metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{S-Benzyl 3-[(6-methylpyridin-2-yl-κN)methylidene]dithiocarbazato- $\kappa^2 N^3$,S}zinc

Thahira B. S. A. Ravoof,* Siti Aminah Omar, Mohamed Ibrahim Mohamed Tahir and Karen A. Crouse

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malavsia

Correspondence e-mail: thahira.begum@science.upm.edu.my

Received 23 March 2012; accepted 28 March 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.076; data-to-parameter ratio = 19.3.

The title compound, $[Zn(C_{15}H_{14}N_3S_2)_2]$, contains two chemically equivalent Schiff base anions that are coordinated to the Zn^{II} ion as tridentate N,N',S-chelating ligands, creating a distorted octahedral environment [the smallest angle being 75.40 (6)° and the widest angle being 162.87 (6)°], with the two S atoms in *cis* positions. The dihedral angle between the mean planes of the two coordinating ligands is 85.65 (5)°. Weak C- $H \cdots S$ hydrogen bonds are also observed.

Related literature

For background to the coordination chemistry of hydrazine carbodithioates, see: Ravoof et al. (2010). For the synthesis, see: Ali et al. (1997); Ravoof et al. (2004). For related structures, see: Ali et al. (2001); Tarafder et al. (2001).

Experimental

Crystal data

$[Zn(C_{15}H_{14}N_{3}S_{2})_{2}]$	
$M_r = 666.24$	
Monoclinic, $P2_1/c$	
a = 14.8931 (8) Å	
b = 13.0630 (5) Å	
c = 17.1706 (9) Å	
$\beta = 112.855 \ (6)^{\circ}$	

Data collection

Oxford Diffraction Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.82, \ T_{\max} = 0.84$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	370 parameters
$wR(F^2) = 0.076$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
7140 reflections	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

V = 3078.2 (3) Å³

Mo $K\alpha$ radiation

 $0.24 \times 0.18 \times 0.16 \; \rm mm$

20496 measured reflections

7140 independent reflections

5960 reflections with $I > 2.0\sigma(I)$

 $\mu = 1.10 \text{ mm}^-$

T = 150 K

 $R_{\rm int} = 0.040$

Z = 4

Table 1 Selected bond lengths (Å).

Zn1-N102	2.1032 (17)	Zn1-N202	2.1005 (16)
Zn1-S105	2.4885 (6)	Zn1-S205	2.5263 (6)
Zn1-N115	2.2692 (16)	Zn1-N215	2.2117 (17)

Table 2

Hydrogen-bond geometry (Å, °).

	• • • /			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C217-H2171\cdots S105^{i}$	0.95	2.82	3.697 (3)	155
Symmetry code: (i) - r - 1	· ⊢ 1 _ 7			

Symmetry code: (i) -x, -y + 1, -z.

Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYS-TALS.

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS No. 05-01-11-1243RU & RUGS No. 9174000), and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-03-11-986FR). SAO wishes to thank UPM for a Graduate Research Fellowship award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2612).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Ali, M. A., Majumder, S. M. M., Butcher, R. J., Jasinski, J. P. & Jasinski, J. M. (1997). Polyhedron, 16(16), 2749–2754.
- Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2001). Inorg. Chim. Acta, 320, 1–6.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Oxford Diffraction (2006). *Gemini User Manual*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491–2498.
- Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). *Transition Met. Chem.* 35, 871–876.
- Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). *Polyhedron*, **20**, 2363–2370.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2012). E68, m534-m535 [doi:10.1107/S1600536812013529]

{S-Benzyl 3-[(6-methylpyridin-2-yl- κN)methylidene]dithiocarbazato- $\kappa^2 N^3$,S}zinc Thahira B. S. A. Ravoof, Siti Aminah Omar, Mohamed Ibrahim Mohamed Tahir and Karen A. Crouse

S1. Comment

The title compound was preferentially formed during the attempt to complex the tridentate Schiff base with zinc(II) saccharinate. The saccharinate anion was eliminated in this process and two tridentate deprotonated Schiff base moieties coordinated instead with the zinc(II) cation as determined by its infrared spectrum, elemental analysis and crystal structure analysis.

The bidentate ligands coordinate through their pyridine nitrogen, azomethine nitrogen and thiolate sulfur atoms. The environment around the Zn^{II} ion is distorted octahedral (Fig. 1) with N-Zn-N, N-Zn-S and S-Zn-S angles between 75.40 (6)° and 162.87 (6)°. The deprotonation of the ligands is accompanied by their tautomerism to the iminothiolate forms. While coordinating in the iminothiolate form, the negative charge generated upon deprotonation is delocalized in the C—N—N—C system as observed by their intermediate bond lengths: C104—N103 = 1.311 (3) Å, N103—N102 = 1.384 (2) Å, N102—C101 = 1.276 (3) Å and C204—N203 = 1.311 (3) Å, N203—N202 = 1.380 (3) Å, N202—C201 =1.281 (2) Å. Similar bond lengths and angles have been observed in the octahedral zinc(II) complex containing the pyridine-2-aldehyde Schiff base of S-benzyldithiocarbazate (Tarafder et al., 2001) for which C-N bond lengths ranging from 1.273 to 1.320 Å and N—N bond lengths of 1.374 to 1.379 Å were reported. In the title complex, the two ligands are coordinated to the zinc(II) ion in a meridional configuration, where the two thiolate S atoms (S105 & S205) and the two pyridine N atoms (N115 & N215) are *cis* to each other and the two azomethine N atoms *trans* (N102 & N202) as in other bis-ligand metal complexes of related NNS tridentate ligands (Tarafder et al., 2001). The angle between the planes defined by Zn1-S205-C204-N203-N202-C201-C214-N215 (minimum deviation: 0.001 and maximum deviation: 0.157 Å), and Zn1-S105-C104-N103-N102-C101-C114-N115 (minimum deviation: 0.011 and maximum deviation: 0.212 Å) is 85.65 (5)° showing that the planes are almost orthogonal to each other thus defining an distorted octahedral arrangement.

The angle between the planes defined by the benzyl ring (C208—C213) and the pyridyl ring (C214—C219) is 84.39 (12)°; however, the angle between the planes defined by the corresponding benzyl (C108—C113) and pyridyl rings (C114—C119) in the other Schiff base moiety is 75.06 (12)°. Both planes of the benzyl ring moieties of the Schiff bases are slightly displaced at an angle of 15.05 (10)°, but the distance between them precludes $\pi - \pi$ interaction. The pyridyl rings on both Schiff bases are almost orthogonal to each other at an angle of 85.06 (11)°.

The Zn^{II}-donor atom bond lengths Zn—S [2.485 (6), 2.5263 (6) Å], Zn—N_{py} [2.2117 (17), 2.2692 (16) Å] and Zn— N_{imine} [2.1005 (16), 2.1032 (17) Å] compare well with a related octahedral Zn^{II} complex containing a pyridine-2-aldehyde Schiff base of S-benzyldithiocarbazate with Zn—N distances between 2.126 and 2.347 Å and Zn—S distances between 2.4514 and 2.4540 Å which are normal for multidentate bonding (Tarafder *et al.*, 2001). Although none of the bond angles in the complex conformed to the ideal values expected of a regular octahedral geometry, this appears to be common in six-coordinate metal complexes of Schiff base ligands derived from dithiocarbazic acid and is attributed to the restricted bite angles of the planar NNS tridentate ligands. (Ali *et al.*, 2001; Tarafder *et al.*, 2001). Weak C—H···S hydrogen bonds are observed and may consolidate the crystal packing (Fig. 2, Table 2).

Further background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010).

S2. Experimental

Zinc(II) saccharinate, $[Zn(sac)_2(H_2O)_4]^2H_2O$ was synthesized using a similar procedure as for the synthesis of Cu(II) saccharinate (Ravoof *et al.* (2004)). The title compound was synthesized following the procedure by Ali *et al.* (1997). The Schiff base was dissolved in acetonitrile (50 ml) and mixed with an equimolar quantity of zinc(II) saccharinate in acetonitrile (25 ml). The resulting mixture was heated on a water bath until the volume reduced to *ca* 30 ml. On standing overnight in the fridge, the mixture yielded yellow crystals suitable for X-ray analysis.

S3. Refinement

H atoms were all located in difference maps; those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and U_{iso} (H)(in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.

Figure 2

Molecular packing diagram of the title compound viewed along the *b* axis. Hydrogen atoms are omitted for clarity.

{S-Benzyl 3-[(6-methylpyridin-2-yl- κN)methylidene]dithiocarbazato- $\kappa^2 N^3$,S}zinc

Crystal data
$[Zn(C_{15}H_{14}N_3S_2)_2]$
$M_r = 666.24$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 14.8931 (8) Å
<i>b</i> = 13.0630 (5) Å
c = 17.1706 (9) Å
$\beta = 112.855 \ (6)^{\circ}$
V = 3078.2 (3) Å ³
Z = 4

F(000) = 1376 $D_x = 1.438 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6730 reflections $\theta = 2-29^{\circ}$ $\mu = 1.10 \text{ mm}^{-1}$ T = 150 KPrism, yellow $0.24 \times 0.18 \times 0.16 \text{ mm}$ Data collection

Oxford Diffraction Gemini diffractometer Radiation source: sealed X-ray tube Graphite monochromator φ scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\min} = 0.82, T_{\max} = 0.84$ Refinement	20496 measured reflections 7140 independent reflections 5960 reflections with $I > 2.0\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 28.9^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -19 \rightarrow 16$ $k = -17 \rightarrow 16$ $l = -23 \rightarrow 22$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.076$ S = 1.00 7140 reflections 370 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: difference Fourier map H-atom parameters constrained Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.02P)^2 + 2.2P]$, where $P = (\max(F_o^2, 0) + 2F_c^2)/3$ $(\Delta/\sigma)_{\max} = 0.001$ $\Delta\rho_{\max} = 0.60 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\min} = -0.44 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.300629 (18)	0.602950 (17)	0.084816 (14)	0.0209
C101	0.27973 (16)	0.77374 (16)	-0.03043 (13)	0.0272
N102	0.25268 (13)	0.74645 (13)	0.02846 (10)	0.0231
N103	0.20970 (14)	0.81978 (13)	0.06093 (11)	0.0266
C104	0.18607 (15)	0.78256 (15)	0.12131 (13)	0.0238
S105	0.20083 (4)	0.66180 (4)	0.16361 (3)	0.0242
S106	0.13026 (5)	0.86700 (4)	0.16857 (4)	0.0303
C107	0.1375 (2)	0.99155 (16)	0.12297 (15)	0.0360
C108	0.10104 (17)	1.06947 (15)	0.16809 (13)	0.0254
C109	0.00675 (19)	1.10708 (19)	0.13364 (16)	0.0401
C110	-0.0244 (2)	1.1781 (2)	0.1783 (2)	0.0518
C111	0.0374 (2)	1.2108 (2)	0.25574 (18)	0.0475
C112	0.1300 (2)	1.17467 (19)	0.29026 (16)	0.0419
C113	0.16190 (18)	1.10461 (17)	0.24719 (14)	0.0329
C114	0.32420 (16)	0.69782 (16)	-0.06656 (12)	0.0254
N115	0.33418 (12)	0.60182 (13)	-0.03328 (10)	0.0220
C116	0.36939 (15)	0.52813 (17)	-0.06804 (12)	0.0249
C117	0.39613 (17)	0.54928 (19)	-0.13592 (13)	0.0323
C118	0.38820 (17)	0.6466 (2)	-0.16798 (14)	0.0353
C119	0.35103 (17)	0.72300 (19)	-0.13278 (13)	0.0318
C120	0.37826 (17)	0.42206 (17)	-0.03333(14)	0.0310

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C201	0.33127 (15)	0.39948 (15)	0.16182 (12)	0.0219
N202	0.37232 (12)	0.48744 (12)	0.17189 (10)	0.0193
N203	0.45554 (12)	0.50154 (12)	0.24379 (10)	0.0209
C204	0.49345 (15)	0.59270 (15)	0.24628 (12)	0.0201
S205	0.46105 (4)	0.68753 (4)	0.17153 (3)	0.0241
S206	0.59395 (4)	0.62465 (4)	0.33815 (3)	0.0270
C207	0.60458 (17)	0 51704 (16)	0 40886 (13)	0.0287
C208	0.65317(16)	0 55374 (16)	0 49885 (12)	0.0251
C209	0.05517(10) 0.75115(17)	0.53836(17)	0.54403(13)	0.0296
C210	0.79462(18)	0.5666 (2)	0.62843(14)	0.0278
C211	0.7396(2)	0.5000(2)	0.66756 (15)	0.0422
C212	0.7390(2)	0.6122(2)	0.62209 (15)	0.0422
C212	0.0410(2)	0.0308(2)	0.02209(15) 0.53807(15)	0.0450
C213	0.33801(18) 0.23802(15)	0.00223(18) 0.38605(15)	0.03807(13) 0.00042(12)	0.0331
N215	0.23803(13) 0.20544(12)	0.38003(13)	0.09042(12)	0.0210
N213	0.20344(12)	0.40702(13)	0.03830(10)	0.0218
C210	0.11911 (10)	0.46101(17)	-0.02648(13)	0.0266
C217	0.06312 (18)	0.3/251 (19)	-0.04065(15)	0.0350
C218	0.09638 (18)	0.28982 (19)	0.01244 (15)	0.0388
C219	0.18571 (17)	0.29602 (17)	0.07917 (14)	0.0302
C220	0.08524 (18)	0.55213 (19)	-0.08347 (14)	0.0369
H1011	0.2715	0.8424	-0.0515	0.0327*
H1072	0.2072	1.0050	0.1335	0.0461*
H1071	0.0962	0.9913	0.0627	0.0454*
H1091	-0.0363	1.0851	0.0796	0.0501*
H1101	-0.0889	1.2035	0.1551	0.0624*
H1111	0.0150	1.2586	0.2866	0.0587*
H1121	0.1747	1.1974	0.3454	0.0517*
H1131	0.2276	1.0814	0.2716	0.0400*
H1171	0.4218	0.4964	-0.1593	0.0404*
H1181	0.4076	0.6625	-0.2132	0.0415*
H1191	0.3423	0.7915	-0.1540	0.0399*
H1202	0.4177	0.3813	-0.0527	0.0470*
H1201	0.4052	0.4216	0.0275	0.0468*
H1203	0.3161	0.3906	-0.0510	0.0476*
H2011	0.3592	0.3449	0.1992	0.0266*
H2072	0.6431	0.4624	0.3966	0.0372*
H2071	0.5394	0.4936	0.3977	0.0362*
H2091	0.7893	0.5079	0.5173	0.0370*
H2101	0.8626	0.5554	0.6590	0.0470*
H2111	0.7694	0.6310	0.7260	0.0503*
H2121	0.6039	0.6645	0.6492	0.0506*
H2131	0.5299	0.6139	0.5059	0.0429*
H2171	0.0017	0.3713	-0.0865	0.0417*
H2181	0.0575	0.2294	0.0036	0.0463*
H2191	0.2108	0.2407	0 1158	0.0359*
H2202	0.0192	0.5429	-0 1229	0.0561*
H2202	0.0192	0.6126	-0.0497	0.0567*
H2201	0.0077	0.5617	-0 1133	0.0567*
112203	0.12//	0.3017	0.1133	0.0507.

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Zn1	0.02306 (14)	0.01875 (12)	0.02010 (12)	0.00037 (10)	0.00743 (10)	0.00014 (9)
C101	0.0334 (13)	0.0240 (11)	0.0244 (10)	0.0000 (9)	0.0116 (9)	0.0036 (8)
N102	0.0235 (10)	0.0233 (9)	0.0218 (8)	0.0011 (7)	0.0080 (7)	-0.0018 (7)
N103	0.0333 (11)	0.0199 (9)	0.0291 (9)	0.0036 (8)	0.0149 (8)	-0.0010 (7)
C104	0.0236 (11)	0.0212 (10)	0.0262 (10)	-0.0010 (9)	0.0092 (9)	-0.0057 (8)
S105	0.0270 (3)	0.0210 (3)	0.0275 (3)	-0.0008(2)	0.0137 (2)	-0.0007(2)
S106	0.0387 (3)	0.0215 (3)	0.0403 (3)	0.0000 (2)	0.0257 (3)	-0.0030 (2)
C107	0.0553 (17)	0.0231 (11)	0.0379 (13)	0.0020 (11)	0.0271 (12)	-0.0009 (10)
C108	0.0333 (13)	0.0169 (10)	0.0298 (11)	0.0009 (9)	0.0163 (10)	0.0021 (8)
C109	0.0324 (14)	0.0358 (14)	0.0423 (14)	-0.0022 (11)	0.0038 (11)	0.0000 (11)
C110	0.0314 (15)	0.0476 (16)	0.076 (2)	0.0186 (13)	0.0209 (15)	0.0102 (15)
C111	0.061 (2)	0.0376 (15)	0.0544 (17)	0.0121 (14)	0.0335 (15)	-0.0045 (12)
C112	0.0561 (18)	0.0335 (13)	0.0353 (13)	0.0042 (12)	0.0169 (12)	-0.0056 (11)
C113	0.0322 (13)	0.0313 (12)	0.0318 (12)	0.0081 (10)	0.0087 (10)	0.0022 (10)
C114	0.0250 (12)	0.0316 (11)	0.0182 (9)	-0.0017 (9)	0.0068 (8)	-0.0004 (8)
N115	0.0209 (9)	0.0264 (9)	0.0177 (8)	-0.0019 (7)	0.0064 (7)	-0.0024 (7)
C116	0.0175 (11)	0.0346 (12)	0.0209 (10)	-0.0013 (9)	0.0056 (8)	-0.0075 (9)
C117	0.0267 (12)	0.0474 (14)	0.0253 (11)	-0.0007 (11)	0.0128 (10)	-0.0083 (10)
C118	0.0314 (13)	0.0554 (16)	0.0219 (10)	-0.0043 (12)	0.0135 (10)	0.0011 (10)
C119	0.0343 (13)	0.0409 (13)	0.0214 (10)	-0.0023 (11)	0.0120 (10)	0.0039 (9)
C120	0.0313 (13)	0.0317 (12)	0.0323 (12)	0.0025 (10)	0.0150 (10)	-0.0060 (9)
C201	0.0264 (11)	0.0183 (10)	0.0214 (9)	-0.0001 (8)	0.0098 (9)	0.0004 (8)
N202	0.0214 (9)	0.0183 (8)	0.0188 (8)	-0.0004 (7)	0.0083 (7)	-0.0024 (6)
N203	0.0205 (9)	0.0215 (8)	0.0191 (8)	-0.0013 (7)	0.0061 (7)	-0.0005 (7)
C204	0.0193 (10)	0.0233 (10)	0.0187 (9)	0.0007 (8)	0.0084 (8)	-0.0014 (8)
S205	0.0259 (3)	0.0211 (2)	0.0236 (2)	-0.0033 (2)	0.0079 (2)	0.0020 (2)
S206	0.0254 (3)	0.0278 (3)	0.0226 (2)	-0.0076 (2)	0.0037 (2)	0.0013 (2)
C207	0.0316 (13)	0.0248 (11)	0.0248 (10)	-0.0040 (9)	0.0057 (9)	0.0027 (9)
C208	0.0284 (12)	0.0226 (10)	0.0229 (10)	-0.0041 (9)	0.0084 (9)	0.0014 (8)
C209	0.0291 (13)	0.0298 (12)	0.0292 (11)	0.0011 (10)	0.0106 (10)	-0.0059 (9)
C210	0.0304 (14)	0.0474 (15)	0.0294 (12)	-0.0009 (11)	0.0048 (10)	-0.0078 (11)
C211	0.0447 (16)	0.0558 (17)	0.0248 (11)	-0.0060 (13)	0.0123 (11)	-0.0100 (11)
C212	0.0444 (16)	0.0561 (17)	0.0357 (13)	0.0046 (13)	0.0233 (12)	-0.0062 (12)
C213	0.0287 (13)	0.0452 (14)	0.0332 (12)	0.0035 (11)	0.0140 (10)	0.0039 (11)
C214	0.0242 (11)	0.0216 (10)	0.0229 (10)	-0.0027 (8)	0.0134 (9)	-0.0041 (8)
N215	0.0232 (9)	0.0227 (9)	0.0213 (8)	-0.0010 (7)	0.0106 (7)	-0.0034 (7)
C216	0.0227 (11)	0.0341 (12)	0.0240 (10)	-0.0007 (9)	0.0101 (9)	-0.0047 (9)
C217	0.0258 (13)	0.0433 (14)	0.0315 (12)	-0.0091 (11)	0.0064 (10)	-0.0085 (10)
C218	0.0356 (15)	0.0367 (14)	0.0425 (14)	-0.0183 (11)	0.0136 (12)	-0.0071 (11)
C219	0.0328 (13)	0.0266 (11)	0.0310 (11)	-0.0065 (10)	0.0120 (10)	-0.0015 (9)
C220	0.0281 (13)	0.0416 (14)	0.0326 (12)	0.0022 (11)	0.0028 (10)	0.0027 (11)

Geometric parameters (Å, °)

Zn1—N102	2.1032 (17)	С120—Н1202	0.944
Zn1—S105	2.4885 (6)	C120—H1201	0.963
Zn1—N115	2.2692 (16)	C120—H1203	0.948
Zn1—N202	2.1005 (16)	C201—N202	1.281 (2)
Zn1—S205	2.5263 (6)	C201—C214	1.463 (3)
Zn1—N215	2.2117 (17)	C201—H2011	0.942
C101—N102	1.276 (3)	N202—N203	1.380 (2)
C101—C114	1.458 (3)	N203—C204	1.312 (2)
C101—H1011	0.956	C204—S205	1.713 (2)
N102—N103	1.384 (2)	C204—S206	1.752 (2)
N103—C104	1.311 (3)	S206—C207	1.824 (2)
C104—S105	1.715 (2)	C207—C208	1.507 (3)
C104—S106	1.758 (2)	C207—H2072	0.988
S106—C107	1.827 (2)	C207—H2071	0.964
C107—C108	1.503 (3)	C208—C209	1.376 (3)
C107—H1072	0.998	C208—C213	1.391 (3)
C107—H1071	0.977	C209—C210	1.388 (3)
C108—C109	1.385 (3)	C209—H2091	0.945
C108—C113	1.386 (3)	C210—C211	1.380 (3)
C109—C110	1.393 (4)	C210—H2101	0.953
C109—H1091	0.945	C211—C212	1.383 (4)
C110—C111	1.359 (4)	C211—H2111	0.958
C110—H1101	0.946	C212—C213	1.383 (3)
C111—C112	1.356 (4)	C212—H2121	0.962
C111—H1111	0.959	C213—H2131	0.970
C112—C113	1.373 (3)	C214—N215	1.353 (3)
C112—H1121	0.968	C214—C219	1.382 (3)
C113—H1131	0.953	N215—C216	1.338 (3)
C114—N115	1.362 (3)	C216—C217	1.390 (3)
C114—C119	1.383 (3)	C216—C220	1.498 (3)
N115—C116	1.342 (3)	C217—C218	1.376 (3)
C116—C117	1.398 (3)	C217—H2171	0.948
C116—C120	1.494 (3)	C218—C219	1.380 (3)
C117—C118	1.372 (3)	C218—H2181	0.955
C117—H1171	0.950	C219—H2191	0.936
C118—C119	1.389 (3)	С220—Н2202	0.960
C118—H1181	0.951	C220—H2201	0.967
C119—H1191	0.956	C220—H2203	0.964
N102—Zn1—S105	78.87 (5)	C114—C119—H1191	119.7
N102—Zn1—N115	75.40 (6)	C116—C120—H1202	110.7
S105—Zn1—N115	150.83 (5)	C116—C120—H1201	111.9
N102—Zn1—N202	162.87 (6)	H1202—C120—H1201	109.0
S105—Zn1—N202	94.63 (5)	C116—C120—H1203	110.5
N115—Zn1—N202	113.82 (6)	H1202—C120—H1203	107.8
N102—Zn1—S205	87.46 (5)	H1201—C120—H1203	106.7

S105—Zn1—S205	99.92 (2)	N202—C201—C214	117.93 (18)
N115—Zn1—S205	92.49 (5)	N202—C201—H2011	121.7
N202—Zn1—S205	77.98 (5)	C214—C201—H2011	120.3
N102—Zn1—N215	119.43 (6)	Zn1—N202—C201	117.66 (14)
S105—Zn1—N215	90.44 (4)	Zn1—N202—N203	124.91 (12)
N115—Zn1—N215	90.36 (6)	C201—N202—N203	117.12 (16)
N202—Zn1—N215	76.08 (6)	N202—N203—C204	112.08 (16)
S205—Zn1—N215	152.73 (5)	N203—C204—S205	129.78 (16)
N102—C101—C114	118.85 (19)	N203—C204—S206	116.88 (15)
N102—C101—H1011	121.8	S205—C204—S206	113.33 (11)
C114—C101—H1011	119.3	Zn1—S205—C204	92.99 (7)
Zn1—N102—C101	117.28 (15)	C204—S206—C207	103.81 (10)
Zn1—N102—N103	123.99 (13)	S206—C207—C208	108.68 (14)
C101—N102—N103	117.62 (18)	S206—C207—H2072	108.8
N102—N103—C104	111.73 (17)	C208—C207—H2072	111.1
N103—C104—S105	130.28 (16)	S206—C207—H2071	107.0
N103—C104—S106	116.92 (15)	C208—C207—H2071	110.5
\$105-C104-\$106	112.80 (12)	H2072—C207—H2071	110.6
Zn1 - S105 - C104	93.40 (7)	$C_{207} - C_{208} - C_{209}$	120.9 (2)
C104 - S106 - C107	104.10 (10)	C_{207} C_{208} C_{213}	120.2(2)
S106—C107—C108	106.78 (15)	$C_{209} - C_{208} - C_{213}$	118.9(2)
S106—C107—H1072	108.1	$C_{208} - C_{209} - C_{210}$	120.8(2)
C108—C107—H1072	110.3	C208—C209—H2091	119.5
S106—C107—H1071	109 5	$C_{200} = C_{200} = H_{2001}$	119.6
C108 - C107 - H1071	110.0	$C_{209} - C_{210} - C_{211}$	119.9 (2)
H1072-C107-H1071	112.1	$C_{209} = C_{210} = H_{2101}$	119.9 (2)
C107 - C108 - C109	122.0 (2)	$C_{211} - C_{210} - H_{2101}$	120.2
C107 - C108 - C113	122.0(2) 120.0(2)	$C_{210} - C_{211} - C_{212}$	120.2 119.8 (2)
C109-C108-C113	120.0(2) 1180(2)	$C_{210} = C_{211} = H_{2111}$	119.0 (2)
C108 - C109 - C110	1200(2)	$C_{212} = C_{211} = H_{2111}$	120.3
C108 - C109 - H1091	120.0 (2)	$C_{212} = C_{211} = H_{2111}$	120.5 119.9(2)
$C_{110} - C_{109} - H_{1091}$	120.0	$C_{211} - C_{212} - C_{213}$	119.5 (2)
$C_{100} = C_{110} = C_{111}$	120.0 120.3(2)	C_{213} C_{212} H_{2121} H_{2121}	120.6
C109 - C110 - H1101	120.3 (2)	$C_{213} - C_{212} - H_{2121}$	120.0
$C_{111} = C_{110} = H_{1101}$	110.5	$C_{208} = C_{213} = C_{212}$	120.0 (2)
$C_{110} = C_{111} = C_{112}$	119.3 120.4(2)	$C_{203} - C_{213} - H_{2131}$	120.6
$C_{110} = C_{111} = C_{112}$	110.4 (2)	$C_{212} = C_{213} = H_{2131}$	120.0 116.03 (17)
	119.0	$C_{201} = C_{214} = N_{213}$	110.03(17) 121.28(10)
$C_{112} - C_{111} - C_{112}$	119.0 120.2(2)	$C_{201} = C_{214} = C_{219}$	121.26(19)
$C_{111} = C_{112} = C_{113}$	120.2 (2)	$N_{213} = C_{214} = C_{219}$	122.00(19)
$C_{111} - C_{112} - H_{1121}$	121.1	$Z_{111} = N_{215} = C_{214}$	112.14(13) 128.71(14)
C108 - C112 - H1121	110.7	2111 - 10213 - C210	126.71(14)
C108 - C113 - C112	121.1 (2)	$V_{214} = N_{215} = C_{216}$	110.77(10)
С110-С113-П1131	117./	10213 - C210 - C217	121.1(2) 11764(10)
C_{112} $-C_{113}$ $-\Pi_{1131}$ C_{101} C_{114} N_{115}	117.2	10213 - 0216 - 0220	11/.04 (19)
C101 C114 C110	110.17 (18) 120.8 (2)	$C_{21}/-C_{210}-C_{220}$	121.3(2)
CIUI-CI14-CI19	120.8(2)	$C_{210} - C_{217} - C_{218}$	120.0 (2)
N115	123.0 (2)	$C_{210} - C_{217} - H_{2171}$	118.0
Zn1—N115—C114	110.05 (13)	C218—C217—H2171	121.4

Zn1—N115—C116	131.44 (14)	C217—C218—C219	119.1 (2)
C114—N115—C116	118.14 (17)	C217—C218—H2181	120.2
N115—C116—C117	121.1 (2)	C219—C218—H2181	120.7
N115-C116-C120	118.50 (18)	C214—C219—C218	118.4 (2)
C117—C116—C120	120.42 (19)	C214—C219—H2191	120.5
C116—C117—C118	120.6 (2)	C218—C219—H2191	121.2
С116—С117—Н1171	120.0	С216—С220—Н2202	110.7
C118—C117—H1171	119.4	C216—C220—H2201	109.2
C117—C118—C119	118.6 (2)	H2202—C220—H2201	110.0
C117-C118-H1181	121.6	С216—С220—Н2203	109.1
C119-C118-H1181	119.8	H2202—C220—H2203	110.1
C118—C119—C114	118.6 (2)	H2201—C220—H2203	107.7
C118—C119—H1191	121.7		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C217—H2171…S105 ⁱ	0.95	2.82	3.697 (3)	155

Symmetry code: (i) -x, -y+1, -z.