organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1446

(E)-1-(5-Bromo-2-hy­dr­oxy­phen­yl)-3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-one

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 14 April 2012; accepted 15 April 2012; online 21 April 2012)

In the title compound, C17H16BrNO2, the two benzene rings make a dihedral angle of 7.4 (3)°; the hy­droxy group links to the carbonyl group via an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into a supra­molecular chain running along the c axis.

Related literature

For related compounds and structures, see: Dai & Chen (2011[Dai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.]); Xu et al. (2011[Xu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093-1096.]); Fu et al. (2011[Fu, D.-W., Zhao, M.-M. & Ge, J.-Z. (2011). J. Mol. Struct. 1006, 227-233.]); Zheng et al. (2011[Zheng, W.-N. (2011). Acta Cryst. E67, m344.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16BrNO2

  • Mr = 346.22

  • Monoclinic, P 21 /c

  • a = 15.1905 (5) Å

  • b = 5.4501 (2) Å

  • c = 19.7569 (9) Å

  • β = 106.00 (2)°

  • V = 1572.34 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 123 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 8044 measured reflections

  • 2736 independent reflections

  • 1538 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.287

  • S = 1.09

  • 2736 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.82 2.543 (7) 146
C17—H17A⋯O2i 0.98 2.55 3.503 (10) 164
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic amine derivatives are becoming increasingly important as new molecule-based crystalline materials with the potential optimal physical properties (Dai & Chen, 2011; Xu et al., 2011). In addition, the amino compounds have found a wide range of applications in coordination chemistry as ligands to construct novel crystal structures (Fu et al., 2011; Zheng, 2011). Herein, we report the crystal structure of the title compound, (E)-1-(5-bromo-2-hydroxyphenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one.

The asymmetric unit is composed of one whole amine molecule. The two benzene rings are nearly coplanar and twisted from each other by a dihedral of 7.4 (3)°. The hydroxy H2 atom was involved in intramolecular O—H···O hydrogen bonds interaction (Table 1 and Fig. 1).

Related literature top

For related compounds and structures, see: Dai & Chen (2011); Xu et al. (2011); Fu et al. (2011); Zheng et al. (2011).

Experimental top

The title compound (2.0 mmol) was solved in 50 mL methanol. Then the solution was evaporated slowly in the air. Red block crystals suitable for X-ray analysis were obtained after one week.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic) and C—H = 0.98 Å (methyl) with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl). H atoms bonded to O atom was located in difference Fourier map and restrained with the H—O = 0.82 (2) Å. In the last stage of refinement they were treated as riding on the O atom with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(E)-1-(5-Bromo-2-hydroxyphenyl)-3-[4-(dimethylamino)phenyl]prop- 2-en-1-one top
Crystal data top
C17H16BrNO2F(000) = 704
Mr = 346.22Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2736 reflections
a = 15.1905 (5) Åθ = 2.2–27.5°
b = 5.4501 (2) ŵ = 2.62 mm1
c = 19.7569 (9) ÅT = 123 K
β = 106.00 (2)°Needle, red
V = 1572.34 (11) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2736 independent reflections
Radiation source: fine-focus sealed tube1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.2°
CCD profile fitting scansh = 1817
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.910, Tmax = 1.000l = 2323
8044 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.287 w = 1/[σ2(Fo2) + (0.141P)2 + 0.6743P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2736 reflectionsΔρmax = 1.58 e Å3
193 parametersΔρmin = 1.11 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.002
Crystal data top
C17H16BrNO2V = 1572.34 (11) Å3
Mr = 346.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1905 (5) ŵ = 2.62 mm1
b = 5.4501 (2) ÅT = 123 K
c = 19.7569 (9) Å0.30 × 0.05 × 0.05 mm
β = 106.00 (2)°
Data collection top
Rigaku Mercury2
diffractometer
2736 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1538 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.075
8044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0891 restraint
wR(F2) = 0.287H-atom parameters constrained
S = 1.09Δρmax = 1.58 e Å3
2736 reflectionsΔρmin = 1.11 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08032 (7)0.2556 (2)0.57680 (7)0.1050 (7)
O10.6988 (3)0.0521 (10)0.6480 (2)0.0469 (13)
C70.7599 (4)0.0665 (12)0.6153 (3)0.0329 (15)
N10.5880 (3)1.1541 (11)0.3308 (3)0.0355 (14)
O20.7796 (4)0.3021 (10)0.7239 (3)0.0600 (16)
H20.73570.22420.70020.090*
C100.6627 (4)0.6074 (12)0.4911 (3)0.0307 (14)
C90.6821 (4)0.4141 (13)0.5444 (3)0.0331 (15)
H9A0.63940.39910.57140.040*
C140.5541 (4)0.9164 (12)0.4255 (3)0.0339 (15)
H14A0.49690.99790.41830.041*
C130.6124 (4)0.9790 (12)0.3830 (3)0.0331 (15)
C50.8429 (5)0.2911 (12)0.6878 (4)0.0386 (17)
C120.6988 (4)0.8490 (12)0.3966 (3)0.0362 (16)
H12A0.74040.88670.36990.043*
C10.9105 (4)0.1047 (14)0.6015 (3)0.0412 (17)
H1A0.91060.01600.56690.049*
C60.8391 (4)0.1080 (12)0.6344 (3)0.0307 (14)
C20.9802 (5)0.2758 (13)0.6193 (4)0.0446 (19)
C150.5789 (5)0.7398 (12)0.4769 (4)0.0342 (16)
H15A0.53800.70440.50430.041*
C110.7207 (4)0.6699 (12)0.4483 (3)0.0364 (16)
H11A0.77720.58490.45550.044*
C40.9150 (5)0.4652 (14)0.7037 (4)0.0483 (19)
H4A0.91680.58640.73870.058*
C80.7530 (4)0.2529 (11)0.5605 (3)0.0294 (15)
H8A0.79870.26100.53600.035*
C160.5060 (5)1.3053 (13)0.3242 (4)0.0429 (18)
H16A0.45151.20040.31230.064*
H16B0.50121.42770.28710.064*
H16C0.51051.38870.36900.064*
C30.9833 (4)0.4609 (14)0.6688 (4)0.0438 (18)
H3A1.03060.58060.67840.053*
C170.6536 (6)1.2333 (13)0.2900 (4)0.0441 (18)
H17A0.68411.08880.27750.066*
H17B0.69941.34440.31900.066*
H17C0.61971.31830.24700.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0628 (9)0.1585 (14)0.1133 (11)0.0652 (8)0.0570 (8)0.0639 (8)
O10.038 (3)0.055 (3)0.057 (3)0.006 (2)0.029 (2)0.010 (2)
C70.024 (3)0.036 (4)0.041 (4)0.005 (3)0.012 (3)0.004 (3)
N10.029 (3)0.041 (3)0.039 (3)0.008 (2)0.014 (3)0.003 (2)
O20.049 (4)0.063 (4)0.069 (4)0.005 (3)0.020 (3)0.029 (3)
C100.026 (3)0.032 (3)0.034 (3)0.002 (3)0.008 (3)0.004 (3)
C90.024 (3)0.043 (4)0.034 (3)0.000 (3)0.011 (3)0.006 (3)
C140.026 (3)0.033 (3)0.047 (4)0.006 (3)0.017 (3)0.009 (3)
C130.030 (3)0.036 (4)0.033 (3)0.002 (3)0.008 (3)0.008 (3)
C50.034 (4)0.040 (4)0.045 (4)0.007 (3)0.016 (3)0.001 (3)
C120.027 (4)0.040 (4)0.045 (4)0.000 (3)0.016 (3)0.002 (3)
C10.038 (4)0.050 (4)0.039 (4)0.010 (3)0.016 (3)0.012 (3)
C60.026 (3)0.036 (4)0.027 (3)0.003 (3)0.003 (3)0.001 (3)
C20.032 (4)0.053 (5)0.052 (5)0.011 (3)0.015 (4)0.005 (3)
C150.028 (4)0.041 (4)0.037 (4)0.003 (3)0.015 (3)0.006 (3)
C110.024 (3)0.046 (4)0.043 (4)0.006 (3)0.016 (3)0.002 (3)
C40.044 (4)0.044 (4)0.046 (4)0.004 (3)0.005 (4)0.004 (3)
C80.021 (3)0.035 (3)0.033 (4)0.001 (3)0.009 (3)0.003 (3)
C160.046 (5)0.044 (4)0.038 (4)0.016 (3)0.011 (3)0.006 (3)
C30.030 (4)0.043 (4)0.049 (4)0.008 (3)0.003 (3)0.001 (3)
C170.054 (5)0.038 (4)0.046 (4)0.000 (3)0.025 (4)0.005 (3)
Geometric parameters (Å, º) top
Br1—C21.933 (8)C5—C61.441 (9)
O1—C71.271 (7)C12—C111.386 (9)
C7—C81.468 (9)C12—H12A0.9500
C7—C61.499 (9)C1—C21.382 (9)
N1—C131.380 (8)C1—C61.409 (9)
N1—C161.469 (8)C1—H1A0.9500
N1—C171.506 (9)C2—C31.396 (10)
O2—C51.347 (9)C15—H15A0.9500
O2—H20.8200C11—H11A0.9500
C10—C111.421 (9)C4—C31.397 (9)
C10—C151.423 (9)C4—H4A0.9500
C10—C91.461 (9)C8—H8A0.9500
C9—C81.358 (9)C16—H16A0.9800
C9—H9A0.9500C16—H16B0.9800
C14—C151.374 (9)C16—H16C0.9800
C14—C131.419 (8)C3—H3A0.9500
C14—H14A0.9500C17—H17A0.9800
C13—C121.450 (9)C17—H17B0.9800
C5—C41.417 (10)C17—H17C0.9800
O1—C7—C8120.3 (6)C1—C2—C3122.8 (7)
O1—C7—C6118.8 (6)C1—C2—Br1119.4 (6)
C8—C7—C6120.9 (5)C3—C2—Br1117.8 (5)
C13—N1—C16120.0 (5)C14—C15—C10123.3 (6)
C13—N1—C17121.2 (5)C14—C15—H15A118.3
C16—N1—C17117.5 (6)C10—C15—H15A118.3
C5—O2—H2105.1C12—C11—C10123.1 (6)
C11—C10—C15115.4 (6)C12—C11—H11A118.5
C11—C10—C9124.6 (6)C10—C11—H11A118.5
C15—C10—C9120.0 (6)C3—C4—C5120.9 (7)
C8—C9—C10128.6 (6)C3—C4—H4A119.6
C8—C9—H9A115.7C5—C4—H4A119.6
C10—C9—H9A115.7C9—C8—C7120.7 (6)
C15—C14—C13121.1 (6)C9—C8—H8A119.7
C15—C14—H14A119.5C7—C8—H8A119.7
C13—C14—H14A119.5N1—C16—H16A109.5
N1—C13—C14121.7 (6)N1—C16—H16B109.5
N1—C13—C12121.2 (5)H16A—C16—H16B109.5
C14—C13—C12117.0 (6)N1—C16—H16C109.5
O2—C5—C4118.2 (6)H16A—C16—H16C109.5
O2—C5—C6121.8 (6)H16B—C16—H16C109.5
C4—C5—C6119.9 (7)C2—C3—C4118.1 (6)
C11—C12—C13120.1 (6)C2—C3—H3A120.9
C11—C12—H12A119.9C4—C3—H3A120.9
C13—C12—H12A119.9N1—C17—H17A109.5
C2—C1—C6120.5 (6)N1—C17—H17B109.5
C2—C1—H1A119.8H17A—C17—H17B109.5
C6—C1—H1A119.8N1—C17—H17C109.5
C1—C6—C5117.7 (6)H17A—C17—H17C109.5
C1—C6—C7122.8 (6)H17B—C17—H17C109.5
C5—C6—C7119.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.543 (7)146
C17—H17A···O2i0.982.553.503 (10)164
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H16BrNO2
Mr346.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)15.1905 (5), 5.4501 (2), 19.7569 (9)
β (°) 106.00 (2)
V3)1572.34 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8044, 2736, 1538
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.287, 1.09
No. of reflections2736
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 1.11

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.543 (7)146
C17—H17A···O2i0.982.553.503 (10)164
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology, China.

References

First citationDai, J. & Chen, X.-Y. (2011). Acta Cryst. E67, o287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Zhao, M.-M. & Ge, J.-Z. (2011). J. Mol. Struct. 1006, 227–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-J., Fu, D.-W., Dai, J., Zhang, Y., Ge, J.-Z. & Ye, H.-Y. (2011). Inorg. Chem. Commun. 14, 1093–1096.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, W.-N. (2011). Acta Cryst. E67, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1446
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds