinic, P1Dx = 1.524 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3091 (6) ÅCell parameters from 5991 reflections
b = 10.2687 (6) Åθ = 2.2–27.9°
c = 11.8353 (7) ŵ = 3.28 mm1
α = 66.299 (2)°T = 298 K
β = 79.891 (2)°Block, colourless
γ = 88.122 (2)°0.17 × 0.15 × 0.15 mm
V = 1018.96 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3720 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.605, Tmax = 0.639k = 1212
9684 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0811P)2 + 2.5468P]
where P = (Fo2 + 2Fc2)/3
3720 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Zn(C2H3O2)(NCS)(C12H17BrN2O)]γ = 88.122 (2)°
Mr = 467.68V = 1018.96 (11) Å3
Triclinic, P1Z = 2
a = 9.3091 (6) ÅMo Kα radiation
b = 10.2687 (6) ŵ = 3.28 mm1
c = 11.8353 (7) ÅT = 298 K
α = 66.299 (2)°0.17 × 0.15 × 0.15 mm
β = 79.891 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3720 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3021 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.639Rint = 0.129
9684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.07Δρmax = 1.32 e Å3
3720 reflectionsΔρmin = 0.61 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71920 (7)0.16314 (7)0.17582 (7)0.0445 (3)
Br10.86805 (11)0.41595 (10)0.41002 (10)0.0872 (4)
N10.5145 (5)0.0900 (5)0.2551 (5)0.0429 (11)
N20.2396 (5)0.2871 (5)0.0322 (5)0.0436 (11)
H20.21720.22580.06530.052*
N30.7308 (6)0.2974 (7)0.0016 (6)0.0642 (15)
O10.7416 (5)0.2599 (5)0.2823 (5)0.0599 (12)
O20.8893 (5)0.0442 (5)0.1972 (5)0.0598 (12)
O30.7888 (5)0.0922 (5)0.1276 (5)0.0565 (11)
S10.7396 (3)0.5055 (2)0.2352 (2)0.0807 (6)
C10.5007 (7)0.1983 (6)0.4068 (5)0.0478 (14)
C20.6446 (7)0.2621 (6)0.3737 (6)0.0475 (14)
C30.6772 (9)0.3331 (6)0.4473 (7)0.0589 (17)
C40.5794 (11)0.3442 (7)0.5422 (7)0.070 (2)
H40.60690.39010.58910.084*
C50.4342 (11)0.2853 (8)0.5701 (7)0.075 (2)
H50.36460.29630.63200.090*
C60.4007 (9)0.2134 (7)0.5044 (6)0.0640 (19)
H60.30730.17180.52430.077*
C70.4463 (7)0.1182 (6)0.3462 (6)0.0473 (14)
H70.35030.08260.37670.057*
C80.4325 (7)0.0049 (6)0.2105 (6)0.0486 (14)
H8A0.34280.03410.26990.058*
H8B0.49030.07400.20650.058*
C90.3960 (6)0.0940 (6)0.0817 (6)0.0430 (13)
H9A0.48390.14380.02480.052*
H9B0.35870.03210.04850.052*
C100.2827 (6)0.2011 (7)0.0899 (6)0.0468 (14)
H10A0.19670.15080.14950.056*
H10B0.32170.26410.12100.056*
C110.3592 (8)0.3865 (8)0.1235 (8)0.0659 (19)
H11A0.32390.44370.19910.099*
H11B0.43920.33290.14230.099*
H11C0.39160.44700.08790.099*
C120.1071 (7)0.3664 (8)0.0167 (9)0.074 (2)
H12A0.02870.30060.03790.110*
H12B0.07970.41870.09690.110*
H12C0.12690.43140.01920.110*
C130.7343 (6)0.3843 (7)0.0990 (6)0.0471 (14)
C140.8872 (6)0.0647 (6)0.1725 (6)0.0418 (13)
C151.0122 (8)0.1603 (8)0.2014 (8)0.068 (2)
H15A0.97550.25590.25350.102*
H15B1.07200.12860.24450.102*
H15C1.06940.15790.12470.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0424 (4)0.0461 (4)0.0530 (5)0.0063 (3)0.0081 (3)0.0288 (3)
Br10.1033 (7)0.0773 (6)0.1037 (7)0.0066 (5)0.0388 (6)0.0506 (5)
N10.041 (2)0.038 (2)0.050 (3)0.0034 (19)0.012 (2)0.017 (2)
N20.036 (2)0.036 (2)0.073 (3)0.0091 (18)0.018 (2)0.034 (2)
N30.047 (3)0.075 (4)0.072 (4)0.007 (3)0.010 (3)0.031 (3)
O10.056 (2)0.069 (3)0.072 (3)0.001 (2)0.008 (2)0.047 (3)
O20.053 (2)0.057 (3)0.095 (4)0.016 (2)0.027 (2)0.052 (3)
O30.052 (2)0.055 (2)0.082 (3)0.0154 (19)0.024 (2)0.044 (2)
S10.0938 (15)0.0725 (13)0.0613 (12)0.0063 (11)0.0086 (11)0.0134 (10)
C10.067 (4)0.038 (3)0.039 (3)0.013 (3)0.012 (3)0.017 (2)
C20.062 (4)0.039 (3)0.049 (3)0.013 (3)0.014 (3)0.024 (3)
C30.088 (5)0.037 (3)0.057 (4)0.013 (3)0.023 (4)0.020 (3)
C40.127 (7)0.044 (3)0.049 (4)0.018 (4)0.021 (4)0.027 (3)
C50.112 (7)0.058 (4)0.051 (4)0.016 (4)0.001 (4)0.025 (3)
C60.084 (5)0.047 (3)0.051 (4)0.011 (3)0.001 (3)0.015 (3)
C70.047 (3)0.040 (3)0.048 (3)0.002 (2)0.004 (3)0.012 (3)
C80.046 (3)0.040 (3)0.062 (4)0.003 (2)0.011 (3)0.022 (3)
C90.046 (3)0.041 (3)0.057 (3)0.012 (2)0.020 (3)0.032 (3)
C100.042 (3)0.051 (3)0.061 (4)0.012 (2)0.010 (3)0.035 (3)
C110.061 (4)0.051 (4)0.079 (5)0.003 (3)0.008 (4)0.021 (4)
C120.048 (3)0.063 (4)0.130 (7)0.027 (3)0.028 (4)0.057 (5)
C130.038 (3)0.053 (3)0.055 (4)0.002 (2)0.005 (3)0.027 (3)
C140.040 (3)0.040 (3)0.052 (3)0.010 (2)0.007 (2)0.026 (3)
C150.058 (4)0.059 (4)0.104 (6)0.023 (3)0.031 (4)0.045 (4)
Geometric parameters (Å, º) top
Zn1—O11.931 (4)C5—C61.345 (11)
Zn1—N31.952 (7)C5—H50.9300
Zn1—O21.957 (4)C6—H60.9300
Zn1—N11.994 (5)C7—H70.9300
Br1—C31.897 (8)C8—C91.523 (9)
N1—C71.284 (8)C8—H8A0.9700
N1—C81.476 (8)C8—H8B0.9700
N2—C101.477 (8)C9—C101.518 (7)
N2—C121.482 (7)C9—H9A0.9700
N2—C111.488 (8)C9—H9B0.9700
N2—H20.9100C10—H10A0.9700
N3—C131.161 (9)C10—H10B0.9700
O1—C21.289 (7)C11—H11A0.9600
O2—C141.265 (7)C11—H11B0.9600
O3—C141.229 (7)C11—H11C0.9600
S1—C131.586 (7)C12—H12A0.9600
C1—C61.407 (9)C12—H12B0.9600
C1—C21.430 (9)C12—H12C0.9600
C1—C71.442 (9)C14—C151.493 (8)
C2—C31.414 (9)C15—H15A0.9600
C3—C41.356 (11)C15—H15B0.9600
C4—C51.428 (13)C15—H15C0.9600
C4—H40.9300
O1—Zn1—N3111.3 (2)N1—C8—H8A109.3
O1—Zn1—O2100.4 (2)C9—C8—H8A109.3
N3—Zn1—O2111.2 (2)N1—C8—H8B109.3
O1—Zn1—N196.3 (2)C9—C8—H8B109.3
N3—Zn1—N1111.3 (2)H8A—C8—H8B108.0
O2—Zn1—N1124.1 (2)C10—C9—C8110.5 (5)
C7—N1—C8116.7 (5)C10—C9—H9A109.5
C7—N1—Zn1121.0 (4)C8—C9—H9A109.5
C8—N1—Zn1122.2 (4)C10—C9—H9B109.5
C10—N2—C12111.3 (5)C8—C9—H9B109.5
C10—N2—C11112.8 (5)H9A—C9—H9B108.1
C12—N2—C11110.2 (5)N2—C10—C9112.7 (5)
C10—N2—H2107.4N2—C10—H10A109.1
C12—N2—H2107.4C9—C10—H10A109.1
C11—N2—H2107.4N2—C10—H10B109.1
C13—N3—Zn1175.3 (6)C9—C10—H10B109.1
C2—O1—Zn1125.7 (4)H10A—C10—H10B107.8
C14—O2—Zn1117.7 (4)N2—C11—H11A109.5
C6—C1—C2119.7 (6)N2—C11—H11B109.5
C6—C1—C7115.5 (6)H11A—C11—H11B109.5
C2—C1—C7124.8 (5)N2—C11—H11C109.5
O1—C2—C3119.9 (6)H11A—C11—H11C109.5
O1—C2—C1124.3 (5)H11B—C11—H11C109.5
C3—C2—C1115.8 (6)N2—C12—H12A109.5
C4—C3—C2123.3 (7)N2—C12—H12B109.5
C4—C3—Br1119.1 (6)H12A—C12—H12B109.5
C2—C3—Br1117.6 (5)N2—C12—H12C109.5
C3—C4—C5120.0 (7)H12A—C12—H12C109.5
C3—C4—H4120.0H12B—C12—H12C109.5
C5—C4—H4120.0N3—C13—S1178.7 (6)
C6—C5—C4118.3 (7)O3—C14—O2122.9 (5)
C6—C5—H5120.9O3—C14—C15120.9 (5)
C4—C5—H5120.9O2—C14—C15116.2 (6)
C5—C6—C1122.9 (8)C14—C15—H15A109.5
C5—C6—H6118.6C14—C15—H15B109.5
C1—C6—H6118.6H15A—C15—H15B109.5
N1—C7—C1127.8 (6)C14—C15—H15C109.5
N1—C7—H7116.1H15A—C15—H15C109.5
C1—C7—H7116.1H15B—C15—H15C109.5
N1—C8—C9111.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.911.812.703 (6)168
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)(NCS)(C12H17BrN2O)]
Mr467.68
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3091 (6), 10.2687 (6), 11.8353 (7)
α, β, γ (°)66.299 (2), 79.891 (2), 88.122 (2)
V3)1018.96 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.605, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
9684, 3720, 3021
Rint0.129
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.201, 1.07
No. of reflections3720
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 0.61

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.911.812.703 (6)168
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The author acknowledges Qiqihar University for a research grant.

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, C.-L. (2009). Acta Cryst. E65, m418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L. (2005). Acta Cryst. E61, m1571–m1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1090–m1091.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds