

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Garnet-type Mn₃Cr₂(GeO₄)₃

Christian Lipp, Sabine Strobel, Falk Lissner and Rainer Niewa*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Correspondence e-mail: rainer.niewa@iac.uni-stuttgart.de

Received 11 April 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Ge–O) = 0.002 Å; R factor = 0.025; wR factor = 0.068; data-to-parameter ratio = 15.4.

Single crystals of garnet-type trimanganese(II) dichromium(III) tris[orthogermanate(IV)], Mn^{II}₃Cr^{III}₂(GeO₄)₃, were obtained by utilizing a chemical transport reaction. Corresponding to the mineral garnet with the general formula $A^{II}_{3}B^{III}_{2}$ (SiO₄)₃, each of the four elements occupies only one crystallographically distinct position. Mn²⁺ occupies the respective A position (Wyckoff site 24c, site symmetry 2.22), being surrounded by eight O atoms that form a distorted cube $[d(Mn-O) = 2.291 (2) \text{ and } 2.422 (2) \text{ Å}, 4 \times \text{ each}], \text{ while } Cr^{3+}$ on the *B* position (Wyckoff site 16*a*, site symmetry $\overline{.3}$) is situated in a slightly distorted octahedron of six O^{2-} anions $[d(Cr-O) = 1.972 (2) \text{ Å}, 6 \times]$. In addition, the O atoms on general site 96*h* form isolated $[GeO_4]^{4-}$ tetrahedra with Ge⁴⁺ on site 24d [site symmetry $\overline{4}$.; d(Ge-O) = 1.744 (2) Å, $4 \times$].

Related literature

For general background to garnets, see: Geller (1967); Geusic et al. (1964); Menzer (1925, 1926, 1928); Nishikawa (1917); Novak & Gibbs (1971). For synthetic details, see: Binnewies et al. (2011); Pajączkowska & Majcher (1985, 1986); Pajączkowska et al. (1986). For isotypic structures, see: Andrut & Wildner (2002); Belov et al. (1972); Fursenko (1981); Geller et al. (1960); Golosovskii et al. (1976); Lind & Geller (1969); Prandl (1973); Tauber et al. (1958a,b, 1961); Wildner & Andrut (2001).

Experimental

Crystal data

Mn₃Cr₂(GeO₄)₃ $M_r = 678.59$ Cubic. $Ia\overline{3}d$ a = 12.0001 (3) Å V = 1728.04 (7) Å³

Data collection

Nonius KappaCCD diffractometer Absorption correction: numerical (HABITUS; Herrendorf &

Z = 8Mo $K\alpha$ radiation $\mu = 17.01 \text{ mm}^{-1}$ T = 293 K $0.18 \times 0.15 \times 0.09 \; \text{mm}$

Bärnighausen, 1997) $T_{\rm min}=0.063,\ T_{\rm max}=0.201$ 7635 measured reflections

 $R_{\rm int} = 0.084$

277 independent reflections 265 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 18 parameters $wR(F^2) = 0.068$ $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.26 $\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$ 277 reflections

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the state of Baden-Württemberg (Stuttgart) for financial support. This work was also supported by the German Research Foundation (DFG) within the funding program Open Access Publishing.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2621).

References

- Andrut, M. & Wildner, M. (2002). Phys. Chem. Miner. 29, 595-608.
- Belov, K. P., Mamsurova, D. G., Mill', B. V. & Sokolov, V. I. (1972). Pis'ma Zh. Eksp. Teor. Fiz. 16, 173-176.
- Binnewies, M., Glaum, R., Schmidt, M. & Schmidt, P. (2011). Chemische Transportreaktionen, 1st ed. Berlin: de Gruyter.
- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Fursenko, B. A. (1981). Bull. Miner. 104, 418-422.
- Geller, S. (1967). Z. Kristallogr. 125, 1-47.
- Geller, S., Miller, C. E. & Treuting, R. G. (1960). Acta Cryst. 13, 179-186.
- Geusic, J. E., Marcos, H. M. & van Uitert, L. G. (1964). Appl. Phys. Lett. 4, 182-184.

Golosovskii, I. V., Plakhii, V. P., Smirnov, O. P., Chernenkov, Yu. P., Kovalev, A. V. & Bedrizova, M. N. (1976). Pis'ma Zh. Eksp. Teor. Fiz. 24, 461-464.

Herrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Karlsruhe and Giessen, Germany.

- Lind, M. D. & Geller, S. (1969). Z. Kristallogr. 129, 427-434.
- Menzer, G. (1925). Centralbl. Mineral. A, pp. 344-345.
- Menzer, G. (1926). Z. Kristallogr. 63, 157-158.
- Menzer, G. (1928). Z. Kristallogr. 69, 300-396.
- Nishikawa, Sh. (1917). Proc. Math. Phys. Soc. Tokyo, 9, 194-197.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Novak, G. A. & Gibbs, G. V. (1971). Am. Mineral. 56, 791-825.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Pajączkowska, A., Jasiołek, G. & Majcher, K. (1986). J. Cryst. Growth, 79, 417-420.
- Pajączkowska, A. & Majcher, K. (1985). J. Cryst. Growth, 71, 810-812.
- Pajączkowska, A. & Majcher, K. (1986). J. Mater. Sci. Lett. 5, 487-488.
- Prandl, W. (1973). Phys. Status Solidi B, 55, K159-K163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tauber, A., Banks, E. & Kedesdy, H. (1958a). Acta Cryst. 11, 893-894.
- Tauber, A., Banks, E. & Kedesdy, H. H. (1958b). J. Appl. Phys. 29, 385-387.
- Tauber, A., Whinfrey, C. G. & Banks, E. (1961). J. Phys. Chem. Solids, 21, 25-32.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Wildner, M. & Andrut, M. (2001). Am. Mineral. 86, 1231-1251.

supporting information

Acta Cryst. (2012). E68, i35 [doi:10.1107/S1600536812016832]

Garnet-type Mn₃Cr₂(GeO₄)₃

Christian Lipp, Sabine Strobel, Falk Lissner and Rainer Niewa

S1. Comment

Garnet can be found among the very early attempts to solve crystal structures with the help of X-ray diffraction (Nishikawa, 1917), soon being followed by the understanding of the regular structure (Menzer, 1925, 1926) and the variability of garnet in a systematic way (Menzer, 1928; Geller, 1967; Novak & Gibbs, 1971). The variability of the garnet-type structure led for example to the well known Nd:YAG lasers (Y₃Al₅O₁₂:Nd³⁺; Geusic *et al.*, 1964). A much more apparent variation is of course the replacement of Si by Ge (Tauber *et al.*, 1961; Geller, 1967), resulting in germanate garnets that are accessible *via* chemical transport reactions. The latter are an elegant way to grow crystals (Binnewies *et al.*, 2011) when other methods deliver only fine powders or require very high temperatures if the growth from melts is necessary.

The formation of garnet-type Mn₃Cr₂(GeO₄)₃ by chemical transport reactions was already successfully demonstrated for transporting agents like Cl₂, CCl₄, SCl₄ and TeCl₄ (Pajączkowska & Majcher, 1985, Pajączkowska *et al.* 1986; Mn₃Fe₂(GeO₄)₃: Pajączkowska & Majcher, 1986). While only 0.5 mm edge length as a maximum crystal size was stated when TeCl₄ was used as a transporting agent, we achieved sizes of up to 4 mm within twelve days with the same agent. Quite interestingly Pajączkowska & Majcher (1985) determined only the unit-cell dimensions by using powder X-ray diffraction (*a* = 12.030 (1) Å), but not the structural details. The same germanate Mn₃Cr₂(GeO₄)₃ was already presented before, but each time again only by mentioning the unit-cell dimensions, being obtained by powder diffraction (Tauber *et al.*, 1958*a* (*a* = 12.027 Å); Tauber *et al.*, 1958*b* (*a* = 12.027 Å); Geller *et al.*, 1960 (*a* = 12.027 (3) Å); Belov *et al.*, 1972 (*a* = 12.028 (4) Å)). In addition some experiments on the magnetic properties have been conducted (Tauber *et al.*, 1958*b*; Belov *et al.*, 1976), but again without the determination of structural details of Mn₃Cr₂(GeO₄)₃. Golosovskii *et al.* (1976) conducted neutron diffraction experiments and discussed the magnetic structure. They achieved results similar to the ones obtained for the spessartite-type germanate garnet Mn₃Al₂(GeO₄)₃ by Prandl (1973), thus finding confirmation for Mn²⁺ on site 24*i* where it is eightfold coordinated by oxygen.

The obtained dark green garnet-type $Mn_3Cr_2(GeO_4)_3$ (see Fig. 1) crystallizes isotypically with regular garnets. While Mn^{2+} , Cr^{3+} and Ge^{4+} are located on the special sites 24c, 16a and 24d, oxygen is found on general site 96h. Manganese(II) is eightfold coordinated by oxygen in a distorted cube (Fig. 2) with Mn-O distances of 2.291 (2) and 2.422 (2) Å (4× each). These values are in good agreement with those reported for $Mn_3Fe_2(GeO_4)_3$ (2.303 (7) and 2.421 (7) Å; Lind & Geller, 1969). For additional comparison the analogous garnet $Mn_3Cr_2(SiO_4)_3$ would be of interest, but once more only the unit-cell parameters, determined by powder diffraction, are mentioned (a = 11.766 (2) Å; synthesis at 80 kbar/1273 K; Fursenko, 1981). The green color of $Mn_3Cr_2(GeO_4)_3$ may be taken as an indicator for the +III oxidation state of chromium. Oxygen surrounds chromium(III) in a slightly distorted octahedron (Fig. 3) with d(Cr-O) = 1.972 (2) Å (6×), whereas 1.9942 (6) Å is reported for chromium on the same position in synthetic uvarovite ($Ca_3Cr_2(SiO_4)_3$; Andrut & Wildner, 2002; for natural uvarovite, see: Wildner & Andrut, 2001). Due to the slight distortion, the (O-Cr-O) angles within the [CrO_6] octahedra deviate from 90° , *viz* 86.33 (8)° and 93.67 (8)°. Completing the description of the cation

environments, Ge^{4+} is situated in slightly elongated tetrahedra of four O²⁻ anions where d(Ge-O) = 1.744 (2) Å, and the angles (O-Ge-O) are found to be 99.02 (14)° (2×) and 114.93 (7)° (4×). This is again similar to the values detected for Mn₃Fe₂(GeO₄)₃ (d(Ge-O) = 1.766 (7) Å, (O-Ge-O) = 98.8 (5)° (2×) and 115.1 (3)° (4×); Lind & Geller, 1969). Keeping in mind only a single site is occupied by oxygen, the structure of garnets might be described as two interpenetrating networks in Mn₃Cr₂(GeO₄)₃, the first made up of edge sharing [CrO₆] octahedra and [GeO₄]⁴⁻ tetrahedra (Fig. 2 & 3), while the second consists of groups of three edge sharing [MnO₈] polyhedra (see Fig. 2), with each distorted [MnO₈] cube being part of two of these units of three polyhedra. Therefore, each [MnO₈] polyhedron shares four edges with four [CrO₆] octahedra, and two edges and four vertices with six [GeO₄]⁴⁻ tetrahedra.

S2. Experimental

MnO, Cr_2O_3 and GeO_2 (molar ratios of 3:1:3; MnO (Riedel-de Haën, *rein*): 212.8 mg, Cr_2O_3 (Riedel-de Haën, *rein*): 152.0 mg, GeO_2 (ChemPur, 99.999%): 313.8 mg) and the transporting agent TeCl₄ (Alfa-Aesar, 99.9%; 8.5 mg ml⁻¹) were brought into a fused silica ampule (length: 120 mm, inner diameter: 16 mm) and sealed under vacuum. The following transport reaction was conducted within twelve days in a two-zone tube furnace with a temperature gradient of 70 K ($T_2 = 1293$ K, $T_1 = 1223$ K, with the transport direction $T_2 \rightarrow T_1$). Subsequent to the cooling to a temperature of 673 K within five hours, ambient temperature was reached by quenching in water. The obtained crystals had a size of up to 4 mm and shapes that are typically observed in garnets, *i.e.* derived from rhombic dodecahedra with often truncated edges. Larger crystals appear virtually black and opaque while smaller ones are transparent and dark green in color (see Fig. 1).

Figure 1

Dark green crystals of garnet-type $Mn^{II}_{3}Cr^{III}_{2}(GeO_{4})_{3}$ in the shape of rhombic dodecahedra, often with truncated edges. The photograph shows the crystals as they were grown after twelve days.

Figure 2

Overview of the structure of $Mn^{II}_{3}Cr^{III}_{2}(GeO_{4})_{3}$. For a better understanding only a group of three edge-connected distorted cubes [MnO₈], representing the polyhedra about Mn^{2+} , are drawn besides [CrO₆] octahedra and [GeO₄]⁴⁻ tetrahedra (displacement ellipsoids are drawn at the 95% probability level).

Figure 3

The network of vertex sharing $[CrO_6]$ octahedra and $[GeO_4]^4$ tetrahedra in the *neso* germanate $Mn_3Cr_2(GeO_4)_3$ (displacement ellipsoids are drawn at the 95% probability level).

Trimanganese(II) dichromium(III) tris[orthogermanate(IV)]

Crystal data	
$Mn_3Cr_2(GeO_4)_3$	$D_{\rm x} = 5.217 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 678.59$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cubic, $Ia\overline{3}d$	Cell parameters from 6052 reflections
Hall symbol: -I 4bd 2c 3	$\theta = 0.4 - 40.3^{\circ}$
a = 12.0001 (3) Å	$\mu = 17.01 \text{ mm}^{-1}$
V = 1728.04 (7) Å ³	T = 293 K
Z = 8	Truncated rhombic dodecahedron, dark green
F(000) = 2520	$0.18 \times 0.15 \times 0.09 \text{ mm}$
Data collection	
Nonius KappaCCD	7635 measured reflections
diffractometer	277 independent reflections
Radiation source: fine-focus sealed tube	265 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.084$
ω scans	$\theta_{\rm max} = 33.1^\circ, \theta_{\rm min} = 4.2^\circ$
Absorption correction: numerical	$h = -18 \rightarrow 16$
(HABITUS; Herrendorf & Bärnighausen, 1997)	$k = -18 \rightarrow 15$
$T_{\min} = 0.063, \ T_{\max} = 0.201$	$l = -17 \rightarrow 15$

Refinement

er

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Mn	0.1250	0.0000	0.2500	0.0080 (3)
Cr	0.0000	0.0000	0.0000	0.0023 (3)
Ge	0.3750	0.0000	0.2500	0.0045 (2)
0	0.03061 (17)	0.05245 (18)	0.65268 (17)	0.0065 (4)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0039 (4)	0.0100 (3)	0.0100 (3)	0.000	0.000	0.0019 (3)
0.0023 (3)	0.0023 (3)	0.0023 (3)	0.00006 (17)	0.00006 (17)	0.00006 (17)
0.0036 (3)	0.0050 (3)	0.0050 (3)	0.000	0.000	0.000
0.0068 (9)	0.0082 (9)	0.0044 (8)	0.0016 (7)	-0.0018 (7)	-0.0006 (7)
	U ¹¹ 0.0039 (4) 0.0023 (3) 0.0036 (3) 0.0068 (9)	U ¹¹ U ²² 0.0039 (4) 0.0100 (3) 0.0023 (3) 0.0023 (3) 0.0036 (3) 0.0050 (3) 0.0068 (9) 0.0082 (9)	$\begin{array}{c ccccc} U^{11} & U^{22} & U^{33} \\ \hline 0.0039 \ (4) & 0.0100 \ (3) & 0.0100 \ (3) \\ 0.0023 \ (3) & 0.0023 \ (3) & 0.0023 \ (3) \\ 0.0036 \ (3) & 0.0050 \ (3) & 0.0050 \ (3) \\ 0.0068 \ (9) & 0.0082 \ (9) & 0.0044 \ (8) \end{array}$	U^{11} U^{22} U^{33} U^{12} 0.0039 (4)0.0100 (3)0.0100 (3)0.0000.0023 (3)0.0023 (3)0.00023 (3)0.00006 (17)0.0036 (3)0.0050 (3)0.0050 (3)0.0000.0068 (9)0.0082 (9)0.0044 (8)0.0016 (7)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0039 (4)$ $0.0100 (3)$ $0.0100 (3)$ 0.000 0.000 $0.0023 (3)$ $0.0023 (3)$ $0.0023 (3)$ $0.00006 (17)$ $0.00006 (17)$ $0.0036 (3)$ $0.0050 (3)$ $0.0050 (3)$ 0.000 0.000 $0.0068 (9)$ $0.0082 (9)$ $0.0044 (8)$ $0.0016 (7)$ $-0.0018 (7)$

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Mn—O ⁱ	2.291 (2)	Cr—O ^{xi}	1.972 (2)
Mn—O ⁱⁱ	2.291 (2)	Cr—O ^{xii}	1.972 (2)
Mn—O ⁱⁱⁱ	2.291 (2)	Cr—O ⁱⁱ	1.972 (2)
Mn—O ^{iv}	2.291 (2)	Ge—O ^{xiii}	1.744 (2)
Mn—O ^v	2.422 (2)	Ge—O ⁱⁱⁱ	1.744 (2)
Mn—O ^{vi}	2.422 (2)	Ge—O ⁱ	1.744 (2)
Mn—O ^{vii}	2.422 (2)	Ge—O ^{xiv}	1.744 (2)
Mn—O ^{viii}	2.422 (2)	O—Ge ^{xv}	1.744 (2)
Cr—O ^{viii}	1.972 (2)	O—Cr ^x	1.972 (2)
Cr—O ^{ix}	1.972 (2)	O—Mn ^{iv}	2.291 (2)

supporting information

$\begin{array}{cccccccc} O^i - Mn - O^{ii} & 112.61 (10) & O^v - Mn - Ge^{xvii} & 97.88 (5) \\ O^i - Mn - O^{iii} & 70.78 (10) & O^{vi} - Mn - Ge^{xvii} & 82.12 (5) \\ O^i - Mn - O^{iii} & 160.86 (10) & O^{vii} - Mn - Ge^{xvii} & 82.12 (5) \\ O^i - Mn - O^{iv} & 160.86 (10) & O^{vii} - Mn - Ge^{xvii} & 97.88 (5) \\ O^i - Mn - O^{iv} & 160.86 (10) & O^{vii} - Cr - O^{ix} & 180.00 (17) \\ O^{ii} - Mn - O^{iv} & 70.78 (10) & O^{vii} - Cr - O^{ix} & 93.67 (8) \\ O^i - Mn - O^v & 94.58 (6) & O^{ix} - Cr - O^x & 86.33 (8) \\ O^{ii} - Mn - O^v & 94.58 (6) & O^{ix} - Cr - O^{xi} & 93.67 (8) \\ O^{ii} - Mn - O^v & 94.58 (6) & O^{ix} - Cr - O^{xi} & 86.33 (8) \\ O^{ii} - Mn - O^v & 72.34 (8) & O^{ix} - Cr - O^{xi} & 86.33 (8) \\ O^{ii} - Mn - O^v & 69.78 (10) & O^x - Cr - O^{xi} & 86.33 (8) \\ O^{ii} - Mn - O^{vi} & 94.58 (6) & O^{ix} - Cr - O^{xii} & 86.33 (8) \\ O^{ii} - Mn - O^{vi} & 69.78 (10) & O^x - Cr - O^{xii} & 86.33 (8) \\ O^{ii} - Mn - O^{vi} & 94.58 (6) & O^{ix} - Cr - O^{xii} & 93.67 (8) \\ O^{ii} - Mn - O^{vi} & 124.69 (4) & O^{vii} - Cr - O^{xii} & 93.67 (8) \\ O^{ii} - Mn - O^{vi} & 69.78 (10) & O^x - Cr - O^{xii} & 93.67 (8) \\ O^{ii} - Mn - O^{vi} & 69.78 (10) & O^x - Cr - O^{xii} & 180.00 (17) \\ O^v - Mn - O^{vi} & 108.41 (10) & O^{vii} - Cr - O^{xii} & 180.00 (17) \\ O^v - Mn - O^{vii} & 69.78 (10) & O^{ii} - Cr - O^{ii} & 86.33 (8) \\ O^{ii} - Mn - O^{vii} & 124.69 (4) & O^{vii} - Cr - O^{ii} & 180.00 (17) \\ O^v - Mn - O^{vii} & 108.41 (10) & O^{vii} - Cr - O^{ii} & 180.00 (17) \\ O^i - Mn - O^{vii} & 124.69 (4) & O^{ii} - Cr - O^{ii} & 180.00 (17) \\ O^{ii} - Mn - O^{vii} & 124.69 (4) & O^{ii} - Cr - O^{ii} & 180.00 (17) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{vii} & 93.67 (8) \\ O^{ii} - Mn - O^{v$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O^{i} —Mn— O^{vii} $69.78 (10)$ O^{ix} — Cr — O^{ii} $93.67 (8)$ O^{ii} —Mn— O^{vii} $72.34 (8)$ O^{x} — Cr — O^{ii} $180.00 (17)$ O^{iii} —Mn— O^{vii} $124.69 (4)$ O^{xi} — Cr — O^{ii} $93.67 (8)$ O^{iv} —Mn— O^{vii} $94.58 (6)$ O^{xii} — Cr — O^{ii} $86.33 (8)$
O^{ii} —Mn— O^{vii} 72.34 (8) O^{x} — Cr — O^{ii} 180.00 (17) O^{ii} —Mn— O^{vii} 124.69 (4) O^{xi} — Cr — O^{ii} 93.67 (8) O^{iv} —Mn— O^{vii} 94.58 (6) O^{xii} — Cr — O^{ii} 86.33 (8)
O^{iii} —Mn— O^{vii} $124.69 (4)$ O^{xi} — Cr — O^{ii} $93.67 (8)$ O^{iv} —Mn— O^{vii} $94.58 (6)$ O^{xii} — Cr — O^{ii} $86.33 (8)$
O^{iv} —Mn— O^{vii} 94.58 (6) O^{xii} —Cr— O^{ii} 86.33 (8)
O^{v} —Mn— O^{vii} 73.85 (10) O^{xiii} —Ge— O^{iii} 114.93 (7)
O^{vi} —Mn— O^{vii} 164.23 (10) O^{xiii} —Ge— O^{i} 114.93 (7)
O^{i} —Mn— O^{viii} 72.34 (8) O^{iii} —Ge— O^{i} 99.02 (14)
O^{ii} —Mn— O^{viii} 69.78 (10) O^{xiii} —Ge— O^{xiv} 99.02 (14)
O^{iii} —Mn— O^{viii} 94.58 (6) O^{iii} —Ge— O^{xiv} 114.93 (7)
O^{iv} —Mn— O^{viii} 124.69 (4) O^{i} —Ge— O^{xiv} 114.93 (7)
O^{v} —Mn— O^{viii} 164.23 (10) O^{xiii} —Ge—Mn 130.49 (7)
O^{vi} —Mn— O^{viii} 73.85 (10) O^{iii} —Ge—Mn 49.51 (7)
O^{vii} Mn O^{viii} 108.41 (10) O^{i} Ge Mn 49.51 (7)
O^{i} —Mn—Ge 35.39 (5) O^{xiv} —Ge—Mn 130.49 (7)
O^{ii} —Mn—Ge 144.61 (5) O^{xiii} —Ge—Mn ^{xviii} 49.51 (7)
O^{iii} —Mn—Ge 35.39 (5) O^{iii} —Ge—Mn ^{xviii} 130.49 (7)
O^{iv} —Mn—Ge 144.61 (5) O^{i} —Ge—Mn ^{xviii} 130.49 (7)
O^{v} —Mn—Ge 82.12 (5) O^{xiv} —Ge—Mn ^{xviii} 49.51 (7)
O^{vi} —Mn—Ge 97.88 (5) Ge^{xv} —O— Cr^{x} 128.90 (11)
O^{vii} —Mn—Ge 97.88 (5) Ge ^{xv} —O—Mn ^{iv} 95.10 (9)
O^{viii} —Mn—Ge 82.12 (5) Cr^{x} —O—Mn ^{iv} 103.54 (9)
O^{i} —Mn—Ge ^{xvii} 144.61 (5) Ge ^{xv} —O—Mn ^{xvi} 122.92 (10)
O^{ii} —Mn—Ge ^{xvii} 35.39 (5) Cr^{x} —O—Mn ^{xvi} 99.02 (8)
O^{iii} —Mn—Ge ^{xvii} 144.61 (5) Mn ^{iv} —O—Mn ^{xvi} 102.43 (8)
O^{iv} —Mn—Ge ^{xvii} 35.39 (5)

Symmetry codes: (i) x+1/4, -z+3/4, -y+1/4; (ii) -x, y, z-1/2; (iii) x+1/4, z-3/4, y+1/4; (iv) -x, -y, -z+1; (v) z-1/2, x, -y+1/2; (vi) -z+3/4, y-1/4, -x+1/4; (vii) -z+3/4, -y+1/4, x+1/4; (viii) z-1/2, -x, y; (ix) -z+1/2, x, -y; (ix) -z+1/2; (ii) -y, -z+1/2; (ii) -y, -z+1/2, -x; (iii) -x+1/2, y, -z+1/2; (iv) -x+1/2, -y, -z+1/2; (iv) -x+1/2, -x+1/2; (iv) -x+1/2, -x+1/2; (iv) -x+1