Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ -N-(2-oxidobenzylidene)pyridine-2carbohydrazidato]bis[chlorido(methanol- κ O)erbium(III)]

Hua Yang

College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China Correspondence e-mail: yanghua7687@163.com

Received 16 March 2012; accepted 31 March 2012

Key indicators: single-crystal X-ray study; T = 128 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.027; *wR* factor = 0.059; data-to-parameter ratio = 18.7.

In the binuclear title complex, $[\text{Er}_2(\text{C}_{13}\text{H}_9\text{N}_3\text{O}_2)_2\text{Cl}_2(\text{CH}_3-\text{OH})_2]$, the entire molecule is generated by the application of inversion symmetry. Each Er^{III} ion is seven-coordinated by two O atoms and one N atom from one *N*-(2-oxidobenzyl-idene)pyridine-2-carbohydrazidate (L^{2-}) ligand, one O atom and one N atom from the symmetry-related L^{2-} ligand, one O atom of a methanol molecule and one chloride anion. The coordination geometry is based on a pseudo-pentagonal bipyramid. Linear supramolecular chains along [010] are formed in the crystal packing through O-H···Cl hydrogen bonds.

Related literature

For complexes containing salicylaldehyde-2-pyridinecarboxylhydrazone and related ligands, see: Guo *et al.* (2011*a,b*); Bai *et al.* (2005, 2006); Wu *et al.* (2004); Milway *et al.* (2003). For the mechanism of the hydrolysis of salicylaldehyde thiosemicarbazone, see: Narang & Aggarwal (1974).

Experimental

Crystal data

 $\begin{bmatrix} \text{Er}_2(\text{C}_{13}\text{H}_9\text{N}_3\text{O}_2)_2\text{Cl}_2(\text{CH}_4\text{O})_2 \end{bmatrix} \\ M_r = 947.97 \\ \text{Monoclinic, } P2_1/c \\ a = 9.5810 \ (4) \\ \text{\AA} \\ b = 7.0906 \ (3) \\ \text{\AA} \\ c = 22.3504 \ (8) \\ \text{\AA} \\ \beta = 96.920 \ (3)^\circ \end{bmatrix}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker 2000) $T_{\rm min} = 0.479, T_{\rm max} = 0.545$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	200 parameters
$wR(F^2) = 0.059$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
3732 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

 $V = 1507.31 (10) \text{ Å}^3$

 $0.15 \times 0.13 \times 0.12 \text{ mm}$

14182 measured reflections

3732 independent reflections

2931 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 5.76 \text{ mm}^-$

T = 128 K

 $R_{\rm int} = 0.040$

Z = 2

Table 1 Selected bond lengths (Å).

Er1-O1	2.157 (3)	Er1-N3	2.433 (3)
$Er1 - O2^{i}$	2.284 (3)	Er1-N1	2.488 (3)
Er1-O2	2.316 (3)	Er1-Cl1	2.5901 (12)
Er1-O3	2.327 (3)		

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H7···Cl1 ⁱⁱ	0.95	2.42	3.128 (4)	131

Symmetry code: (ii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author appreciates financial support from Yanan University (grant No. YD2011–20) and the Science and Technology Bureau of Yanan City (grant No. kn2009–16).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5069).

References

- Bai, Y., Dang, D. B., Cao, X., Duan, C. Y. & Meng, Q. J. (2006). Inorg. Chem. Commun. 9, 86–89.
- Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972–5974.
- Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Guo, Y. N., Chen, X. H., Xue, S. F. & Tang, J. K. (2011a). Inorg. Chem. 50, 9705-9713.
- Guo, Y. N., Xu, G. F., Wernsdorfer, W., Ungur, L., Guo, Y., Tang, J. K., Zhang, H. J., Chibotaru, L. F. & Powell, A. K. (2011b). J. Am. Chem. Soc. 133, 11948-11951.
- Milway, V. A., Zhao, L., Abedin, T. S. M., Thompson, L. K. & Xu, Z. Q. (2003). Polyhedron, 22, 1271-1279.
- Narang, K. K. & Aggarwal, A. (1974). Inorg. Chim. Acta, 9, 137-142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Wu, W. S., Feng, Y. L., Lan, X. R. & Huang, T. T. (2004). Chin. J. Appl. Chem. **21**, 135–139.

supporting information

Acta Cryst. (2012). E68, m580-m581 [doi:10.1107/S1600536812013979]

Bis[μ -N-(2-oxidobenzylidene)pyridine-2-carbohydrazidato]bis-[chlorido(methanol- κ O)erbium(III)]

Hua Yang

S1. Comment

The chemistry of coordination complexes supported by salicylaldehyde-2-pyridinecarboxyl-hydrazone (H₂L) and its derivatives has received intensive attention as these form coordination complexes with aesthetically pleasing structures and intriguing magnetic behaviour (Guo *et al.*, 2011*a,b*). A handful of transition metal complexes based on the H₂L ligand have been prepared (Bai *et al.*, 2005; Wu *et al.*, 2004; Bai *et al.*, 2006; Milway *et al.*, 2003), but no complex containing rare earth elements has been reported to date. Herein, we report the structure of a new dinuclear Er^{III} complex (Scheme 1). The complex was synthesized by the 2:1:1 reaction of $\text{ErCl}_{3.6\text{H}_2\text{O}/\alpha}$ -pyridoin/salicylaldehyde thiosemicarbazone under solvothermal conditions. The X-ray analysis reveals that the centrosymmetric complex consists of two Er^{III} ions, two L^{2-} ligands, two Cl⁻ ions and two methanol molecules, Fig. 1 and Table 1. The intermolecular O—H…Cl hydrogen bonds, Table 2, lead to linear supramolecular chains along [010] (Fig. 2).

The remarkable structural feature of the complex is the presence of the *in situ* formed H₂L ligand, which was proposed to be constructed by the reaction of picolinic acid, hydrazine and salicylaldehyde. The picolinic acid was assumed to be derived from the hydrolysis of α -pyridoin, and hydrazine and salicylaldehyde were believed to be originated from the hydrolysis of salicylaldehyde thiosemicarbazone (Narang & Aggarwal, 1974).

S2. Experimental

A mixture of $\text{ErCl}_3.6\text{H}_2\text{O}$ (0.0762 g, 0.2 mmol), α -pyridoin (0.0214 g, 0.1 mmol), salicylaldehyde thiosemicarbazone (0.0390 g, 0.2 mmol) and CH₃OH (2 ml) was sealed in a 6 ml Pyrex-tube. The tube was heated at 393 K for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave yellow crystals. The crystals were collected by filtration, washed with CH₃OH (2 ml) and dried in air.

S3. Refinement

The H atoms were placed in calculated positions with O—H = 0.95 Å and C—H = 0.95–0.98 Å, and with $U_{iso}(H) = 1.2 - 1.5U_{eq}(C, O)$.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. The H atoms have been omitted for clarity.

Figure 2

View of the linear supramolecular chain along [010] with the O—H…Cl hydrogen bonds shown as dashed lines.

Bis[µ-N-(2-oxidobenzylidene)pyridine-2- carbohydrazidato]bis[chlorido(methanol- κO)erbium(III)]

Crystal data	
$[Er_{2}(C_{13}H_{9}N_{3}O_{2})_{2}Cl_{2}(CH_{4}O)_{2}]$	Hall symbol: -P 2ybc
$M_{r} = 947.97$	<i>a</i> = 9.5810 (4) Å
Monoclinic, $P2_{1}/c$	<i>b</i> = 7.0906 (3) Å

Cell parameters from 4466 reflections

 $\theta = 2.7 - 28.1^{\circ}$ $\mu = 5.76 \text{ mm}^{-1}$

Block, yellow

 $0.15 \times 0.13 \times 0.12 \text{ mm}$

 $\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$

14182 measured reflections 3732 independent reflections

2931 reflections with $I > 2\sigma(I)$

T = 128 K

 $R_{\rm int} = 0.040$

 $h = -12 \rightarrow 11$

 $l = -29 \rightarrow 29$

 $k = -9 \rightarrow 9$

c = 22.3504 (8) Å $\beta = 96.920$ (3)° V = 1507.31 (10) Å³ Z = 2 F(000) = 908 $D_x = 2.089$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans and ω scans Absorption correction: multi-scan (*SADABS*; Bruker 2000) $T_{\min} = 0.479, T_{\max} = 0.545$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.027$ Hydrogen site location: inferred from $wR(F^2) = 0.059$ neighbouring sites S = 0.99H-atom parameters constrained 3732 reflections $w = 1/[\sigma^2(F_0^2) + (0.0299P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 200 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.004$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.71 \text{ e} \text{ Å}^{-3}$ direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

= $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ $($ $)$ $($ $=$ $)$ $($ $)$ (Fractional at	tomic co	ordinates	and	isotropic d	or equivale	ent isotropic	displacement	parameters	$(Å^2$	²)
---	---------------	----------	-----------	-----	-------------	-------------	---------------	--------------	------------	--------	----------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Er1	0.372121 (17)	0.91591 (3)	0.432040 (7)	0.02740 (6)	
O2	0.5836 (3)	1.0615 (4)	0.46548 (11)	0.0323 (6)	
03	0.2988 (3)	1.2290 (5)	0.42893 (15)	0.0526 (8)	
H7	0.3591	1.3150	0.4521	0.063*	
C5	0.6425 (4)	1.0757 (5)	0.36561 (16)	0.0289 (8)	
Cl1	0.48595 (13)	0.58790 (16)	0.42195 (5)	0.0476 (3)	
N1	0.5108 (3)	1.0104 (5)	0.34970 (14)	0.0282 (7)	
01	0.1993 (3)	0.8698 (4)	0.36235 (12)	0.0386 (7)	
C14	0.0511 (4)	0.7742 (6)	0.46482 (18)	0.0366 (9)	
H14	-0.0122	0.7498	0.4935	0.044*	

C8	0.0727 (4)	0.7952 (5)	0.35398 (17)	0.0306 (9)
C6	0.6814 (4)	1.1036 (5)	0.43082 (17)	0.0287 (8)
N3	0.1753 (3)	0.8294 (5)	0.48577 (14)	0.0308 (7)
N4	0.8066 (3)	1.1581 (5)	0.45048 (14)	0.0344 (8)
C1	0.4695 (4)	0.9753 (6)	0.29156 (18)	0.0343 (9)
H1	0.3765	0.9309	0.2802	0.041*
C4	0.7340 (4)	1.1077 (6)	0.32293 (18)	0.0373 (10)
H4	0.8257	1.1559	0.3347	0.045*
C10	-0.1348 (5)	0.6619 (7)	0.3905 (2)	0.0435 (11)
H10	-0.1858	0.6313	0.4230	0.052*
C12	-0.1223 (5)	0.6715 (7)	0.2860 (2)	0.0440 (11)
H12	-0.1625	0.6447	0.2459	0.053*
C9	-0.0018 (4)	0.7457 (6)	0.40305 (17)	0.0332 (8)
C3	0.6899 (5)	1.0688 (6)	0.26356 (19)	0.0413 (10)
H3	0.7513	1.0886	0.2338	0.050*
C13	0.0074 (4)	0.7590 (6)	0.29574 (18)	0.0366 (9)
H13	0.0532	0.7954	0.2621	0.044*
C2	0.5561 (5)	1.0008 (7)	0.24736 (18)	0.0393 (10)
H2	0.5241	0.9721	0.2065	0.047*
C11	-0.1934 (5)	0.6230 (7)	0.3332 (2)	0.0499 (12)
H11	-0.2825	0.5629	0.3262	0.060*
C7	0.1756 (6)	1.3080 (8)	0.3970 (3)	0.0722 (17)
H7A	0.1078	1.2075	0.3850	0.108*
H7B	0.2000	1.3728	0.3609	0.108*
H7C	0.1341	1.3985	0.4229	0.108*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Er1	0.02276 (9)	0.03156 (11)	0.02796 (10)	-0.00645 (8)	0.00334 (6)	-0.00213 (8)
O2	0.0269 (13)	0.0435 (18)	0.0273 (14)	-0.0087 (12)	0.0062 (10)	-0.0013 (12)
03	0.0461 (19)	0.0366 (19)	0.073 (2)	0.0010 (15)	-0.0021 (15)	-0.0050 (17)
C5	0.0294 (18)	0.027 (2)	0.0304 (19)	-0.0045 (16)	0.0041 (15)	0.0008 (17)
Cl1	0.0544 (7)	0.0371 (6)	0.0535 (7)	0.0029 (5)	0.0145 (5)	0.0048 (5)
N1	0.0286 (16)	0.0276 (17)	0.0285 (17)	-0.0043 (13)	0.0038 (13)	-0.0008 (14)
01	0.0266 (14)	0.054 (2)	0.0347 (16)	-0.0102 (13)	0.0012 (11)	-0.0015 (13)
C14	0.0283 (19)	0.042 (3)	0.040 (2)	-0.0070 (18)	0.0065 (16)	-0.003 (2)
C8	0.0251 (18)	0.032 (2)	0.034 (2)	0.0003 (15)	-0.0017 (15)	-0.0056 (17)
C6	0.0285 (19)	0.031 (2)	0.0273 (19)	-0.0042 (16)	0.0040 (14)	-0.0006 (16)
N3	0.0264 (16)	0.0361 (19)	0.0299 (17)	-0.0075 (14)	0.0033 (13)	-0.0026 (14)
N4	0.0288 (17)	0.046 (2)	0.0289 (18)	-0.0093 (15)	0.0066 (14)	-0.0029 (15)
C1	0.035 (2)	0.038 (3)	0.029 (2)	-0.0038 (17)	0.0004 (16)	0.0010 (18)
C4	0.032 (2)	0.045 (3)	0.035 (2)	-0.0083 (19)	0.0059 (16)	0.003 (2)
C10	0.035 (2)	0.048 (3)	0.046 (3)	-0.012 (2)	0.0013 (19)	-0.002 (2)
C12	0.036 (2)	0.047 (3)	0.046 (3)	-0.003 (2)	-0.0083 (19)	-0.011 (2)
C9	0.0263 (18)	0.036 (2)	0.036 (2)	-0.0036 (18)	0.0003 (15)	-0.0054 (19)
C3	0.041 (2)	0.049 (3)	0.036 (2)	0.002 (2)	0.0135 (18)	0.005 (2)
C13	0.033 (2)	0.040 (2)	0.036 (2)	0.0003 (19)	0.0012 (16)	-0.006 (2)

supporting information

C2	0.044 (2)	0.047 (3)	0.026 (2)	0.000 (2)	-0.0002 (18)	0.0001 (19)
C11	0.037 (2)	0.050 (3)	0.060 (3)	-0.018 (2)	-0.007 (2)	-0.005 (2)
C7	0.069 (4)	0.058 (4)	0.088 (4)	0.019 (3)	0.003 (3)	0.013 (3)

Geometric parameters (Å, °)

Er1—O1	2.157 (3)	C6—N4	1.286 (5)
Er1—O2 ⁱ	2.284 (3)	N3—N4 ⁱ	1.417 (4)
Er1—O2	2.316 (3)	N4—N3 ⁱ	1.417 (4)
Er1—O3	2.327 (3)	C1—C2	1.376 (6)
Er1—N3	2.433 (3)	C1—H1	0.9500
Er1—N1	2.488 (3)	C4—C3	1.371 (6)
Er1—Cl1	2.5901 (12)	C4—H4	0.9500
O2—C6	1.320 (4)	C10-C11	1.362 (6)
O2—Er1 ⁱ	2.284 (3)	C10—C9	1.403 (5)
O3—C7	1.419 (6)	C10—H10	0.9500
O3—H7	0.9500	C12—C11	1.369 (7)
C5—N1	1.351 (5)	C12—C13	1.382 (6)
C5—C4	1.390 (5)	C12—H12	0.9500
C5—C6	1.474 (5)	C3—C2	1.377 (6)
N1—C1	1.335 (5)	С3—Н3	0.9500
O1—C8	1.316 (4)	C13—H13	0.9500
C14—N3	1.286 (5)	С2—Н2	0.9500
C14—C9	1.427 (5)	C11—H11	0.9500
C14—H14	0.9500	С7—Н7А	0.9800
C8—C13	1.398 (5)	С7—Н7В	0.9800
C8—C9	1.423 (5)	С7—Н7С	0.9800
O1—Er1—O2 ⁱ	140.21 (10)	O1—C8—C13	120.5 (4)
O1—Er1—O2	149.99 (10)	O1—C8—C9	122.0 (3)
O2 ⁱ —Er1—O2	66.16 (10)	C13—C8—C9	117.5 (3)
O1—Er1—O3	85.42 (12)	N4—C6—O2	124.5 (3)
O2 ⁱ —Er1—O3	88.97 (11)	N4—C6—C5	119.5 (3)
O2—Er1—O3	80.42 (11)	O2—C6—C5	115.9 (3)
O1—Er1—N3	75.24 (10)	$C14$ — $N3$ — $N4^{i}$	112.4 (3)
O2 ⁱ —Er1—N3	65.42 (10)	C14—N3—Er1	129.4 (3)
O2—Er1—N3	130.77 (10)	N4 ⁱ —N3—Er1	118.2 (2)
O3—Er1—N3	90.34 (11)	C6—N4—N3 ⁱ	111.0 (3)
O1—Er1—N1	86.47 (10)	N1—C1—C2	122.7 (4)
O2 ⁱ —Er1—N1	132.20 (10)	N1—C1—H1	118.6
O2—Er1—N1	66.06 (9)	C2—C1—H1	118.6
O3—Er1—N1	84.69 (11)	C3—C4—C5	119.0 (4)
N3—Er1—N1	161.38 (11)	C3—C4—H4	120.5
O1—Er1—Cl1	95.50 (9)	С5—С4—Н4	120.5
O2 ⁱ —Er1—Cl1	96.94 (7)	C11—C10—C9	122.4 (4)
O2—Er1—Cl1	93.86 (7)	C11—C10—H10	118.8
O3—Er1—Cl1	169.37 (9)	С9—С10—Н10	118.8
N3—Er1—Cl1	100.15 (8)	C11—C12—C13	120.8 (4)

N1—Er1—Cl1	84.80 (8)	C11—C12—H12	119.6
O1—Er1—Er1 ⁱ	167.32 (8)	C13—C12—H12	119.6
$O2^{i}$ —Er1—Er1 ⁱ	33.34 (6)	С10—С9—С8	118.5 (4)
O2—Er1—Er1 ⁱ	32.82 (6)	C10—C9—C14	117.5 (4)
O3—Er1—Er1 ⁱ	83.65 (8)	C8—C9—C14	123.9 (3)
N3—Er1—Er1 ⁱ	98.39 (7)	C4—C3—C2	119.6 (4)
N1—Er1—Er1 ⁱ	98.87 (7)	С4—С3—Н3	120.2
Cl1—Er1—Er1 ⁱ	96.43 (3)	С2—С3—Н3	120.2
C6—O2—Er1 ⁱ	120.9 (2)	C12—C13—C8	121.5 (4)
C6—O2—Er1	124.5 (2)	С12—С13—Н13	119.3
Er1 ⁱ —O2—Er1	113.84 (10)	С8—С13—Н13	119.3
C7—O3—Er1	128.4 (3)	C1—C2—C3	118.7 (4)
С7—О3—Н7	115.8	C1—C2—H2	120.7
Er1—O3—H7	115.8	С3—С2—Н2	120.7
N1-C5-C4	121.5 (4)	C10-C11-C12	119.2 (4)
N1—C5—C6	115.0 (3)	C10—C11—H11	120.4
C4—C5—C6	123.5 (3)	C12—C11—H11	120.4
C1—N1—C5	118.5 (3)	O3—C7—H7A	109.5
C1—N1—Er1	123.2 (3)	O3—C7—H7B	109.5
C5—N1—Er1	117.6 (2)	H7A—C7—H7B	109.5
C8—O1—Er1	141.0 (2)	O3—C7—H7C	109.5
N3—C14—C9	126.9 (4)	Н7А—С7—Н7С	109.5
N3—C14—H14	116.5	H7B—C7—H7C	109.5
C9—C14—H14	116.5		

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H7···Cl1 ⁱⁱ	0.95	2.42	3.128 (4)	131

Symmetry code: (ii) x, y+1, z.