metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m648-m649

Bis(μ-4,4;6,6-bis­­(bi­phenyl-2,2′-diyldi­­oxy)-2,2-bis­­{2-[5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]phen­­oxy}cyclo­triphosphazene)di-μ-chlorido-bis­­[chlorido­copper(II)]

aCollege of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yubindong@sdnu.edu.cn

(Received 28 March 2012; accepted 14 April 2012; online 21 April 2012)

In the crystal of the title compound, [Cu2Cl4(C50H32N9O8P3)2], the binuclear mol­ecule is located across an inversion center. Each Cu2+ cation is coordinated by two pyridine N atoms from symmetry-related 4,4;6,6-bis­(biphenyl-2,2′-diyldi­oxy)-2,2-bis­{2-[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]phen­oxy}cyclo­triphosphazene (L) ligands, a pair of bridging Cl anions and a terminal Cl anion, forming a distorted CuCl3N2 square-pyramidal geometry. Weak intra­molecular C—H⋯O and inter­molecular C—H⋯N inter­actions occur in the crystal.

Related literature

For our inter­est in the coordination chemistry of bent organic ligands bridged by five-membered heterocycles such as oxadiazole and triazole, see: Dong et al. (2005[Dong, Y.-B., Wang, H.-Y., Ma, J.-P., Shen, D.-Z. & Huang, R.-Q. (2005). Inorg. Chem. 44, 4679-4692.], 2007[Dong, Y.-B., Wang, P., Ma, J.-P., Wang, H.-Y., Tang, B. & Huang, R.-Q. (2007). J. Am. Chem. Soc. 129, 4872-4873.]). For the impact of different types of linkages as well as distinct coord­inating orientations on the structures of various coordin­­ation-driven supra­molecular compounds, see: Zhao et al. (2007[Zhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des. 7, 1058-1068.]). For bond lengths and angles in related structures, see: Ainscough et al. (2008[Ainscough, E. W., Brodie, A. M., Davidson, R. J., Moubaraki, B., Murray, K. M., Otter, C. A. & Waterland, M. R. (2008). Inorg. Chem. 47, 9182-9192.]); Du et al. (2010[Du, M., Wang, Q., Li, C.-P., Zhao, X.-J. & Ribas, J. (2010). Cryst. Growth Des. 10, 3285-3296.]). Zhao et al. (2009[Zhao, X.-X., Ma, J.-P., Shen, D.-Z., Dong, Y.-B. & Huang, R.-Q. (2009). CrystEngComm, 11, 1281-1290.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C50H32N9O8P3)2]

  • Mr = 2228.39

  • Triclinic, [P \overline 1]

  • a = 10.554 (5) Å

  • b = 14.486 (7) Å

  • c = 15.551 (8) Å

  • α = 85.401 (7)°

  • β = 81.984 (7)°

  • γ = 89.844 (7)°

  • V = 2347 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.779, Tmax = 0.942

  • 12440 measured reflections

  • 8593 independent reflections

  • 6217 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.02

  • 8593 reflections

  • 658 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O3 0.93 2.38 3.271 (5) 160
C36—H36⋯N5i 0.93 2.51 3.396 (6) 159
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our research, we have a longstanding interest in the coordination chemistry of bent organic ligands bridged by the five-membered heterocycles such as oxadiazole (Dong et al., 2005) and triazole (Dong et al., 2007), especially in how different types of linkages as well as distinct coordinating orientations impact the structures of various coordination-driven supramolecular compounds (Zhao et al., 2007). In this contribution, we present a new ligand containing 1,3,4-oxadiazole and cyclotriphosphazene units, namely, bis(2,2'-dioxybiphenyl)bis(2-phenoxy-5-(4-pyridyl)-1,3,4-oxadiazole) cyclotriphosphazene (L) and the title compound, [CuCl2(C50H32O8N9P3)]2 based on it (Scheme 1).

In the crystal of the title compound, [CuCl2(C50H32O8N9P3)]2, the binuclear molecule is located across an inversion center (Figure 1). The CuII cation is N,N'-chelated by a bis(2,2'-dioxybiphenyl)bis(2-phenoxy-5-(4-pyridyl)-1,3,4-oxadiazole) cyclotriphosphazene (L) ligand, and a pair of bridging Cl- anions and a terminal Cl- anion further coordinate to the CuII cation to complete the distorted CuCl3N2 square-pyramidal geometry (Ainscough et al., 2008). The N8i-Cu1-N9 angle is 174.68 (1)° and the dihedral angle between C1-C5/N9 and C21i-C25i/N8iis 21.272° (Zhao et al., 2009) [symmetry code: i = -x, -y, 1-z]. The corresponding dihedral angles between the planes of the three rings in one 1,3,4-oxadiazole arm are 9.565° (between C1-C5/N9 and C6-C7-O8/N6-N7) and 5.322° (between C6-C7-O8/N6-N7 and C8-C13), and the corresponding dihedral angles of three rings in the other 1,3,4-oxadiazole arm are 30.941° (between C22-C26/N8 and C20-C21-O8/N4-N5) and 12.694° (between C20-C21-O8/N4-N5 and C14-C19). The Cu-N distances range from 2.021 (3) Å to 2.045 Å which are close to those found in {[Cu(4-bpo)(dca)(H2O)2](NO3)(H2O)}n (4-bp = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, dca = N(CN)2-) (Du et al., 2010). Moreover, the angles of Cl1-Cu1-Cl2 and Cl1-Cu1-Cl2i are 167.54 (5)° and 101.39 (5)°, respectively [symmetry code: i = -x, -y, 1-z]. The bridged Cu-Cl bond length (2.700 (6) Å) is longer than other Cu-Cl bonds (2.261 (9) Å and 2.300 (8) Å) (Ainscough et al., 2008). Additionally, neighbouring CuII cations are connected by two bridged chlorine ions into Cu2Cl2 loops with a Cu···Cu separation 3.522 (1) Å.

In the solid state, binuclear molecules are linked together by weak intramolecular C—H···O and intermolecular C—H···N interactions into one-dimensional double-chains (Figure 2, Table 1).

Related literature top

For our interest in the coordination chemistry of bent organic ligands bridged by five-membered heterocycles such as oxadiazole and triazole, see: Dong et al. (2005, 2007). For the impact of different types of linkages as well as distinct coordinating orientations on the structures of various coordination-driven supramolecular compounds, see: Zhao et al. (2007). For bond lengths and angles in related structures, see see: Ainscough et al. (2008); Du et al. (2010). Zhao et al. (2009).

Experimental top

Preparation of L:

The solution of 2-phenoxy-5-(4-pyridyl)-1,3,4-oxadiazole (0.50 g, 2.1 mmol) in 30 ml THF was added NaH(50.4 mg, 2.1 mmol), the mixture was stirred for 1 h at room temperature, then [N3P3(2,2'-dioxybiphenyl)2Cl2](0.574 g, 1 mmol) in 20 ml THF was added. The mixture was heated at reflux over 3 h, allowed to cool, the precipitation was separated by filtration and washed several times with water, then the residue was purified on a silica gel column using CH2Cl2:MeOH = 20:1 as the eluent to afford L as a white crystalline solid. IR(KBr pellet, cm-1): 1608(m), 1540(w), 1477(m), 1435(m), 1410(w),1276(m), 1233(m), 1175(s), 1090(m), 1033(m), 932(w), 890(s), 818(w), 785(m),750(m), 716(m), 701(m), 630(w), 608(m), 532(m), 409(w). 1H-NMR (300 MHz, 25°C, DMSO-d6,TMS, p.p.m.): 8.41–8.40(d, 2H, –C5H4N), 8.26–8.24(d, 1H, –C6H4O),8.02–7.84(d, 2H, –C5H4N), 7.76(d, 1H, –C6H4O),7.54(t, 1H, p-C6H4O), 7. 51–7.39(m, 3H, –C6H4O,-C12H8O2), 7.28–7.26(m, 4H, –C12H8O2),6.98–6.26(d, 3H, –C6H4O, –C12H8O2).Anal. Calcd. forC50H32N9O8P3: C, 61.29;H, 3.30; N, 12.86. Found: C, 61.33; H, 3.24; N, 12.89.

Preparation of CuII compound:

L (49 mg, 0.05 mmol) in CH2Cl2 (7 ml) and CuCl2.2H2O (9 mg, 0.05 mmol) in CH3OH (7 ml) were mixed. After about one week, green block-shaped crystals were obtained in 75% yield based on L.

Refinement top

H atoms attached to carbon were placed in geometrically idealized positions with C—H = 0.93 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of CuII compound,showing the coordination around CuII. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [symmetry code: (i) -x, -y, -z + 1].
[Figure 2] Fig. 2. A diagram showing weak intermolecular C–H..N interaction.
Bis(µ-4,4;6,6-bis(biphenyl-2,2'-diyldioxy)-2,2-bis{2-[5-(pyridin-4-yl)-1,3,4- oxadiazol-2-yl]phenoxy}cyclotriphosphazene)di-µ-chlorido- bis[chloridocopper(II)] top
Crystal data top
[Cu2Cl4(C50H32N9O8P3)2]Z = 1
Mr = 2228.39F(000) = 1134
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.554 (5) ÅCell parameters from 2838 reflections
b = 14.486 (7) Åθ = 2.2–24.7°
c = 15.551 (8) ŵ = 0.75 mm1
α = 85.401 (7)°T = 298 K
β = 81.984 (7)°Block, green
γ = 89.844 (7)°0.35 × 0.30 × 0.08 mm
V = 2347 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8593 independent reflections
Radiation source: fine-focus sealed tube6217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.779, Tmax = 0.942k = 1713
12440 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.7991P]
where P = (Fo2 + 2Fc2)/3
8593 reflections(Δ/σ)max = 0.001
658 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2Cl4(C50H32N9O8P3)2]γ = 89.844 (7)°
Mr = 2228.39V = 2347 (2) Å3
Triclinic, P1Z = 1
a = 10.554 (5) ÅMo Kα radiation
b = 14.486 (7) ŵ = 0.75 mm1
c = 15.551 (8) ÅT = 298 K
α = 85.401 (7)°0.35 × 0.30 × 0.08 mm
β = 81.984 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8593 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6217 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.942Rint = 0.027
12440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
8593 reflectionsΔρmin = 0.48 e Å3
658 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0712 (4)0.0313 (3)0.2710 (3)0.0457 (11)
H10.02680.08680.28680.055*
C20.1569 (4)0.0249 (3)0.1965 (3)0.0453 (10)
H20.17060.07530.16290.054*
C30.2228 (4)0.0568 (3)0.1715 (3)0.0374 (9)
C40.2035 (4)0.1283 (3)0.2261 (3)0.0465 (11)
H40.25000.18330.21300.056*
C50.1149 (4)0.1168 (3)0.2994 (3)0.0478 (11)
H50.10090.16580.33470.057*
C60.3034 (4)0.0679 (3)0.0879 (3)0.0374 (9)
C70.4205 (4)0.1374 (3)0.0201 (2)0.0362 (9)
C80.4932 (4)0.2111 (3)0.0736 (2)0.0341 (9)
C90.5458 (4)0.1951 (3)0.1588 (3)0.0462 (11)
H90.53710.13690.17870.055*
C100.6096 (4)0.2634 (3)0.2131 (3)0.0518 (12)
H100.64620.25050.26870.062*
C110.6206 (4)0.3511 (3)0.1870 (3)0.0467 (11)
H110.66100.39790.22540.056*
C120.5710 (4)0.3691 (3)0.1029 (3)0.0379 (9)
H120.57810.42810.08450.045*
C130.5108 (3)0.2990 (3)0.0465 (2)0.0317 (9)
C140.7375 (3)0.1807 (2)0.0721 (2)0.0295 (8)
C150.8049 (4)0.2253 (3)0.0015 (3)0.0372 (9)
H150.76720.27380.03140.045*
C160.9278 (4)0.1988 (3)0.0314 (3)0.0448 (10)
H160.97380.23010.08040.054*
C170.9821 (4)0.1253 (3)0.0120 (3)0.0453 (11)
H171.06480.10680.00770.054*
C180.9139 (4)0.0801 (3)0.0839 (3)0.0421 (10)
H180.95150.03080.11280.051*
C190.7891 (4)0.1055 (3)0.1157 (2)0.0340 (9)
C200.7238 (4)0.0482 (3)0.1890 (3)0.0357 (9)
C210.5882 (4)0.0021 (3)0.2956 (3)0.0413 (10)
C220.4747 (4)0.0044 (3)0.3607 (3)0.0408 (10)
C230.4200 (5)0.0890 (3)0.3937 (3)0.0535 (12)
H230.45510.14380.37420.064*
C240.3138 (4)0.0910 (3)0.4553 (3)0.0530 (12)
H240.27720.14830.47590.064*
C250.3143 (4)0.0655 (3)0.4566 (3)0.0544 (12)
H250.27920.11910.47880.065*
C260.4198 (4)0.0741 (3)0.3937 (3)0.0536 (12)
H260.45390.13230.37370.064*
C270.9432 (3)0.4069 (2)0.1586 (2)0.0302 (8)
C281.0052 (4)0.3287 (3)0.1306 (3)0.0423 (10)
H280.96650.27070.14330.051*
C291.1253 (4)0.3382 (3)0.0836 (3)0.0521 (12)
H291.16840.28600.06410.062*
C301.1819 (4)0.4234 (3)0.0652 (3)0.0525 (12)
H301.26300.42890.03290.063*
C311.1200 (4)0.5013 (3)0.0940 (3)0.0440 (10)
H311.15960.55900.08090.053*
C320.9980 (3)0.4944 (3)0.1429 (2)0.0330 (9)
C330.9357 (3)0.5754 (2)0.1815 (2)0.0317 (8)
C341.0032 (4)0.6362 (3)0.2232 (3)0.0449 (10)
H341.08950.62580.22640.054*
C350.9449 (5)0.7115 (3)0.2601 (3)0.0538 (12)
H350.99170.75070.28860.065*
C360.8176 (5)0.7291 (3)0.2551 (3)0.0557 (13)
H360.77880.78040.27960.067*
C370.7478 (4)0.6702 (3)0.2135 (3)0.0436 (10)
H370.66240.68210.20860.052*
C380.8072 (3)0.5931 (2)0.1793 (2)0.0314 (8)
C390.4887 (4)0.3345 (2)0.4399 (2)0.0332 (9)
C400.6046 (4)0.3320 (3)0.4705 (3)0.0419 (10)
H400.67660.30810.43860.050*
C410.6109 (4)0.3662 (3)0.5505 (3)0.0494 (11)
H410.68790.36500.57320.059*
C420.5037 (4)0.4021 (3)0.5964 (3)0.0478 (11)
H420.50830.42440.65040.057*
C430.3902 (4)0.4050 (3)0.5632 (3)0.0440 (10)
H430.31880.43020.59480.053*
C440.3791 (4)0.3712 (3)0.4831 (2)0.0356 (9)
C450.2570 (4)0.3736 (3)0.4468 (3)0.0378 (9)
C460.1428 (4)0.3526 (4)0.4998 (3)0.0613 (13)
H460.14320.33740.55900.074*
C470.0272 (5)0.3538 (4)0.4663 (4)0.0782 (17)
H470.04880.34090.50330.094*
C480.0249 (4)0.3740 (4)0.3794 (4)0.0704 (15)
H480.05220.37290.35700.084*
C490.1367 (4)0.3958 (3)0.3248 (3)0.0502 (11)
H490.13590.41000.26550.060*
C500.2493 (3)0.3961 (3)0.3593 (3)0.0341 (9)
Cl10.18724 (11)0.15324 (8)0.35268 (7)0.0535 (3)
Cl20.02705 (10)0.11280 (7)0.46697 (7)0.0485 (3)
Cu10.10057 (5)0.02987 (3)0.42097 (3)0.04299 (16)
N10.4580 (3)0.3014 (2)0.2006 (2)0.0334 (7)
N20.6647 (3)0.3800 (2)0.09859 (19)0.0323 (7)
N30.5960 (3)0.4339 (2)0.2594 (2)0.0349 (8)
N40.7652 (3)0.0316 (2)0.2173 (3)0.0536 (10)
N50.6752 (4)0.0637 (2)0.2876 (3)0.0573 (10)
N60.3977 (4)0.0552 (3)0.0424 (3)0.0599 (11)
N70.3211 (4)0.0102 (3)0.0285 (3)0.0599 (11)
N80.2597 (3)0.0152 (2)0.4874 (2)0.0429 (8)
N90.0475 (3)0.0384 (2)0.3230 (2)0.0422 (8)
O10.8252 (2)0.39650 (16)0.21153 (16)0.0315 (6)
O20.7351 (2)0.53487 (16)0.13627 (16)0.0332 (6)
O30.4819 (2)0.29617 (16)0.35980 (16)0.0348 (6)
O40.3585 (2)0.42701 (16)0.30209 (16)0.0328 (6)
O50.6110 (2)0.20458 (16)0.10054 (16)0.0322 (6)
O60.4665 (2)0.31792 (16)0.03865 (16)0.0306 (6)
O70.6120 (2)0.07148 (17)0.23493 (17)0.0354 (6)
O80.3621 (2)0.15034 (17)0.06086 (16)0.0357 (6)
P10.55400 (9)0.30498 (6)0.11381 (6)0.0272 (2)
P20.69841 (9)0.43337 (6)0.17686 (6)0.0290 (2)
P30.47897 (9)0.36458 (6)0.27569 (6)0.0295 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.031 (2)0.052 (3)0.0080 (19)0.000 (2)0.0047 (19)
C20.051 (3)0.037 (2)0.047 (3)0.005 (2)0.001 (2)0.0062 (19)
C30.032 (2)0.039 (2)0.040 (2)0.0045 (17)0.0041 (19)0.0002 (18)
C40.051 (3)0.041 (2)0.045 (3)0.018 (2)0.001 (2)0.002 (2)
C50.052 (3)0.038 (2)0.051 (3)0.008 (2)0.002 (2)0.009 (2)
C60.036 (2)0.036 (2)0.041 (2)0.0054 (18)0.0062 (19)0.0015 (18)
C70.035 (2)0.043 (2)0.031 (2)0.0004 (18)0.0019 (18)0.0093 (18)
C80.034 (2)0.039 (2)0.031 (2)0.0005 (17)0.0085 (18)0.0037 (17)
C90.051 (3)0.054 (3)0.036 (3)0.000 (2)0.007 (2)0.012 (2)
C100.049 (3)0.072 (3)0.031 (3)0.003 (2)0.002 (2)0.003 (2)
C110.039 (2)0.059 (3)0.039 (3)0.009 (2)0.008 (2)0.013 (2)
C120.037 (2)0.041 (2)0.037 (2)0.0014 (18)0.0115 (19)0.0049 (18)
C130.0245 (19)0.044 (2)0.027 (2)0.0016 (17)0.0081 (16)0.0002 (17)
C140.029 (2)0.030 (2)0.031 (2)0.0004 (16)0.0055 (17)0.0085 (16)
C150.039 (2)0.038 (2)0.035 (2)0.0017 (18)0.0056 (19)0.0047 (18)
C160.047 (3)0.046 (3)0.039 (2)0.002 (2)0.009 (2)0.010 (2)
C170.035 (2)0.048 (3)0.050 (3)0.007 (2)0.006 (2)0.009 (2)
C180.040 (2)0.035 (2)0.050 (3)0.0127 (19)0.004 (2)0.0047 (19)
C190.035 (2)0.033 (2)0.034 (2)0.0050 (17)0.0053 (18)0.0079 (17)
C200.031 (2)0.034 (2)0.043 (2)0.0031 (17)0.0073 (19)0.0045 (18)
C210.043 (2)0.035 (2)0.045 (3)0.0003 (19)0.003 (2)0.0003 (19)
C220.043 (2)0.036 (2)0.042 (3)0.0013 (19)0.004 (2)0.0021 (18)
C230.065 (3)0.034 (2)0.057 (3)0.001 (2)0.005 (3)0.000 (2)
C240.062 (3)0.035 (2)0.057 (3)0.005 (2)0.009 (2)0.002 (2)
C250.053 (3)0.030 (2)0.075 (4)0.000 (2)0.010 (3)0.004 (2)
C260.050 (3)0.029 (2)0.075 (3)0.006 (2)0.011 (2)0.005 (2)
C270.028 (2)0.033 (2)0.032 (2)0.0014 (16)0.0115 (17)0.0037 (16)
C280.042 (2)0.035 (2)0.053 (3)0.0091 (19)0.015 (2)0.013 (2)
C290.048 (3)0.057 (3)0.055 (3)0.022 (2)0.011 (2)0.020 (2)
C300.032 (2)0.075 (3)0.048 (3)0.015 (2)0.005 (2)0.002 (2)
C310.033 (2)0.050 (3)0.047 (3)0.0009 (19)0.004 (2)0.004 (2)
C320.027 (2)0.035 (2)0.038 (2)0.0000 (16)0.0070 (17)0.0032 (17)
C330.030 (2)0.029 (2)0.035 (2)0.0053 (16)0.0026 (17)0.0024 (16)
C340.041 (2)0.044 (3)0.050 (3)0.013 (2)0.010 (2)0.001 (2)
C350.073 (3)0.035 (2)0.055 (3)0.014 (2)0.011 (3)0.010 (2)
C360.083 (4)0.029 (2)0.052 (3)0.006 (2)0.002 (3)0.007 (2)
C370.047 (3)0.032 (2)0.050 (3)0.0112 (19)0.004 (2)0.0016 (19)
C380.037 (2)0.0268 (19)0.030 (2)0.0067 (16)0.0049 (17)0.0031 (16)
C390.042 (2)0.026 (2)0.032 (2)0.0009 (17)0.0075 (18)0.0056 (16)
C400.043 (2)0.041 (2)0.042 (3)0.0095 (19)0.010 (2)0.0032 (19)
C410.055 (3)0.050 (3)0.048 (3)0.003 (2)0.025 (2)0.001 (2)
C420.069 (3)0.047 (3)0.032 (2)0.000 (2)0.019 (2)0.0078 (19)
C430.056 (3)0.044 (2)0.032 (2)0.005 (2)0.003 (2)0.0062 (18)
C440.043 (2)0.033 (2)0.029 (2)0.0008 (18)0.0039 (18)0.0014 (16)
C450.034 (2)0.045 (2)0.033 (2)0.0004 (18)0.0013 (18)0.0040 (18)
C460.048 (3)0.090 (4)0.039 (3)0.002 (3)0.010 (2)0.010 (2)
C470.032 (3)0.120 (5)0.074 (4)0.003 (3)0.008 (3)0.020 (3)
C480.033 (3)0.105 (4)0.071 (4)0.008 (3)0.011 (3)0.009 (3)
C490.039 (3)0.067 (3)0.045 (3)0.002 (2)0.010 (2)0.001 (2)
C500.030 (2)0.035 (2)0.036 (2)0.0014 (17)0.0028 (18)0.0008 (17)
Cl10.0586 (7)0.0497 (7)0.0504 (7)0.0054 (5)0.0059 (6)0.0038 (5)
Cl20.0525 (6)0.0362 (6)0.0536 (7)0.0018 (5)0.0003 (5)0.0037 (5)
Cu10.0438 (3)0.0355 (3)0.0460 (3)0.0034 (2)0.0028 (2)0.0034 (2)
N10.0297 (17)0.0375 (18)0.0327 (18)0.0091 (14)0.0003 (14)0.0093 (14)
N20.0288 (17)0.0365 (18)0.0306 (18)0.0071 (14)0.0017 (14)0.0060 (14)
N30.0347 (18)0.0342 (18)0.0373 (19)0.0070 (14)0.0036 (15)0.0132 (14)
N40.051 (2)0.038 (2)0.065 (3)0.0100 (18)0.008 (2)0.0075 (18)
N50.059 (2)0.040 (2)0.064 (3)0.0108 (19)0.013 (2)0.0109 (18)
N60.078 (3)0.049 (2)0.050 (2)0.018 (2)0.012 (2)0.0161 (19)
N70.077 (3)0.048 (2)0.051 (3)0.020 (2)0.011 (2)0.0135 (19)
N80.044 (2)0.0320 (19)0.049 (2)0.0043 (16)0.0027 (17)0.0017 (16)
N90.043 (2)0.0317 (19)0.049 (2)0.0015 (15)0.0023 (17)0.0002 (16)
O10.0271 (13)0.0271 (13)0.0404 (16)0.0027 (10)0.0078 (12)0.0023 (11)
O20.0288 (14)0.0320 (14)0.0402 (16)0.0006 (11)0.0099 (12)0.0021 (11)
O30.0455 (16)0.0297 (14)0.0301 (15)0.0030 (12)0.0061 (12)0.0068 (11)
O40.0320 (14)0.0348 (14)0.0299 (15)0.0003 (11)0.0006 (12)0.0006 (11)
O50.0244 (13)0.0305 (14)0.0415 (16)0.0024 (11)0.0046 (12)0.0022 (11)
O60.0260 (13)0.0369 (14)0.0301 (15)0.0021 (11)0.0057 (11)0.0066 (11)
O70.0359 (15)0.0322 (14)0.0367 (16)0.0044 (12)0.0026 (12)0.0021 (12)
O80.0388 (15)0.0338 (15)0.0336 (16)0.0073 (12)0.0004 (12)0.0051 (12)
P10.0260 (5)0.0304 (5)0.0260 (5)0.0018 (4)0.0041 (4)0.0056 (4)
P20.0260 (5)0.0290 (5)0.0322 (6)0.0027 (4)0.0044 (4)0.0039 (4)
P30.0298 (5)0.0305 (5)0.0278 (5)0.0019 (4)0.0002 (4)0.0062 (4)
Geometric parameters (Å, º) top
C1—N91.344 (5)C30—C311.377 (6)
C1—C21.364 (6)C30—H300.9300
C1—H10.9300C31—C321.400 (5)
C2—C31.376 (5)C31—H310.9300
C2—H20.9300C32—C331.472 (5)
C3—C41.387 (5)C33—C381.384 (5)
C3—C61.449 (5)C33—C341.389 (5)
C4—C51.370 (6)C34—C351.377 (6)
C4—H40.9300C34—H340.9300
C5—N91.339 (5)C35—C361.378 (6)
C5—H50.9300C35—H350.9300
C6—N71.289 (5)C36—C371.384 (6)
C6—O81.356 (4)C36—H360.9300
C7—N61.299 (5)C37—C381.387 (5)
C7—O81.349 (4)C37—H370.9300
C7—C81.450 (5)C38—O21.405 (4)
C8—C131.394 (5)C39—C401.372 (5)
C8—C91.401 (5)C39—C441.382 (5)
C9—C101.363 (6)C39—O31.414 (4)
C9—H90.9300C40—C411.386 (5)
C10—C111.375 (6)C40—H400.9300
C10—H100.9300C41—C421.375 (6)
C11—C121.383 (6)C41—H410.9300
C11—H110.9300C42—C431.368 (6)
C12—C131.383 (5)C42—H420.9300
C12—H120.9300C43—C441.394 (5)
C13—O61.390 (4)C43—H430.9300
C14—C151.374 (5)C44—C451.477 (5)
C14—C191.387 (5)C45—C461.382 (6)
C14—O51.399 (4)C45—C501.387 (5)
C15—C161.381 (5)C46—C471.391 (7)
C15—H150.9300C46—H460.9300
C16—C171.380 (6)C47—C481.363 (7)
C16—H160.9300C47—H470.9300
C17—C181.363 (6)C48—C491.376 (6)
C17—H170.9300C48—H480.9300
C18—C191.400 (5)C49—C501.371 (5)
C18—H180.9300C49—H490.9300
C19—C201.448 (5)C50—O41.405 (4)
C20—N41.300 (5)Cl1—Cu12.2619 (14)
C20—O71.348 (4)Cl2—Cu12.3008 (15)
C21—N51.279 (5)Cl2—Cu1i2.7006 (15)
C21—O71.366 (5)Cu1—N92.021 (3)
C21—C221.455 (6)Cu1—N8i2.045 (4)
C22—C261.378 (5)Cu1—Cl2i2.7006 (15)
C22—C231.385 (6)N1—P11.568 (3)
C23—C241.368 (6)N1—P31.579 (3)
C23—H230.9300N2—P21.575 (3)
C24—N81.337 (5)N2—P11.578 (3)
C24—H240.9300N3—P21.560 (3)
C25—N81.329 (5)N3—P31.573 (3)
C25—C261.374 (6)N4—N51.395 (5)
C25—H250.9300N6—N71.391 (5)
C26—H260.9300N8—Cu1i2.045 (4)
C27—C281.377 (5)O1—P21.587 (2)
C27—C321.384 (5)O2—P21.580 (3)
C27—O11.395 (4)O3—P31.580 (3)
C28—C291.373 (6)O4—P31.584 (3)
C28—H280.9300O5—P11.590 (3)
C29—C301.365 (6)O6—P11.587 (2)
C29—H290.9300
N9—C1—C2123.5 (4)C35—C34—H34119.4
N9—C1—H1118.2C33—C34—H34119.4
C2—C1—H1118.2C34—C35—C36120.4 (4)
C1—C2—C3119.3 (4)C34—C35—H35119.8
C1—C2—H2120.4C36—C35—H35119.8
C3—C2—H2120.4C35—C36—C37119.7 (4)
C2—C3—C4118.0 (4)C35—C36—H36120.2
C2—C3—C6119.7 (4)C37—C36—H36120.2
C4—C3—C6122.1 (4)C36—C37—C38119.0 (4)
C5—C4—C3119.1 (4)C36—C37—H37120.5
C5—C4—H4120.5C38—C37—H37120.5
C3—C4—H4120.5C33—C38—C37122.2 (3)
N9—C5—C4123.2 (4)C33—C38—O2119.6 (3)
N9—C5—H5118.4C37—C38—O2118.0 (3)
C4—C5—H5118.4C40—C39—C44123.8 (4)
N7—C6—O8111.7 (4)C40—C39—O3117.5 (3)
N7—C6—C3128.3 (4)C44—C39—O3118.6 (3)
O8—C6—C3119.8 (3)C39—C40—C41117.9 (4)
N6—C7—O8111.7 (4)C39—C40—H40121.1
N6—C7—C8126.8 (4)C41—C40—H40121.1
O8—C7—C8121.4 (3)C42—C41—C40120.2 (4)
C13—C8—C9117.2 (4)C42—C41—H41119.9
C13—C8—C7124.0 (4)C40—C41—H41119.9
C9—C8—C7118.8 (4)C43—C42—C41120.3 (4)
C10—C9—C8121.1 (4)C43—C42—H42119.8
C10—C9—H9119.5C41—C42—H42119.8
C8—C9—H9119.5C42—C43—C44121.5 (4)
C9—C10—C11121.0 (4)C42—C43—H43119.3
C9—C10—H10119.5C44—C43—H43119.3
C11—C10—H10119.5C39—C44—C43116.2 (4)
C10—C11—C12119.4 (4)C39—C44—C45121.8 (3)
C10—C11—H11120.3C43—C44—C45122.0 (4)
C12—C11—H11120.3C46—C45—C50116.4 (4)
C13—C12—C11119.7 (4)C46—C45—C44120.6 (4)
C13—C12—H12120.1C50—C45—C44123.0 (4)
C11—C12—H12120.1C45—C46—C47121.2 (5)
C12—C13—O6118.6 (3)C45—C46—H46119.4
C12—C13—C8121.4 (4)C47—C46—H46119.4
O6—C13—C8120.0 (3)C48—C47—C46120.3 (5)
C15—C14—C19120.9 (3)C48—C47—H47119.9
C15—C14—O5120.8 (3)C46—C47—H47119.9
C19—C14—O5118.0 (3)C47—C48—C49120.0 (4)
C14—C15—C16120.6 (4)C47—C48—H48120.0
C14—C15—H15119.7C49—C48—H48120.0
C16—C15—H15119.7C50—C49—C48118.8 (4)
C17—C16—C15119.5 (4)C50—C49—H49120.6
C17—C16—H16120.3C48—C49—H49120.6
C15—C16—H16120.3C49—C50—C45123.2 (4)
C18—C17—C16119.7 (4)C49—C50—O4116.3 (4)
C18—C17—H17120.2C45—C50—O4120.3 (3)
C16—C17—H17120.2Cu1—Cl2—Cu1i89.14 (5)
C17—C18—C19122.1 (4)N9—Cu1—N8i174.68 (13)
C17—C18—H18119.0N9—Cu1—Cl188.10 (10)
C19—C18—H18119.0N8i—Cu1—Cl190.93 (10)
C14—C19—C18117.2 (4)N9—Cu1—Cl288.67 (10)
C14—C19—C20126.0 (3)N8i—Cu1—Cl291.18 (10)
C18—C19—C20116.8 (3)Cl1—Cu1—Cl2167.54 (5)
N4—C20—O7112.5 (4)N9—Cu1—Cl2i94.56 (11)
N4—C20—C19124.0 (4)N8i—Cu1—Cl2i90.77 (10)
O7—C20—C19123.5 (3)Cl1—Cu1—Cl2i101.39 (5)
N5—C21—O7112.5 (4)Cl2—Cu1—Cl2i90.86 (5)
N5—C21—C22126.9 (4)P1—N1—P3120.96 (19)
O7—C21—C22120.6 (3)P2—N2—P1120.2 (2)
C26—C22—C23117.5 (4)P2—N3—P3121.78 (18)
C26—C22—C21123.2 (4)C20—N4—N5105.9 (3)
C23—C22—C21119.3 (4)C21—N5—N4106.6 (3)
C24—C23—C22119.2 (4)C7—N6—N7106.3 (3)
C24—C23—H23120.4C6—N7—N6106.7 (3)
C22—C23—H23120.4C25—N8—C24116.7 (4)
N8—C24—C23123.6 (4)C25—N8—Cu1i124.4 (3)
N8—C24—H24118.2C24—N8—Cu1i118.8 (3)
C23—C24—H24118.2C5—N9—C1116.7 (4)
N8—C25—C26123.5 (4)C5—N9—Cu1122.2 (3)
N8—C25—H25118.2C1—N9—Cu1120.5 (3)
C26—C25—H25118.2C27—O1—P2120.5 (2)
C25—C26—C22119.4 (4)C38—O2—P2120.3 (2)
C25—C26—H26120.3C39—O3—P3118.2 (2)
C22—C26—H26120.3C50—O4—P3124.2 (2)
C28—C27—C32122.7 (4)C14—O5—P1128.2 (2)
C28—C27—O1118.5 (3)C13—O6—P1121.9 (2)
C32—C27—O1118.5 (3)C20—O7—C21102.5 (3)
C29—C28—C27118.7 (4)C7—O8—C6103.6 (3)
C29—C28—H28120.7N1—P1—N2118.73 (16)
C27—C28—H28120.7N1—P1—O6104.80 (15)
C30—C29—C28120.5 (4)N2—P1—O6110.24 (15)
C30—C29—H29119.7N1—P1—O5109.29 (16)
C28—C29—H29119.7N2—P1—O5110.41 (15)
C29—C30—C31120.5 (4)O6—P1—O5101.93 (13)
C29—C30—H30119.7N3—P2—N2117.71 (16)
C31—C30—H30119.7N3—P2—O2111.60 (15)
C30—C31—C32120.6 (4)N2—P2—O2105.09 (16)
C30—C31—H31119.7N3—P2—O1105.30 (16)
C32—C31—H31119.7N2—P2—O1112.52 (15)
C27—C32—C31116.9 (3)O2—P2—O1103.87 (13)
C27—C32—C33121.6 (3)N3—P3—N1118.07 (17)
C31—C32—C33121.3 (3)N3—P3—O3112.23 (16)
C38—C33—C34117.3 (3)N1—P3—O3105.70 (16)
C38—C33—C32121.5 (3)N3—P3—O4104.77 (15)
C34—C33—C32121.2 (3)N1—P3—O4112.16 (15)
C35—C34—C33121.3 (4)O3—P3—O4103.00 (14)
N9—C1—C2—C30.6 (7)C46—C47—C48—C491.9 (9)
C1—C2—C3—C43.1 (6)C47—C48—C49—C500.5 (8)
C1—C2—C3—C6173.3 (4)C48—C49—C50—C451.4 (7)
C2—C3—C4—C53.7 (6)C48—C49—C50—O4174.4 (4)
C6—C3—C4—C5172.6 (4)C46—C45—C50—C491.8 (6)
C3—C4—C5—N91.9 (7)C44—C45—C50—C49178.0 (4)
C2—C3—C6—N72.3 (7)C46—C45—C50—O4173.8 (4)
C4—C3—C6—N7173.9 (4)C44—C45—C50—O46.3 (6)
C2—C3—C6—O8175.9 (4)Cu1i—Cl2—Cu1—N994.54 (11)
C4—C3—C6—O80.3 (6)Cu1i—Cl2—Cu1—N8i90.78 (11)
N6—C7—C8—C13177.9 (4)Cu1i—Cl2—Cu1—Cl1169.5 (2)
O8—C7—C8—C131.2 (6)Cu1i—Cl2—Cu1—Cl2i0.0
N6—C7—C8—C90.2 (6)O7—C20—N4—N50.4 (5)
O8—C7—C8—C9176.5 (3)C19—C20—N4—N5179.7 (4)
C13—C8—C9—C101.0 (6)O7—C21—N5—N40.0 (5)
C7—C8—C9—C10176.8 (4)C22—C21—N5—N4179.3 (4)
C8—C9—C10—C112.2 (7)C20—N4—N5—C210.2 (5)
C9—C10—C11—C122.9 (6)O8—C7—N6—N71.0 (5)
C10—C11—C12—C130.2 (6)C8—C7—N6—N7178.0 (4)
C11—C12—C13—O6177.4 (3)O8—C6—N7—N61.0 (5)
C11—C12—C13—C83.2 (6)C3—C6—N7—N6175.0 (4)
C9—C8—C13—C123.7 (5)C7—N6—N7—C60.0 (5)
C7—C8—C13—C12174.0 (3)C26—C25—N8—C241.1 (7)
C9—C8—C13—O6176.8 (3)C26—C25—N8—Cu1i178.7 (4)
C7—C8—C13—O65.5 (5)C23—C24—N8—C250.1 (7)
C19—C14—C15—C162.9 (6)C23—C24—N8—Cu1i179.8 (4)
O5—C14—C15—C16177.2 (3)C4—C5—N9—C10.7 (6)
C14—C15—C16—C171.5 (6)C4—C5—N9—Cu1170.6 (3)
C15—C16—C17—C180.2 (6)C2—C1—N9—C51.4 (6)
C16—C17—C18—C190.2 (6)C2—C1—N9—Cu1170.1 (3)
C15—C14—C19—C182.8 (5)N8i—Cu1—N9—C5133.5 (13)
O5—C14—C19—C18177.3 (3)Cl1—Cu1—N9—C554.0 (3)
C15—C14—C19—C20174.4 (3)Cl2—Cu1—N9—C5138.0 (3)
O5—C14—C19—C200.1 (5)Cl2i—Cu1—N9—C547.2 (3)
C17—C18—C19—C141.4 (6)N8i—Cu1—N9—C137.5 (15)
C17—C18—C19—C20176.0 (4)Cl1—Cu1—N9—C1117.0 (3)
C14—C19—C20—N4165.9 (4)Cl2—Cu1—N9—C151.0 (3)
C18—C19—C20—N411.3 (6)Cl2i—Cu1—N9—C1141.8 (3)
C14—C19—C20—O713.3 (6)C28—C27—O1—P2113.1 (3)
C18—C19—C20—O7169.6 (3)C32—C27—O1—P272.5 (4)
N5—C21—C22—C26147.9 (5)C33—C38—O2—P271.7 (4)
O7—C21—C22—C2631.5 (6)C37—C38—O2—P2112.3 (3)
N5—C21—C22—C2330.1 (7)C40—C39—O3—P3103.8 (4)
O7—C21—C22—C23150.6 (4)C44—C39—O3—P377.0 (4)
C26—C22—C23—C241.5 (7)C49—C50—O4—P3116.9 (3)
C21—C22—C23—C24179.5 (4)C45—C50—O4—P367.1 (4)
C22—C23—C24—N81.3 (7)C15—C14—O5—P149.2 (4)
N8—C25—C26—C220.9 (8)C19—C14—O5—P1136.3 (3)
C23—C22—C26—C250.5 (7)C12—C13—O6—P189.1 (4)
C21—C22—C26—C25178.5 (4)C8—C13—O6—P191.4 (4)
C32—C27—C28—C291.4 (6)N4—C20—O7—C210.5 (4)
O1—C27—C28—C29175.6 (3)C19—C20—O7—C21179.7 (3)
C27—C28—C29—C300.1 (6)N5—C21—O7—C200.3 (5)
C28—C29—C30—C310.5 (7)C22—C21—O7—C20179.1 (3)
C29—C30—C31—C320.2 (7)N6—C7—O8—C61.5 (4)
C28—C27—C32—C311.9 (5)C8—C7—O8—C6178.7 (3)
O1—C27—C32—C31176.1 (3)N7—C6—O8—C71.6 (4)
C28—C27—C32—C33173.3 (3)C3—C6—O8—C7176.1 (3)
O1—C27—C32—C330.9 (5)P3—N1—P1—N26.0 (3)
C30—C31—C32—C271.3 (6)P3—N1—P1—O6129.6 (2)
C30—C31—C32—C33173.9 (4)P3—N1—P1—O5121.8 (2)
C27—C32—C33—C3847.2 (5)P2—N2—P1—N114.5 (3)
C31—C32—C33—C38137.8 (4)P2—N2—P1—O6135.4 (2)
C27—C32—C33—C34131.5 (4)P2—N2—P1—O5112.8 (2)
C31—C32—C33—C3443.5 (6)C13—O6—P1—N1162.0 (3)
C38—C33—C34—C350.7 (6)C13—O6—P1—N269.2 (3)
C32—C33—C34—C35179.4 (4)C13—O6—P1—O548.1 (3)
C33—C34—C35—C361.1 (7)C14—O5—P1—N1137.8 (3)
C34—C35—C36—C370.7 (7)C14—O5—P1—N25.5 (3)
C35—C36—C37—C381.4 (7)C14—O5—P1—O6111.7 (3)
C34—C33—C38—C372.8 (6)P3—N3—P2—N215.3 (3)
C32—C33—C38—C37178.4 (4)P3—N3—P2—O2136.9 (2)
C34—C33—C38—O2178.6 (3)P3—N3—P2—O1111.0 (2)
C32—C33—C38—O22.6 (5)P1—N2—P2—N318.9 (3)
C36—C37—C38—C333.3 (6)P1—N2—P2—O2143.86 (19)
C36—C37—C38—O2179.1 (4)P1—N2—P2—O1103.8 (2)
C44—C39—C40—C411.7 (6)C38—O2—P2—N371.1 (3)
O3—C39—C40—C41177.6 (3)C38—O2—P2—N2160.3 (3)
C39—C40—C41—C420.6 (6)C38—O2—P2—O141.9 (3)
C40—C41—C42—C430.6 (7)C27—O1—P2—N3165.3 (2)
C41—C42—C43—C440.8 (7)C27—O1—P2—N265.3 (3)
C40—C39—C44—C431.5 (6)C27—O1—P2—O247.8 (3)
O3—C39—C44—C43177.8 (3)P2—N3—P3—N17.1 (3)
C40—C39—C44—C45179.1 (4)P2—N3—P3—O3116.2 (2)
O3—C39—C44—C451.7 (6)P2—N3—P3—O4132.7 (2)
C42—C43—C44—C390.2 (6)P1—N1—P3—N32.3 (3)
C42—C43—C44—C45179.7 (4)P1—N1—P3—O3124.2 (2)
C39—C44—C45—C46138.6 (4)P1—N1—P3—O4124.2 (2)
C43—C44—C45—C4640.9 (6)C39—O3—P3—N355.3 (3)
C39—C44—C45—C5041.3 (6)C39—O3—P3—N1174.7 (3)
C43—C44—C45—C50139.3 (4)C39—O3—P3—O456.9 (3)
C50—C45—C46—C470.4 (7)C50—O4—P3—N3148.7 (3)
C44—C45—C46—C47179.5 (5)C50—O4—P3—N182.0 (3)
C45—C46—C47—C481.5 (9)C50—O4—P3—O331.2 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O30.932.383.271 (5)160
C36—H36···N5ii0.932.513.396 (6)159
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C50H32N9O8P3)2]
Mr2228.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.554 (5), 14.486 (7), 15.551 (8)
α, β, γ (°)85.401 (7), 81.984 (7), 89.844 (7)
V3)2347 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.35 × 0.30 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.779, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
12440, 8593, 6217
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.02
No. of reflections8593
No. of parameters658
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.48

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···O30.932.383.271 (5)160
C36—H36···N5i0.932.513.396 (6)159
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the NSFC (Nos. 91027003 and 21072118), the 973 Program (No. 2012CB821705), the PCSIRT, the Shangdong Natural Science Foundation (No. JQ200803) and the Taishan Scholars' Construction Project Special Fund in China.

References

First citationAinscough, E. W., Brodie, A. M., Davidson, R. J., Moubaraki, B., Murray, K. M., Otter, C. A. & Waterland, M. R. (2008). Inorg. Chem. 47, 9182–9192.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Wang, H.-Y., Ma, J.-P., Shen, D.-Z. & Huang, R.-Q. (2005). Inorg. Chem. 44, 4679–4692.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, Y.-B., Wang, P., Ma, J.-P., Wang, H.-Y., Tang, B. & Huang, R.-Q. (2007). J. Am. Chem. Soc. 129, 4872–4873.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Wang, Q., Li, C.-P., Zhao, X.-J. & Ribas, J. (2010). Cryst. Growth Des. 10, 3285–3296.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X.-X., Ma, J.-P., Dong, Y.-B., Huang, R.-Q. & Lai, T.-S. (2007). Cryst. Growth Des. 7, 1058–1068.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, X.-X., Ma, J.-P., Shen, D.-Z., Dong, Y.-B. & Huang, R.-Q. (2009). CrystEngComm, 11, 1281–1290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m648-m649
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds