metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m601-m602

catena-Poly[[aqua­(2-iodo­benzoato-κO)cobalt(II)]-μ-aqua-μ-2-iodo­benzoato-κ2O:O′]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 29 March 2012; accepted 5 April 2012; online 18 April 2012)

The asymmetric unit of the polymeric title compound, [Co(C7H4IO2)2(H2O)2]n, contains one CoII cation, two iodo­benzoate anions and two water mol­ecules. One iodo­benzoate anion and one water mol­ecule bridge adjacent Co cations, forming a polymeric chain running along the a axis, while the other iodo­benzoate anion and water mol­ecule coordinate in a monodentate manner to the CoII cation, completing the slightly distorted octa­hedral geometry. In the two independent anionic ligands, the carboxyl­ate groups are twisted away from the attached benzene rings by 51.38 (18) and 39.89 (11)°, and the two benzene rings are nearly perpendicular to each other with a dihedral angle of 86.09 (10)°. Intra­molecular O—H⋯O hydrogen bonds between coordinating water mol­ecules and adjacent carboxyl­ate O atoms help to stabilize the mol­ecular structure. In the crystal, weak C—H⋯O hydrogen bonds link the polymeric chains into a three-dimentional supra­molecular network.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1399-m1400.], 2010a[Hökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m734-m735.],b[Hökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m953-m954.], 2011[Hökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057-m1058.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m1003-m1004.]); Zaman et al. (2012[Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m257-m258.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4IO2)2(H2O)2]

  • Mr = 588.97

  • Orthorhombic, P 21 21 21

  • a = 7.5051 (3) Å

  • b = 10.5639 (4) Å

  • c = 21.6723 (9) Å

  • V = 1718.25 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.62 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.313, Tmax = 0.456

  • 30167 measured reflections

  • 4313 independent reflections

  • 4300 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.20

  • 4313 reflections

  • 224 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −1.03 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1835 Friedel pairs

  • Flack parameter: 0.016 (19)

Table 1
Selected bond lengths (Å)

Co1—O2 2.118 (2)
Co1—O3i 2.021 (2)
Co1—O4 2.016 (2)
Co1—O5 2.124 (2)
Co1—O5i 2.151 (2)
Co1—O6 2.110 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O1ii 0.86 (3) 1.64 (3) 2.486 (3) 167 (5)
O6—H61⋯O2i 0.86 (2) 1.92 (2) 2.742 (3) 161 (4)
C4—H4⋯O1iii 0.95 2.56 3.364 (4) 142
C13—H13⋯O4iv 0.95 2.58 3.495 (4) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound, (I), contains one CoII ion, two 2-iodobenzoate (IB) ligands and two water molecules (Fig. 1). In the crystal of the title compound, each CoII ion is coordinated by one IB ligand, one water molecule, two symmetry related IB ligands and two symmetry related water molecules, while the symmetry related Co(II) ions are bridged by the two O atoms of the symmetry related IB ligands and the two O atoms of the two symmetry related water molecules forming a polymeric chain. The coordination around the Co(II) ion is a slightly distorted octahedral (Fig. 2).

The crystal structures of some benzoate containing polymeric complexes of MnII, ZnII and PbII ions, [Mn2(C8H7O2)4(C10H14N2O)2(H2O)]n (Hökelek et al., 2010a), [Mn(C7H4FO2)2(H2O)2]n (Necefoğlu et al., 2011), [Zn(C8H5O3)2(C6H6N2O)]n (Hökelek et al., 2009), [Pb(C8H7O2)2(C6H6N2O)]n (Hökelek et al., 2010b), {[Pb(C9H9O2)2(C6H6N2O)].H2O}n (Hökelek et al., 2011), {[Pb(C7H5O3)2(C6H6N2O)].H2O}n (Zaman et al., 2012) have also been reported.

In the title compound, the four O atoms (O2, O3', O4 and O6) in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related O atoms of the water molecules (O5 and O5') in the axial positions. The near equalities of the C1—O1 [1.252 (4) Å], C1—O2 [1.267 (4) Å], C8—O3 [1.251 (4) Å] and C8—O4 [1.260 (4) Å] bonds in the carboxylate groups indicate delocalized bonding arrangement, rather than localized single and double bonds. The average Co—O bond lengths are 2.052 (2) Å (for benzoate oxygens) and 2.128 (2) Å (for water oxygens) (Table 1) close to standard values (Allen et al., 1987). The Co atom is displaced out of the mean-planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by -0.5163 (4) and 0.3155 (4) Å, respectively. The dihedral angles between the planar carboxylate groups (O1/C1/O2) and (O3/C8/O4) and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 51.38 (18) and 39.89 (11) °, respectively. The benzene rings are oriented at a dihedral angle of A/B = 86.09 (10)°.

In the crystal, O-H···O and weak C-H···O hydrogen bonds (Table 2) link the molecules into a three-dimentional supramolecular network. A weak C-H···π interaction is also found in the crystal structure.

Related literature top

For niacin, see: Krishnamachari (1974) and for infomation on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (2009, 2010a,b, 2011); Necefoğlu et al. (2011); Zaman et al. (2012). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CoSO4.7H2O (1.41 g, 5 mmol) in H2O (100 ml) with sodium 2-iodobenzoate (2.70 g, 10 mmol) in H2O (50 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving orange single crystals.

Refinement top

Atoms H51, H52, H61 and H62 (for H2O) were located in a difference Fourier map and were refined by applying restraints. The C-bound H-atoms were positioned geometrically with C—H = 0.95 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the polymeric chain of the title compound.
catena-Poly[[aqua(2-iodobenzoato-κO)cobalt(II)]- µ-aqua-µ-2-iodobenzoato-κ2O:O'] top
Crystal data top
[Co(C7H4IO2)2(H2O)2]F(000) = 1108
Mr = 588.97Dx = 2.277 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9972 reflections
a = 7.5051 (3) Åθ = 2.7–28.4°
b = 10.5639 (4) ŵ = 4.62 mm1
c = 21.6723 (9) ÅT = 100 K
V = 1718.25 (12) Å3Block, orange
Z = 40.26 × 0.23 × 0.17 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4313 independent reflections
Radiation source: fine-focus sealed tube4300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.313, Tmax = 0.456k = 1314
30167 measured reflectionsl = 2928
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0209P)2 + 2.2878P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.002
4313 reflectionsΔρmax = 0.60 e Å3
224 parametersΔρmin = 1.03 e Å3
8 restraintsAbsolute structure: Flack (1983), 1835 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (19)
Crystal data top
[Co(C7H4IO2)2(H2O)2]V = 1718.25 (12) Å3
Mr = 588.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5051 (3) ŵ = 4.62 mm1
b = 10.5639 (4) ÅT = 100 K
c = 21.6723 (9) Å0.26 × 0.23 × 0.17 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4300 reflections with I > 2σ(I)
Tmin = 0.313, Tmax = 0.456Rint = 0.037
30167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.60 e Å3
S = 1.20Δρmin = 1.03 e Å3
4313 reflectionsAbsolute structure: Flack (1983), 1835 Friedel pairs
224 parametersAbsolute structure parameter: 0.016 (19)
8 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.14075 (3)0.58295 (2)0.834432 (12)0.02259 (6)
I20.86998 (3)0.04434 (2)0.858655 (9)0.01608 (6)
Co10.81243 (5)0.25155 (4)0.997594 (19)0.00670 (8)
O11.0232 (3)0.2952 (2)0.86860 (10)0.0128 (5)
O20.7492 (3)0.3161 (2)0.90771 (10)0.0107 (4)
O30.4106 (3)0.0744 (2)0.98386 (11)0.0136 (5)
O40.7100 (3)0.0786 (2)0.98080 (11)0.0122 (4)
O50.5662 (3)0.3202 (2)1.03253 (11)0.0093 (4)
H510.562 (7)0.289 (4)1.0690 (12)0.030 (14)*
H520.561 (7)0.4004 (18)1.037 (2)0.034 (14)*
O60.8845 (3)0.1971 (2)1.08789 (11)0.0148 (5)
H610.993 (3)0.190 (5)1.100 (2)0.021 (12)*
H620.824 (6)0.151 (5)1.113 (2)0.048 (17)*
C10.8667 (5)0.3361 (3)0.86686 (13)0.0104 (5)
C20.8126 (4)0.4134 (3)0.81193 (14)0.0125 (6)
C30.9090 (5)0.5170 (3)0.79051 (15)0.0161 (7)
C40.8484 (6)0.5875 (4)0.74032 (16)0.0229 (8)
H40.91160.66070.72730.027*
C50.6959 (6)0.5502 (5)0.70965 (16)0.0311 (10)
H50.65600.59670.67480.037*
C60.6007 (6)0.4452 (5)0.72940 (19)0.0329 (10)
H60.49690.41920.70780.040*
C70.6571 (5)0.3786 (4)0.78044 (16)0.0201 (7)
H70.58970.30820.79450.024*
C80.5602 (4)0.0274 (3)0.97274 (13)0.0082 (5)
C90.5600 (4)0.1065 (3)0.94894 (14)0.0081 (5)
C100.6767 (4)0.1532 (3)0.90444 (13)0.0088 (6)
C110.6674 (4)0.2780 (3)0.88547 (15)0.0134 (6)
H110.74350.30720.85350.016*
C120.5480 (5)0.3607 (3)0.91279 (16)0.0157 (7)
H120.54500.44710.90060.019*
C130.4330 (5)0.3169 (3)0.95795 (18)0.0183 (7)
H130.35210.37330.97740.022*
C140.4365 (5)0.1903 (3)0.97459 (15)0.0137 (6)
H140.35310.15991.00400.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01863 (11)0.01494 (11)0.03419 (13)0.00281 (9)0.00237 (10)0.00476 (9)
I20.01887 (10)0.01658 (10)0.01281 (9)0.00775 (9)0.00753 (8)0.00351 (8)
Co10.00702 (19)0.00527 (16)0.00782 (16)0.00060 (14)0.00006 (14)0.00093 (15)
O10.0111 (11)0.0154 (11)0.0118 (11)0.0016 (9)0.0016 (8)0.0024 (9)
O20.0092 (11)0.0128 (11)0.0102 (10)0.0004 (9)0.0007 (8)0.0018 (8)
O30.0117 (11)0.0071 (10)0.0221 (12)0.0017 (8)0.0011 (8)0.0025 (9)
O40.0091 (10)0.0069 (10)0.0208 (11)0.0004 (8)0.0004 (9)0.0025 (9)
O50.0088 (10)0.0056 (10)0.0135 (11)0.0002 (8)0.0002 (8)0.0014 (8)
O60.0092 (11)0.0205 (12)0.0146 (11)0.0002 (10)0.0005 (9)0.0039 (9)
C10.0114 (13)0.0107 (13)0.0092 (13)0.0034 (12)0.0005 (12)0.0020 (10)
C20.0144 (15)0.0163 (15)0.0067 (13)0.0044 (12)0.0008 (11)0.0022 (11)
C30.0202 (17)0.0169 (17)0.0111 (14)0.0077 (13)0.0059 (12)0.0005 (12)
C40.032 (2)0.0222 (17)0.0145 (16)0.0163 (17)0.0104 (15)0.0081 (13)
C50.039 (2)0.044 (3)0.0107 (15)0.023 (2)0.0014 (15)0.0072 (16)
C60.028 (2)0.053 (3)0.0177 (17)0.012 (2)0.0096 (15)0.0045 (19)
C70.0167 (17)0.0296 (19)0.0139 (15)0.0014 (15)0.0035 (13)0.0010 (13)
C80.0106 (13)0.0065 (14)0.0075 (12)0.0013 (11)0.0005 (10)0.0006 (10)
C90.0093 (13)0.0054 (13)0.0096 (13)0.0005 (11)0.0006 (11)0.0011 (10)
C100.0101 (14)0.0111 (15)0.0052 (12)0.0006 (11)0.0000 (10)0.0003 (10)
C110.0139 (16)0.0139 (15)0.0124 (14)0.0004 (12)0.0018 (12)0.0059 (11)
C120.0186 (17)0.0083 (15)0.0202 (16)0.0011 (13)0.0010 (13)0.0066 (12)
C130.0198 (17)0.0116 (16)0.0235 (17)0.0066 (14)0.0052 (14)0.0014 (13)
C140.0161 (15)0.0118 (15)0.0132 (14)0.0038 (13)0.0063 (12)0.0041 (12)
Geometric parameters (Å, º) top
I1—C32.102 (4)C3—C41.395 (5)
I2—C102.100 (3)C4—C51.381 (7)
Co1—O22.118 (2)C4—H40.9500
Co1—O3i2.021 (2)C5—C61.387 (7)
Co1—O42.016 (2)C5—H50.9500
Co1—O52.124 (2)C6—C71.377 (5)
Co1—O5i2.151 (2)C6—H60.9500
Co1—O62.110 (2)C7—C21.400 (5)
O1—C11.252 (4)C7—H70.9500
O2—C11.267 (4)C8—C91.506 (4)
O3—Co1ii2.021 (2)C9—C101.393 (4)
O3—C81.251 (4)C9—C141.397 (4)
O4—C81.260 (4)C11—C101.382 (4)
O5—Co1ii2.151 (2)C11—H110.9500
O5—H510.855 (19)C12—C111.385 (5)
O5—H520.855 (18)C12—H120.9500
O6—H610.854 (18)C13—C121.385 (5)
O6—H620.86 (2)C13—H130.9500
C2—C11.499 (4)C14—C131.385 (4)
C3—C21.392 (5)C14—H140.9500
O2—Co1—O591.32 (9)C4—C3—I1116.5 (3)
O2—Co1—O5i91.88 (9)C5—C4—C3119.5 (4)
O3i—Co1—O688.28 (10)C5—C4—H4120.2
O3i—Co1—O288.37 (10)C3—C4—H4120.2
O3i—Co1—O586.32 (9)C4—C5—C6120.5 (3)
O3i—Co1—O5i93.32 (9)C4—C5—H5119.8
O4—Co1—O292.32 (9)C6—C5—H5119.8
O4—Co1—O3i178.57 (10)C7—C6—C5119.8 (4)
O4—Co1—O592.41 (9)C7—C6—H6120.1
O4—Co1—O5i87.92 (9)C5—C6—H6120.1
O4—Co1—O691.04 (10)C6—C7—C2120.9 (4)
O5—Co1—O5i176.77 (4)C6—C7—H7119.5
O6—Co1—O2176.58 (10)C2—C7—H7119.5
O6—Co1—O589.15 (9)O3—C8—O4127.2 (3)
O6—Co1—O5i87.63 (9)O3—C8—C9116.0 (3)
C1—O2—Co1122.7 (2)O4—C8—C9116.8 (3)
C8—O3—Co1ii136.6 (2)C10—C9—C8124.7 (3)
C8—O4—Co1139.0 (2)C10—C9—C14117.9 (3)
Co1—O5—Co1ii122.81 (10)C14—C9—C8117.3 (3)
Co1—O5—H51103 (3)C9—C10—I2124.6 (2)
Co1ii—O5—H5197 (4)C11—C10—I2114.6 (2)
Co1—O5—H52115 (4)C11—C10—C9120.8 (3)
Co1ii—O5—H52110 (4)C10—C11—C12120.5 (3)
H51—O5—H52106 (4)C10—C11—H11119.8
Co1—O6—H61123 (3)C12—C11—H11119.8
Co1—O6—H62127 (4)C11—C12—H12120.2
H61—O6—H62106 (4)C13—C12—C11119.6 (3)
O1—C1—O2125.1 (3)C13—C12—H12120.2
O1—C1—C2117.8 (3)C12—C13—H13120.1
O2—C1—C2117.2 (3)C14—C13—C12119.7 (3)
C3—C2—C1123.5 (3)C14—C13—H13120.1
C3—C2—C7118.5 (3)C9—C14—H14119.3
C7—C2—C1118.0 (3)C13—C14—C9121.4 (3)
C2—C3—I1122.7 (2)C13—C14—H14119.3
C2—C3—C4120.7 (4)
O3i—Co1—O2—C172.6 (2)C4—C3—C2—C1177.9 (3)
O4—Co1—O2—C1108.6 (2)C4—C3—C2—C72.4 (5)
O5—Co1—O2—C1158.9 (2)I1—C3—C4—C5179.4 (3)
O5i—Co1—O2—C120.6 (2)C2—C3—C4—C53.3 (5)
O2—Co1—O4—C870.4 (3)C3—C4—C5—C61.6 (6)
O5—Co1—O4—C821.0 (3)C4—C5—C6—C70.9 (6)
O5i—Co1—O4—C8162.2 (3)C5—C6—C7—C21.7 (6)
O6—Co1—O4—C8110.2 (3)C6—C7—C2—C1179.6 (3)
O2—Co1—O5—Co1ii63.36 (13)C6—C7—C2—C30.1 (5)
O3i—Co1—O5—Co1ii151.65 (14)O3—C8—C9—C10142.8 (3)
O4—Co1—O5—Co1ii29.01 (13)O3—C8—C9—C1438.8 (4)
O6—Co1—O5—Co1ii120.02 (13)O4—C8—C9—C1039.0 (4)
Co1—O2—C1—O116.8 (4)O4—C8—C9—C14139.4 (3)
Co1—O2—C1—C2164.0 (2)C8—C9—C10—I22.7 (4)
Co1ii—O3—C8—O414.0 (5)C8—C9—C10—C11179.7 (3)
Co1ii—O3—C8—C9168.0 (2)C14—C9—C10—I2178.9 (2)
Co1—O4—C8—O313.8 (5)C14—C9—C10—C111.4 (5)
Co1—O4—C8—C9168.2 (2)C8—C9—C14—C13176.5 (3)
C3—C2—C1—O151.1 (4)C10—C9—C14—C132.0 (5)
C3—C2—C1—O2129.7 (3)C12—C11—C10—I2178.7 (3)
C7—C2—C1—O1128.6 (3)C12—C11—C10—C93.5 (5)
C7—C2—C1—O250.7 (4)C13—C12—C11—C102.2 (5)
I1—C3—C2—C12.0 (4)C14—C13—C12—C111.1 (6)
I1—C3—C2—C7178.3 (2)C9—C14—C13—C123.2 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1ii0.86 (3)1.64 (3)2.486 (3)167 (5)
O6—H61···O2i0.86 (2)1.92 (2)2.742 (3)161 (4)
C4—H4···O1iii0.952.563.364 (4)142
C13—H13···O4iv0.952.583.495 (4)162
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2; (iii) x+2, y+1/2, z+3/2; (iv) x1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Co(C7H4IO2)2(H2O)2]
Mr588.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.5051 (3), 10.5639 (4), 21.6723 (9)
V3)1718.25 (12)
Z4
Radiation typeMo Kα
µ (mm1)4.62
Crystal size (mm)0.26 × 0.23 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.313, 0.456
No. of measured, independent and
observed [I > 2σ(I)] reflections
30167, 4313, 4300
Rint0.037
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.20
No. of reflections4313
No. of parameters224
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 1.03
Absolute structureFlack (1983), 1835 Friedel pairs
Absolute structure parameter0.016 (19)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O22.118 (2)Co1—O52.124 (2)
Co1—O3i2.021 (2)Co1—O5i2.151 (2)
Co1—O42.016 (2)Co1—O62.110 (2)
Symmetry code: (i) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O1ii0.86 (3)1.64 (3)2.486 (3)167 (5)
O6—H61···O2i0.86 (2)1.92 (2)2.742 (3)161 (4)
C4—H4···O1iii0.952.563.364 (4)142
C13—H13···O4iv0.952.583.495 (4)162
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z+2; (iii) x+2, y+1/2, z+3/2; (iv) x1/2, y1/2, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m734–m735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010b). Acta Cryst. E66, m953–m954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057–m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1399–m1400.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m1003–m1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m257–m258.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m601-m602
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds