metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(4-meth­­oxy­anilinium) hexa­chloridobismuthate(III) chloride monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 8 April 2012; accepted 18 April 2012; online 21 April 2012)

In the crystal of the title compound, (C7H10NO)4[BiCl6]Cl·H2O, the BiIII cation is located on an inversion center and coordinated by six Cl anions in a slightly distorted octa­hedral geometry; the uncoordinated Cl anion and lattice water mol­ecule are located on a twofold rotation axis. Two independent 4-meth­oxy­anilinium cations are linked to the Bi complex, the uncoordinated Cl anion and lattice water mol­ecule via N—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For background literature concerning ferroelectric metal-organic complexes, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For related structures, see: Liu (2011a[Liu, M.-L. (2011a). Acta Cryst. E67, m1622.],b[Liu, M.-L. (2011b). Acta Cryst. E67, m1812.],c[Liu, M.-L. (2011c). Acta Cryst. E67, m1827.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10NO)4[BiCl6]Cl·H2O

  • Mr = 971.79

  • Monoclinic, C 2/c

  • a = 25.806 (5) Å

  • b = 7.7081 (15) Å

  • c = 19.550 (4) Å

  • β = 104.27 (3)°

  • V = 3768.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.22 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.350, Tmax = 0.364

  • 18912 measured reflections

  • 4320 independent reflections

  • 3223 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.065

  • S = 1.07

  • 4320 reflections

  • 212 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.89 2.01 2.862 (5) 161
N1—H1B⋯Cl2 0.89 2.41 3.224 (4) 152
N1—H1C⋯Cl1 0.89 2.37 3.231 (4) 165
N2—H2A⋯Cl3i 0.89 2.67 3.411 (4) 141
N2—H2A⋯Cl2ii 0.89 2.68 3.330 (4) 131
N2—H2B⋯Cl4iii 0.89 2.78 3.312 (3) 120
N2—H2B⋯Cl3iv 0.89 2.83 3.648 (4) 153
N2—H2C⋯Cl1iii 0.89 2.55 3.418 (4) 167
O3—H3B⋯Cl1v 0.85 (1) 2.70 (2) 3.202 (6) 119 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (v) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Zhang et al. 2009; Ye et al. 2009; Zhang et al. 2010). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The title compound, [(C7H10NO)4BiCl6]Cl.H2O, has an asymmetric unit that consists of two 4-methoxyanilinium cations, half an octahedral hexachloridobismuthate anion, a chloride anion, and half a water molecule (Fig 1). The non-hydrogen atoms of C7H10NO cations are nearly coplanar, the bismuth atom is coordinated by six chlorides, forming a distorted octahedron, the average Bi—Cl bond distances range from 2.6881 (12) Å to 2.6926 (10) Å, the Cl—Bi—Cl angles range from 85.67 (4)°to 180.00 (7)°. In the crystal, numerous N—H···Cl, N—H···O, O—H···Cl and bifurcated N—H···(Cl,Cl) hydrogen bonds link the components to a form layer structure which is parallel to bc plane (Fig 2).

Related literature top

For background literature concerning ferroelectric metal-organic complexes, see: Ye et al. (2009); Zhang et al. (2009, 2010). For related structures, see: Liu (2011a,b,c).

Experimental top

4-Methoxylbenzenamine (3.69 g, 0.03 mol) was firstly dissolved in 30 ml ethanol, to which 1.1 g (0.03 mol) of hydrochloric acid was then added to afford the solution, then 3.15 g (0.01 mol) bisumth chloride was dissolved in 20 ml ethanol which was added hydrochloric acid, at last, mixed the above solution without any precipitation under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 6 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

Water H atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with N—H = 0.89 and C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C,N) for methyl H and amino H atoms, and Uiso(H) = 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis. Intermolecular interactions are shown as dashed lines.
Tetrakis(4-methoxyanilinium) hexachloridobismuthate(III) chloride monohydrate top
Crystal data top
(C7H10NO)4[BiCl6]Cl·H2OF(000) = 1920
Mr = 971.79Dx = 1.713 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3223 reflections
a = 25.806 (5) Åθ = 0–26°
b = 7.7081 (15) ŵ = 5.22 mm1
c = 19.550 (4) ÅT = 293 K
β = 104.27 (3)°Block, colourless
V = 3768.8 (13) Å30.21 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4320 independent reflections
Radiation source: fine-focus sealed tube3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 3333
Tmin = 0.350, Tmax = 0.364k = 1010
18912 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0215P)2]
where P = (Fo2 + 2Fc2)/3
4320 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = 0.89 e Å3
Crystal data top
(C7H10NO)4[BiCl6]Cl·H2OV = 3768.8 (13) Å3
Mr = 971.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.806 (5) ŵ = 5.22 mm1
b = 7.7081 (15) ÅT = 293 K
c = 19.550 (4) Å0.21 × 0.20 × 0.20 mm
β = 104.27 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4320 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3223 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.364Rint = 0.055
18912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.46 e Å3
4320 reflectionsΔρmin = 0.89 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28804 (11)0.4079 (3)0.34243 (14)0.0518 (7)
N10.07004 (13)0.4069 (5)0.21893 (18)0.0586 (9)
H1A0.05500.50330.23010.070*
H1B0.06420.39950.17220.070*
H1C0.05580.31520.23500.070*
C10.32410 (19)0.5181 (5)0.3189 (3)0.0680 (14)
H1D0.31260.63640.31970.102*
H1E0.32490.48690.27160.102*
H1F0.35920.50570.34940.102*
C20.21434 (17)0.5117 (4)0.2491 (2)0.0421 (9)
H20.23650.57760.22830.050*
C30.16029 (17)0.5079 (4)0.2199 (2)0.0454 (9)
H30.14580.57090.17900.055*
C40.12749 (15)0.4115 (5)0.2505 (2)0.0404 (9)
C50.14777 (17)0.3185 (5)0.3107 (2)0.0482 (10)
H50.12530.25360.33130.058*
C60.20162 (17)0.3228 (5)0.33989 (19)0.0483 (10)
H60.21560.26060.38110.058*
C70.23587 (15)0.4174 (4)0.30985 (19)0.0358 (8)
O20.23658 (13)0.3700 (4)0.07934 (16)0.0683 (9)
N20.44637 (15)0.5170 (4)0.0738 (2)0.0606 (10)
H2A0.46160.42530.05900.073*
H2B0.44690.60620.04500.073*
H2C0.46440.54470.11730.073*
C80.1924 (2)0.4511 (6)0.0331 (3)0.0781 (16)
H8A0.19280.42590.01490.117*
H8B0.19450.57420.04050.117*
H8C0.15980.40810.04220.117*
C90.32753 (18)0.3409 (5)0.1260 (2)0.0548 (11)
H90.31990.27250.16140.066*
C100.37990 (17)0.3753 (5)0.1258 (2)0.0545 (11)
H100.40750.33040.16130.065*
C110.35099 (19)0.5412 (5)0.0212 (2)0.0500 (11)
H110.35880.60950.01410.060*
C120.28621 (17)0.4080 (5)0.0733 (2)0.0450 (10)
C130.29834 (18)0.5055 (4)0.0210 (2)0.0500 (10)
H130.27090.54830.01530.060*
C140.39129 (17)0.4754 (4)0.0737 (2)0.0425 (9)
Bi10.00000.50000.00000.03569 (7)
Cl20.06254 (4)0.23985 (12)0.06560 (5)0.0521 (3)
Cl30.05299 (4)0.74622 (13)0.08758 (6)0.0610 (3)
Cl40.05859 (5)0.44282 (15)0.09398 (6)0.0623 (3)
O30.00000.6668 (7)0.25000.112 (2)
Cl10.00000.0822 (2)0.25000.0579 (4)
H3B0.0155 (18)0.741 (2)0.230 (3)0.15 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (18)0.0500 (16)0.0567 (17)0.0059 (14)0.0034 (14)0.0099 (14)
N10.038 (2)0.071 (2)0.068 (2)0.0017 (19)0.0168 (19)0.007 (2)
C10.040 (3)0.066 (3)0.090 (4)0.011 (2)0.000 (3)0.011 (2)
C20.042 (2)0.042 (2)0.042 (2)0.0055 (18)0.0093 (18)0.0060 (18)
C30.043 (3)0.049 (2)0.042 (2)0.0016 (19)0.0056 (18)0.0119 (19)
C40.032 (2)0.043 (2)0.049 (2)0.0043 (18)0.0152 (19)0.0112 (19)
C50.050 (3)0.047 (2)0.055 (3)0.0081 (19)0.027 (2)0.001 (2)
C60.063 (3)0.047 (2)0.036 (2)0.002 (2)0.012 (2)0.0077 (18)
C70.039 (2)0.0319 (19)0.034 (2)0.0023 (17)0.0050 (18)0.0041 (16)
O20.047 (2)0.083 (2)0.078 (2)0.0194 (17)0.0213 (18)0.0023 (18)
N20.049 (2)0.054 (2)0.081 (3)0.0016 (16)0.021 (2)0.0125 (17)
C80.045 (3)0.082 (3)0.107 (4)0.006 (3)0.018 (3)0.021 (3)
C90.059 (3)0.052 (2)0.055 (3)0.010 (2)0.016 (2)0.010 (2)
C100.054 (3)0.047 (2)0.052 (3)0.001 (2)0.006 (2)0.006 (2)
C110.056 (3)0.047 (2)0.053 (3)0.0013 (19)0.025 (2)0.0025 (19)
C120.047 (3)0.040 (2)0.051 (3)0.010 (2)0.019 (2)0.0103 (19)
C130.049 (3)0.054 (2)0.046 (2)0.013 (2)0.010 (2)0.002 (2)
C140.040 (2)0.034 (2)0.055 (2)0.0028 (17)0.015 (2)0.0067 (18)
Bi10.02767 (12)0.03032 (11)0.04936 (13)0.00127 (9)0.01004 (9)0.00439 (10)
Cl20.0438 (6)0.0471 (5)0.0623 (6)0.0162 (5)0.0072 (5)0.0057 (5)
Cl30.0500 (7)0.0438 (6)0.0786 (8)0.0087 (5)0.0047 (6)0.0071 (5)
Cl40.0548 (8)0.0659 (6)0.0779 (8)0.0033 (5)0.0387 (6)0.0005 (6)
O30.078 (4)0.056 (3)0.217 (7)0.0000.063 (5)0.000
Cl10.0523 (10)0.0516 (8)0.0652 (10)0.0000.0056 (8)0.000
Geometric parameters (Å, º) top
O1—C71.342 (4)N2—H2B0.8910
O1—C11.418 (5)N2—H2C0.8890
N1—C41.459 (5)C8—H8A0.9600
N1—H1A0.8902C8—H8B0.9600
N1—H1B0.8898C8—H8C0.9600
N1—H1C0.8890C9—C101.378 (5)
C1—H1D0.9600C9—C121.387 (5)
C1—H1E0.9600C9—H90.9300
C1—H1F0.9600C10—C141.368 (5)
C2—C31.371 (5)C10—H100.9300
C2—C71.386 (5)C11—C141.365 (6)
C2—H20.9300C11—C131.385 (6)
C3—C41.370 (5)C11—H110.9300
C3—H30.9300C12—C131.367 (5)
C4—C51.367 (5)C13—H130.9300
C5—C61.367 (5)Bi1—Cl4i2.6881 (12)
C5—H50.9300Bi1—Cl42.6881 (12)
C6—C71.383 (5)Bi1—Cl32.6925 (11)
C6—H60.9300Bi1—Cl3i2.6925 (11)
O2—C121.347 (4)Bi1—Cl22.6927 (10)
O2—C81.414 (5)Bi1—Cl2i2.6927 (10)
N2—C141.456 (5)O3—H3B0.846 (10)
N2—H2A0.8910
C7—O1—C1118.4 (3)O2—C8—H8B109.5
C4—N1—H1A109.5H8A—C8—H8B109.5
C4—N1—H1B109.4O2—C8—H8C109.5
H1A—N1—H1B109.4H8A—C8—H8C109.5
C4—N1—H1C109.6H8B—C8—H8C109.5
H1A—N1—H1C109.5C10—C9—C12120.1 (4)
H1B—N1—H1C109.4C10—C9—H9120.0
O1—C1—H1D109.5C12—C9—H9120.0
O1—C1—H1E109.5C14—C10—C9120.1 (4)
H1D—C1—H1E109.5C14—C10—H10119.9
O1—C1—H1F109.5C9—C10—H10119.9
H1D—C1—H1F109.5C14—C11—C13119.6 (4)
H1E—C1—H1F109.5C14—C11—H11120.2
C3—C2—C7119.9 (4)C13—C11—H11120.2
C3—C2—H2120.1O2—C12—C13125.7 (4)
C7—C2—H2120.1O2—C12—C9115.3 (4)
C4—C3—C2120.3 (4)C13—C12—C9119.0 (4)
C4—C3—H3119.9C12—C13—C11120.8 (4)
C2—C3—H3119.9C12—C13—H13119.6
C5—C4—C3120.9 (4)C11—C13—H13119.6
C5—C4—N1119.0 (4)C11—C14—C10120.4 (4)
C3—C4—N1120.1 (4)C11—C14—N2118.8 (4)
C6—C5—C4118.8 (4)C10—C14—N2120.8 (4)
C6—C5—H5120.6Cl4i—Bi1—Cl4180.00 (3)
C4—C5—H5120.6Cl4i—Bi1—Cl392.06 (4)
C5—C6—C7121.7 (4)Cl4—Bi1—Cl387.94 (4)
C5—C6—H6119.1Cl4i—Bi1—Cl3i87.94 (4)
C7—C6—H6119.1Cl4—Bi1—Cl3i92.06 (4)
O1—C7—C6116.2 (3)Cl3—Bi1—Cl3i180.00 (7)
O1—C7—C2125.4 (3)Cl4i—Bi1—Cl294.33 (4)
C6—C7—C2118.5 (4)Cl4—Bi1—Cl285.67 (4)
C12—O2—C8118.8 (4)Cl3—Bi1—Cl294.08 (4)
C14—N2—H2A109.5Cl3i—Bi1—Cl285.92 (4)
C14—N2—H2B109.6Cl4i—Bi1—Cl2i85.67 (4)
H2A—N2—H2B109.3Cl4—Bi1—Cl2i94.33 (4)
C14—N2—H2C109.6Cl3—Bi1—Cl2i85.92 (4)
H2A—N2—H2C109.4Cl3i—Bi1—Cl2i94.08 (4)
H2B—N2—H2C109.5Cl2—Bi1—Cl2i180.00 (6)
O2—C8—H8A109.5
C7—C2—C3—C40.2 (5)C12—C9—C10—C140.2 (6)
C2—C3—C4—C50.4 (6)C8—O2—C12—C137.6 (6)
C2—C3—C4—N1179.6 (3)C8—O2—C12—C9172.2 (4)
C3—C4—C5—C60.2 (6)C10—C9—C12—O2178.5 (3)
N1—C4—C5—C6179.8 (3)C10—C9—C12—C131.2 (6)
C4—C5—C6—C70.5 (6)O2—C12—C13—C11177.9 (4)
C1—O1—C7—C6172.6 (4)C9—C12—C13—C111.8 (6)
C1—O1—C7—C28.1 (5)C14—C11—C13—C121.3 (6)
C5—C6—C7—O1178.4 (3)C13—C11—C14—C100.2 (6)
C5—C6—C7—C21.0 (5)C13—C11—C14—N2178.9 (3)
C3—C2—C7—O1178.5 (3)C9—C10—C14—C110.3 (6)
C3—C2—C7—C60.8 (5)C9—C10—C14—N2178.3 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.892.012.862 (5)161
N1—H1B···Cl20.892.413.224 (4)152
N1—H1C···Cl10.892.373.231 (4)165
N2—H2A···Cl3ii0.892.673.411 (4)141
N2—H2A···Cl2iii0.892.683.330 (4)131
N2—H2B···Cl4iv0.892.783.312 (3)120
N2—H2B···Cl3v0.892.833.648 (4)153
N2—H2C···Cl1iv0.892.553.418 (4)167
O3—H3B···Cl1vi0.85 (1)2.70 (2)3.202 (6)119 (2)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+3/2, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C7H10NO)4[BiCl6]Cl·H2O
Mr971.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.806 (5), 7.7081 (15), 19.550 (4)
β (°) 104.27 (3)
V3)3768.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.22
Crystal size (mm)0.21 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.350, 0.364
No. of measured, independent and
observed [I > 2σ(I)] reflections
18912, 4320, 3223
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 1.07
No. of reflections4320
No. of parameters212
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.89

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.892.012.862 (5)160.7
N1—H1B···Cl20.892.413.224 (4)151.9
N1—H1C···Cl10.892.373.231 (4)164.7
N2—H2A···Cl3i0.892.673.411 (4)141.2
N2—H2A···Cl2ii0.892.683.330 (4)130.5
N2—H2B···Cl4iii0.892.783.312 (3)119.5
N2—H2B···Cl3iv0.892.833.648 (4)153.2
N2—H2C···Cl1iii0.892.553.418 (4)167.0
O3—H3B···Cl1v0.846 (10)2.70 (2)3.202 (6)119 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x, y+1, z.
 

Acknowledgements

The author thanks an anonymous adivisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationLiu, M.-L. (2011a). Acta Cryst. E67, m1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011b). Acta Cryst. E67, m1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011c). Acta Cryst. E67, m1827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds