metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m603-m604

Bis(μ-2-{bis­­[(2-oxido­benzyl­­idene)amino]­meth­yl}phenolato)bis­­[(tetra­hydro­furan)­samarium(III)] tetra­hydro­furan disolvate

aSchool of Chemistry and Biochemistry, University of Science and Technology of Suzhou, Suzhou 215009, People's Republic of China
*Correspondence e-mail: yuanfugensuzhou@163.com

(Received 22 March 2012; accepted 11 April 2012; online 18 April 2012)

In the centrosymmetric binuclear complex of the title solvate, [Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O, the SmIII is coordin­ated in a distorted monocapped octa­hedral geometry by four O atoms and two N atoms from two tridentate deprotonated 2-{bis­[(2-oxidobenzyl­idene)amino]­meth­yl}phenolate ligands and an O atom of a tetra­hydro­furan (THF) mol­ecule. The Sm⋯Sm distance in the complex is 3.8057 (4) Å. Parts of the coordinating THF mol­ecule are disordered over two sets of sites in a 0.56 (3):0.44 (3) ratio. The complex and solvent mol­ecules are linked into a three-dimensional structure via C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general reports on the tripodal ligand 2-bis-(salicyl­idiene­­amino)­methyl­phenol, see: Nabulsi et al. (1988[Nabulsi, N. A. R., Fronczek, F. R. & Gandour, R. D. (1988). Acta Cryst. C44, 1086-1089.]); Achim et al. (2001[Achim, C., Bominaar, E. L., Staples, R. J., Münck, E. & Holm, R. H. (2001). Inorg. Chem. 40, 4389-4403.]); Yu et al. (1991[Yu, S. B., Wang, C. P., Day, E. P. & Holm, R. H. (1991). Inorg. Chem. 30, 4067-4074.]); Snyder et al.(1989[Snyder, B. S., Patterson, G. S., Abrahamson, A. J. & Holm, R. H. (1989). J. Am. Chem. Soc. 111, 5214-5223.]); Chaudhuri et al. (1998[Chaudhuri, P., Hess, M., Weyhermüller, T., Bill, E., Haupt, H. J. & Flörke, U. (1998). Inorg. Chem. Commun. 1, 39-42.]); Illingsworth et al. (2002[Illingsworth, M. L., Schwartz, L. J., Jensen, A. J., Zhu, T., Knappenberger, E. J., Sweet, J. E., Wilkinson, P. S., Waltermire, B. E. & Rheingold, A. L. (2002). Polyhedron, 21, 211-218.]). For related structures, see: Howell et al. (1998[Howell, R. C., Spence, K. V. N., Kahwa, I. A. & Williams, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 2727-2733.]); Liu et al. (1998[Liu, Q.-C., Ding, M.-X., Lin, Y.-H. & Xing, Y. (1998). Polyhedron, 17, 555-559.]); Dubé et al. (1998[Dubé, T., Gambarotta, S. & Yap, G. (1998). Organometallics, 17, 3967-3973.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O

  • Mr = 1275.84

  • Monoclinic, P 21 /c

  • a = 11.7184 (11) Å

  • b = 21.378 (2) Å

  • c = 11.1464 (11) Å

  • β = 99.058 (1)°

  • V = 2757.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.16 mm

Data collection
  • Rigaku Rapid I CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.635, Tmax = 0.723

  • 23697 measured reflections

  • 6291 independent reflections

  • 5362 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.01

  • 6291 reflections

  • 353 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O5 0.93 2.56 3.450 (7) 159
C21—H21A⋯O5i 0.93 2.56 3.424 (6) 155
C22—H22B⋯O3ii 0.97 2.50 3.079 (6) 118
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since the tripodal schiff base 2-bis-(salicylidiene-amino)-methyl-phenol (salmp) has been characterized by Nabulsi (1988), it has been used as a chelating ligand for numerous transition metals, including FeII, FeIII, MnII, MnIII, TiIII, VIII, CrIII, CoIII and ZrIV (Achim et al., 2001; Yu et al., 1991; Snyder et al., 1989; Chaudhuri et al.,1998; Illingsworth et al., 2002). However, its coordination behaviour with respect to lanthanide elements has not yet reported to the best of our knowledge. Herein we reported a new dinuclear compound [Sm2(C21H15N2O3)2(C4H8O)2].2(C4H8O), (I).

The molecular structure of compound (I) is presented in Fig. 1. The Sm—O bond lengths of 2. 213 (2) Å to the terminal aryloxide and of 2.369 (2) Å to the bridging aryloxide are similar compared to those in the analogous complex [{Sm(api)}2] (H3api = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazoline) (2.282 (4) and 2.388 (3) Å, respectively) (Howell et al., 1998) when the difference of the ionic radii is taken into account. In the title compound, Sm has a coordination number of seven resulting in a distorted mono-capped octahedral coordination geometry for the metal (Fig. 2), whereas in the other structure the coordination number is eight. The radii of seven and eight-coordinate SmIII are 1.160 and 1.219 Å (Shannon, 1976), respectively. The bond lengths of Sm—N (2.616 (2) to 2.623 (2) Å) are consistent with those in [(η5-(C5H5)Sm(µ-OC20H20N2O)]2.(µ-THF).2THF (2.55 (5) to 2.67 (7) Å) (Liu et al., 1998). The Sm···Sm distance in (I) is 3.8057 (4) Å, which is a little shorter than that in [(3,5-But4salophen)Sm(OH)]4.4toluene (3.9023 (8) Å) (Dubé et al., 1998). Two Sm atoms are bridged by aryloxide groups forming a Sm2(µ-O)2 planar rhomb with an acute angles O(1)—Sm(1)—O(1 A) of 73.11 (8)° and an obtuse angle Sm(1)—O(1)—Sm(1 A) of 106.89 (8)°.

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1, Fig. 3), including an intra-molecular hydrogen bond (C22—H22B···O3 ) and inter-molecular hydrogen bonds (C4—H4A···O5 and C21—H21A···O5).

Related literature top

For general reports on the tripodal ligand 2-bis-(salicylidieneamino)methylphenol, see: Nabulsi et al. (1988); Achim et al. (2001); Yu et al. (1991); Snyder et al.(1989); Chaudhuri et al. (1998); Illingsworth et al. (2002). For related structures, see: Howell et al. (1998); Liu et al. (1998); Dubé et al. (1998). For ionic radii, see: Shannon (1976).

Experimental top

2-bis-(salicylidiene-amino)-methyl-phenol was prepared according to the literature procedure (Illingsworth et al., 2002). To a suspension of SmCl3 (0.536 g, 2.09 mmol) in 20 ml THF was added a THF solution of Ph2NK (10.3 ml, 6.27 mmol). The mixture was stirred for 1 d at room temperature. After centrifugation, a clear solution of Sm(NPh2)3 was obtained. To this solution was added the tripodal Schiff base (0.724 g, 2.09 mmol) and then stirred for another day. The resulting solution was concentrated and added with a proper volume of 1,2-dimethyloxyethane. Yellow crystals of [Sm2(C25H23N2O4)].2(C4H8O) were produced in a yield of ca 50%. m.p. > 250°C, IR(KBr, cm-1) 3391(w), 3043(w), 2974(w), 2866(w), 1610(s), 1541(s), 1468(s), 1445(s), 1406(s), 1316(s), 1267(m), 1189(w), 1148(m), 1123(w), 1026(w), 1011(m), 968(w), 914(w), 887(m), 852(w), 822(w), 749(s), 691(m), 578(w), 560(w), 452(w).

Refinement top

H atoms bound to tertiary C atoms were constrained to ideal geometry, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were also placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (aromatic and alkenyl) Uiso(H) = 1.2Ueq(C) or 0.97 Å (THF). The two central CH2- groups of the coordinating THF molecules were treated with disorder over two sites in a 0.56 (3) to 0.44 (3) ratio.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids scaled to 30% probability. H atoms and two uncoordinated THF molecules were omitted. The disorder of one of the THF molecules is not shown. [Symmetry code A: -x+1, -y, -z.]
[Figure 2] Fig. 2. View of the distorted monocapped octahedral coordination geometry of SmIII with displacement ellipsoids scaled to 30% probability. [Symmetry code A: -x +1, -y, -z.]
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along [100]. Dashed lines indicate hydrogen bonds. The disorder is not shown.
Bis(µ-2-{bis[(2- oxidobenzylidene)amino]methyl}phenolato)bis[(tetrahydrofuran)samarium(III)] tetrahydrofuran disolvate top
Crystal data top
[Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8OF(000) = 1284
Mr = 1275.84Dx = 1.537 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6291 reflections
a = 11.7184 (11) Åθ = 1.8–27.5°
b = 21.378 (2) ŵ = 2.17 mm1
c = 11.1464 (11) ÅT = 293 K
β = 99.058 (1)°Prism, yellow
V = 2757.5 (5) Å30.23 × 0.18 × 0.16 mm
Z = 2
Data collection top
Rigaku Rapid I CCD
diffractometer
6291 independent reflections
Radiation source: fine-focus sealed tube5362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.635, Tmax = 0.723k = 2727
23697 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0311P)2 + 2.4255P]
where P = (Fo2 + 2Fc2)/3
6291 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.62 e Å3
42 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8OV = 2757.5 (5) Å3
Mr = 1275.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7184 (11) ŵ = 2.17 mm1
b = 21.378 (2) ÅT = 293 K
c = 11.1464 (11) Å0.23 × 0.18 × 0.16 mm
β = 99.058 (1)°
Data collection top
Rigaku Rapid I CCD
diffractometer
6291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5362 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.723Rint = 0.052
23697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03242 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.01Δρmax = 0.62 e Å3
6291 reflectionsΔρmin = 0.49 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.633331 (14)0.050642 (8)0.045466 (14)0.03765 (7)
O10.4566 (2)0.04480 (10)0.0885 (2)0.0399 (5)
N10.4689 (2)0.08291 (12)0.1669 (2)0.0368 (6)
C10.4042 (3)0.10064 (16)0.1113 (3)0.0415 (7)
O20.7114 (2)0.05416 (12)0.2385 (2)0.0510 (6)
N20.2865 (2)0.03847 (12)0.0800 (2)0.0376 (6)
C20.4009 (4)0.1298 (2)0.2238 (3)0.0587 (10)
H2B0.43090.10960.28580.070*
O30.2239 (2)0.08830 (12)0.0432 (3)0.0640 (8)
C30.3533 (4)0.1885 (2)0.2430 (5)0.0777 (14)
H3A0.35160.20750.31820.093*
C40.3082 (4)0.2194 (2)0.1527 (5)0.0732 (13)
H4A0.27780.25950.16600.088*
O50.1336 (5)0.3502 (3)0.1746 (6)0.1290 (16)
C50.3088 (3)0.19034 (17)0.0424 (4)0.0570 (10)
H5A0.27660.21090.01780.068*
C60.3561 (3)0.13107 (16)0.0184 (3)0.0425 (7)
C70.3516 (3)0.09823 (15)0.0998 (3)0.0401 (7)
H7A0.31230.12540.15110.048*
C80.6870 (3)0.05687 (15)0.3492 (3)0.0461 (8)
C90.7750 (4)0.0467 (2)0.4482 (4)0.0656 (12)
H9A0.84930.03770.43360.079*
C100.7542 (5)0.0496 (2)0.5665 (4)0.0794 (15)
H10A0.81450.04270.63010.095*
C110.6450 (5)0.0626 (2)0.5916 (4)0.0789 (15)
H11A0.63090.06460.67130.095*
C120.5580 (4)0.0726 (2)0.4966 (3)0.0645 (11)
H12A0.48430.08110.51330.077*
C130.5755 (3)0.07050 (17)0.3742 (3)0.0454 (8)
C140.4763 (3)0.08349 (16)0.2826 (3)0.0443 (8)
H14A0.40870.09370.31200.053*
C150.1322 (3)0.07402 (19)0.0914 (3)0.0505 (8)
C160.0517 (4)0.1210 (2)0.1098 (4)0.0672 (12)
H16A0.06430.16200.08760.081*
C170.0452 (4)0.1066 (2)0.1603 (4)0.0672 (12)
H17A0.09660.13830.17210.081*
C180.0673 (3)0.0468 (2)0.1935 (4)0.0619 (11)
H18A0.13330.03770.22690.074*
C190.0096 (3)0.0006 (2)0.1764 (3)0.0517 (9)
H19A0.00540.04020.19840.062*
C200.1104 (3)0.01278 (17)0.1268 (3)0.0425 (7)
C210.1904 (3)0.03821 (16)0.1224 (3)0.0419 (7)
H21A0.16980.07590.15460.050*
O40.6278 (2)0.17034 (12)0.0626 (2)0.0548 (7)
C220.6431 (5)0.2121 (2)0.0357 (4)0.0754 (14)
H22A0.56970.23000.07230.091*
H22B0.67670.19020.09780.091*
C230.7226 (16)0.2615 (7)0.0220 (11)0.079 (4)0.56 (3)
H23A0.80180.25240.01270.094*0.56 (3)
H23B0.70140.30210.01370.094*0.56 (3)
C23'0.647 (3)0.2738 (6)0.0115 (14)0.088 (6)0.44 (3)
H23C0.57310.29450.01440.106*0.44 (3)
H23D0.70640.29770.01880.106*0.44 (3)
C240.709 (3)0.2603 (12)0.146 (2)0.138 (10)0.56 (3)
H24A0.66890.29770.16590.166*0.56 (3)
H24B0.78420.25950.19700.166*0.56 (3)
C24'0.671 (3)0.2708 (12)0.144 (3)0.102 (8)0.44 (3)
H24C0.75100.28020.17410.122*0.44 (3)
H24D0.62200.29980.18030.122*0.44 (3)
C250.6426 (6)0.2047 (2)0.1716 (5)0.099 (2)
H25A0.68480.18040.23770.119*
H25B0.56850.21660.19300.119*
C260.1419 (11)0.3737 (5)0.0552 (11)0.182 (4)
H26A0.12470.41810.05610.219*
H26B0.21890.36710.01040.219*
C270.0526 (12)0.3368 (7)0.0020 (11)0.210 (5)
H27A0.08700.30190.05010.252*
H27B0.01100.36320.05120.252*
C280.0164 (13)0.3174 (7)0.1032 (16)0.234 (7)
H28A0.04230.27520.09070.281*
H28B0.08440.34400.11660.281*
C290.0337 (11)0.3180 (5)0.2067 (13)0.189 (5)
H29A0.04900.27580.23180.227*
H29B0.01590.33880.27260.227*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.04306 (11)0.03983 (11)0.03134 (10)0.00188 (7)0.00982 (7)0.00368 (6)
O10.0485 (13)0.0387 (12)0.0329 (12)0.0053 (9)0.0080 (10)0.0013 (9)
N10.0417 (14)0.0387 (14)0.0301 (13)0.0009 (11)0.0057 (11)0.0049 (11)
C10.0417 (17)0.0445 (18)0.0359 (17)0.0001 (14)0.0015 (13)0.0054 (14)
O20.0491 (14)0.0656 (17)0.0367 (13)0.0100 (11)0.0022 (11)0.0019 (11)
N20.0392 (14)0.0422 (14)0.0316 (14)0.0018 (11)0.0060 (11)0.0041 (11)
C20.069 (3)0.063 (2)0.042 (2)0.002 (2)0.0040 (18)0.0136 (18)
O30.0641 (17)0.0511 (15)0.086 (2)0.0039 (13)0.0419 (16)0.0080 (14)
C30.090 (3)0.070 (3)0.068 (3)0.006 (3)0.005 (3)0.032 (2)
C40.075 (3)0.048 (2)0.090 (4)0.010 (2)0.005 (3)0.022 (2)
O50.146 (4)0.104 (3)0.140 (4)0.003 (3)0.031 (3)0.027 (3)
C50.052 (2)0.044 (2)0.074 (3)0.0074 (17)0.0041 (19)0.0034 (18)
C60.0416 (18)0.0374 (17)0.0472 (19)0.0013 (13)0.0029 (14)0.0009 (14)
C70.0438 (18)0.0424 (17)0.0342 (16)0.0055 (14)0.0067 (13)0.0074 (13)
C80.060 (2)0.0399 (18)0.0357 (18)0.0019 (15)0.0008 (15)0.0005 (13)
C90.069 (3)0.076 (3)0.047 (2)0.016 (2)0.007 (2)0.0040 (19)
C100.100 (4)0.092 (4)0.038 (2)0.015 (3)0.016 (2)0.008 (2)
C110.109 (4)0.094 (4)0.031 (2)0.002 (3)0.004 (2)0.007 (2)
C120.079 (3)0.082 (3)0.034 (2)0.002 (2)0.0131 (19)0.0017 (19)
C130.054 (2)0.0492 (19)0.0322 (17)0.0051 (16)0.0049 (15)0.0009 (14)
C140.0471 (19)0.052 (2)0.0350 (17)0.0029 (15)0.0118 (14)0.0041 (15)
C150.048 (2)0.059 (2)0.046 (2)0.0026 (17)0.0133 (16)0.0009 (17)
C160.065 (3)0.059 (2)0.083 (3)0.012 (2)0.028 (2)0.005 (2)
C170.047 (2)0.084 (3)0.072 (3)0.016 (2)0.015 (2)0.003 (2)
C180.038 (2)0.098 (3)0.051 (2)0.001 (2)0.0095 (17)0.006 (2)
C190.0440 (19)0.071 (2)0.0399 (19)0.0075 (17)0.0066 (15)0.0024 (17)
C200.0377 (17)0.061 (2)0.0281 (16)0.0022 (15)0.0029 (13)0.0010 (14)
C210.0444 (18)0.0512 (19)0.0305 (16)0.0064 (14)0.0067 (14)0.0026 (13)
O40.0740 (18)0.0430 (14)0.0503 (15)0.0026 (12)0.0192 (13)0.0008 (11)
C220.117 (4)0.054 (2)0.057 (3)0.003 (3)0.018 (3)0.013 (2)
C230.083 (8)0.075 (7)0.081 (7)0.023 (6)0.025 (7)0.012 (5)
C23'0.129 (17)0.041 (6)0.093 (9)0.019 (8)0.010 (10)0.004 (6)
C240.23 (2)0.093 (15)0.078 (11)0.082 (15)0.006 (13)0.015 (9)
C24'0.20 (2)0.040 (7)0.082 (12)0.008 (10)0.077 (14)0.004 (7)
C250.184 (7)0.058 (3)0.062 (3)0.022 (3)0.038 (4)0.011 (2)
C260.216 (8)0.150 (7)0.170 (7)0.023 (6)0.001 (7)0.007 (6)
C270.209 (9)0.256 (9)0.175 (8)0.040 (7)0.066 (7)0.020 (7)
C280.231 (10)0.228 (10)0.262 (10)0.026 (8)0.096 (9)0.013 (8)
C290.175 (10)0.126 (8)0.259 (15)0.000 (7)0.013 (10)0.013 (9)
Geometric parameters (Å, º) top
Sm1—O22.203 (2)C15—C201.402 (5)
Sm1—O3i2.223 (3)C15—C161.414 (5)
Sm1—O12.358 (2)C16—C171.380 (6)
Sm1—O1i2.380 (2)C16—H16A0.9300
Sm1—O42.568 (3)C17—C181.365 (6)
Sm1—N12.616 (3)C17—H17A0.9300
Sm1—N2i2.623 (3)C18—C191.371 (6)
Sm1—Sm1i3.8057 (4)C18—H18A0.9300
O1—C11.348 (4)C19—C201.405 (5)
O1—Sm1i2.380 (2)C19—H19A0.9300
N1—C141.279 (4)C20—C211.443 (5)
N1—C71.494 (4)C21—H21A0.9300
C1—C21.396 (5)O4—C251.407 (5)
C1—C61.413 (5)O4—C221.446 (5)
O2—C81.312 (4)C22—C23'1.419 (14)
N2—C211.289 (4)C22—C231.486 (12)
N2—C71.487 (4)C22—H22A0.9700
N2—Sm1i2.623 (3)C22—H22B0.9700
C2—C31.375 (6)C23—C241.42 (3)
C2—H2B0.9300C23—H23A0.9700
O3—C151.310 (4)C23—H23B0.9700
O3—Sm1i2.223 (3)C23'—C24'1.46 (3)
C3—C41.379 (7)C23'—H23C0.9700
C3—H3A0.9300C23'—H23D0.9700
C4—C51.376 (6)C24—C251.47 (3)
C4—H4A0.9300C24—H24A0.9700
O5—C291.357 (11)C24—H24B0.9700
O5—C261.412 (11)C24'—C251.49 (3)
C5—C61.392 (5)C24'—H24C0.9700
C5—H5A0.9300C24'—H24D0.9700
C6—C71.501 (5)C25—H25A0.9700
C7—H7A0.9800C25—H25B0.9700
C8—C91.403 (5)C26—C271.527 (14)
C8—C131.409 (5)C26—H26A0.9700
C9—C101.380 (7)C26—H26B0.9700
C9—H9A0.9300C27—C281.379 (16)
C10—C111.381 (8)C27—H27A0.9700
C10—H10A0.9300C27—H27B0.9700
C11—C121.365 (7)C28—C291.374 (15)
C11—H11A0.9300C28—H28A0.9700
C12—C131.412 (5)C28—H28B0.9700
C12—H12A0.9300C29—H29A0.9700
C13—C141.447 (5)C29—H29B0.9700
C14—H14A0.9300
O2—Sm1—O3i101.30 (11)C18—C17—C16121.5 (4)
O2—Sm1—O1143.97 (9)C18—C17—H17A119.2
O3i—Sm1—O1112.64 (10)C16—C17—H17A119.2
O2—Sm1—O1i87.80 (9)C17—C18—C19118.7 (4)
O3i—Sm1—O1i142.00 (8)C17—C18—H18A120.7
O1—Sm1—O1i73.11 (8)C19—C18—H18A120.7
O2—Sm1—O484.53 (9)C18—C19—C20122.2 (4)
O3i—Sm1—O472.66 (9)C18—C19—H19A118.9
O1—Sm1—O494.01 (8)C20—C19—H19A118.9
O1i—Sm1—O4145.32 (8)C15—C20—C19119.0 (3)
O2—Sm1—N173.27 (9)C15—C20—C21123.2 (3)
O3i—Sm1—N1143.28 (9)C19—C20—C21117.6 (3)
O1—Sm1—N172.33 (8)N2—C21—C20128.7 (3)
O1i—Sm1—N174.71 (8)N2—C21—H21A115.6
O4—Sm1—N170.69 (8)C20—C21—H21A115.6
O2—Sm1—N2i114.64 (9)C25—O4—C22108.6 (3)
O3i—Sm1—N2i70.63 (9)C25—O4—Sm1125.7 (3)
O1—Sm1—N2i88.65 (8)C22—O4—Sm1123.5 (2)
O1i—Sm1—N2i72.04 (8)C23'—C22—O4107.1 (7)
O4—Sm1—N2i141.16 (8)O4—C22—C23104.8 (6)
N1—Sm1—N2i145.30 (8)C23'—C22—H22A76.2
C1—O1—Sm1113.65 (19)O4—C22—H22A110.8
C1—O1—Sm1i126.4 (2)C23—C22—H22A110.8
Sm1—O1—Sm1i106.89 (8)C23'—C22—H22B136.3
C14—N1—C7114.4 (3)O4—C22—H22B110.8
C14—N1—Sm1125.9 (2)C23—C22—H22B110.8
C7—N1—Sm1119.56 (18)H22A—C22—H22B108.9
O1—C1—C2120.8 (3)C24—C23—C22104.4 (11)
O1—C1—C6119.5 (3)C24—C23—H23A110.9
C2—C1—C6119.7 (3)C22—C23—H23A110.9
C8—O2—Sm1143.3 (2)C24—C23—H23B110.9
C21—N2—C7114.0 (3)C22—C23—H23B110.9
C21—N2—Sm1i126.8 (2)H23A—C23—H23B108.9
C7—N2—Sm1i119.02 (18)C22—C23'—C24'108.8 (13)
C3—C2—C1120.0 (4)C22—C23'—H23C109.9
C3—C2—H2B120.0C24'—C23'—H23C109.9
C1—C2—H2B120.0C22—C23'—H23D109.9
C15—O3—Sm1i145.1 (3)C24'—C23'—H23D109.9
C2—C3—C4121.1 (4)H23C—C23'—H23D108.3
C2—C3—H3A119.4C23—C24—C25110.3 (14)
C4—C3—H3A119.4C23—C24—H24A109.6
C5—C4—C3119.1 (4)C25—C24—H24A109.6
C5—C4—H4A120.5C23—C24—H24B109.6
C3—C4—H4A120.5C25—C24—H24B109.6
C29—O5—C26110.9 (9)H24A—C24—H24B108.1
C4—C5—C6122.0 (4)C25—C24'—C23'103.6 (18)
C4—C5—H5A119.0C25—C24'—H24C111.0
C6—C5—H5A119.0C23'—C24'—H24C111.0
C5—C6—C1118.1 (3)C25—C24'—H24D111.0
C5—C6—C7121.8 (3)C23'—C24'—H24D111.0
C1—C6—C7120.1 (3)H24C—C24'—H24D109.0
N2—C7—N1107.2 (2)O4—C25—C24'108.6 (11)
N2—C7—C6111.1 (3)O4—C25—C24104.7 (10)
N1—C7—C6112.7 (3)O4—C25—H25A110.8
N2—C7—H7A108.6C24'—C25—H25A124.0
N1—C7—H7A108.6C24—C25—H25A110.8
C6—C7—H7A108.6O4—C25—H25B110.8
O2—C8—C9119.4 (4)C24'—C25—H25B92.0
O2—C8—C13122.8 (3)C24—C25—H25B110.8
C9—C8—C13117.8 (4)H25A—C25—H25B108.9
C10—C9—C8121.7 (5)O5—C26—C27105.1 (9)
C10—C9—H9A119.1O5—C26—H26A110.7
C8—C9—H9A119.1C27—C26—H26A110.7
C9—C10—C11120.7 (4)O5—C26—H26B110.7
C9—C10—H10A119.6C27—C26—H26B110.7
C11—C10—H10A119.6H26A—C26—H26B108.8
C12—C11—C10118.5 (4)C28—C27—C2698.6 (10)
C12—C11—H11A120.7C28—C27—H27A112.1
C10—C11—H11A120.7C26—C27—H27A112.1
C11—C12—C13122.7 (4)C28—C27—H27B112.1
C11—C12—H12A118.6C26—C27—H27B112.1
C13—C12—H12A118.6H27A—C27—H27B109.7
C8—C13—C12118.5 (4)C29—C28—C27116.1 (14)
C8—C13—C14124.5 (3)C29—C28—H28A108.3
C12—C13—C14117.0 (4)C27—C28—H28A108.3
N1—C14—C13129.0 (3)C29—C28—H28B108.3
N1—C14—H14A115.5C27—C28—H28B108.3
C13—C14—H14A115.5H28A—C28—H28B107.4
O3—C15—C20122.0 (3)O5—C29—C28104.4 (12)
O3—C15—C16120.2 (4)O5—C29—H29A110.9
C20—C15—C16117.8 (3)C28—C29—H29A110.9
C17—C16—C15120.8 (4)O5—C29—H29B110.9
C17—C16—H16A119.6C28—C29—H29B110.9
C15—C16—H16A119.6H29A—C29—H29B108.9
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O50.932.563.450 (7)159
C21—H21A···O5ii0.932.563.424 (6)155
C22—H22B···O3i0.972.503.079 (6)118
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sm2(C21H15N2O3)2(C4H8O)2]·2C4H8O
Mr1275.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.7184 (11), 21.378 (2), 11.1464 (11)
β (°) 99.058 (1)
V3)2757.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerRigaku Rapid I CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.635, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
23697, 6291, 5362
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.01
No. of reflections6291
No. of parameters353
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.49

Computer programs: CrystalClear (Rigaku, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008), SHELXTL(Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O50.932.563.450 (7)159.4
C21—H21A···O5i0.932.563.424 (6)154.8
C22—H22B···O3ii0.972.503.079 (6)118.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

Financial support from the Jiangsu Key Laboratory for Environment Functional Materials and from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged.

References

First citationAchim, C., Bominaar, E. L., Staples, R. J., Münck, E. & Holm, R. H. (2001). Inorg. Chem. 40, 4389–4403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhuri, P., Hess, M., Weyhermüller, T., Bill, E., Haupt, H. J. & Flörke, U. (1998). Inorg. Chem. Commun. 1, 39–42.  Web of Science CSD CrossRef CAS Google Scholar
First citationDubé, T., Gambarotta, S. & Yap, G. (1998). Organometallics, 17, 3967–3973.  Google Scholar
First citationHowell, R. C., Spence, K. V. N., Kahwa, I. A. & Williams, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 2727–2733.  Web of Science CSD CrossRef Google Scholar
First citationIllingsworth, M. L., Schwartz, L. J., Jensen, A. J., Zhu, T., Knappenberger, E. J., Sweet, J. E., Wilkinson, P. S., Waltermire, B. E. & Rheingold, A. L. (2002). Polyhedron, 21, 211–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q.-C., Ding, M.-X., Lin, Y.-H. & Xing, Y. (1998). Polyhedron, 17, 555–559.  Web of Science CSD CrossRef CAS Google Scholar
First citationNabulsi, N. A. R., Fronczek, F. R. & Gandour, R. D. (1988). Acta Cryst. C44, 1086–1089.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnyder, B. S., Patterson, G. S., Abrahamson, A. J. & Holm, R. H. (1989). J. Am. Chem. Soc. 111, 5214–5223.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S. B., Wang, C. P., Day, E. P. & Holm, R. H. (1991). Inorg. Chem. 30, 4067–4074.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m603-m604
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds