organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1530

Guanidinium bromide–18-crown-6 (2/1)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 13 March 2012; accepted 19 April 2012; online 25 April 2012)

In the title compound, 2CH6N3+·2Br·C12H24O6, the 18-crown-6 mol­ecule lies about an inversion center, whereas the guanidinium cation and bromide anion are in general positions. The guanidinium cations link with the bromide anions and the crown ether mol­ecules via N—H⋯O and N—H⋯Br hydrogen bonds, thus forming a three-dimensional network.

Related literature

For applications of crown ethers, see: Clark et al. (1998[Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164-169.]). For ferroelectric metal-organic compounds, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.], 2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For structures of 18-crown-6 clathrates, see: Zhang & Zhao (2011[Zhang, Y. & Zhao, M.-M. (2011). Acta Cryst. E67, o596.]); Ge & Zhao (2010[Ge, J.-Z. & Zhao, M.-M. (2010). Acta Cryst. E66, o1478.])

[Scheme 1]

Experimental

Crystal data
  • 2CH6N3+·2Br·C12H24O6

  • Mr = 544.31

  • Monoclinic, P 21 /n

  • a = 8.9354 (18) Å

  • b = 9.860 (2) Å

  • c = 14.306 (3) Å

  • β = 101.39 (3)°

  • V = 1235.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.936, Tmax = 0.937

  • 12464 measured reflections

  • 2835 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.127

  • S = 1.11

  • 2835 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.86 2.68 3.470 (3) 154
N1—H1B⋯O2 0.86 2.14 2.938 (4) 155
N2—H2C⋯O2 0.86 2.40 3.127 (5) 143
N2—H2D⋯Br1 0.86 2.82 3.582 (4) 149
N3—H3D⋯Br1 0.86 2.53 3.354 (3) 162
N3—H3C⋯Br1i 0.86 2.64 3.440 (3) 156
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years, crown ethers have attracted much attention because of their wide application in catalysis, solvent extraction, separation of isotopes, host–guest and supramolecular chemistry (Clark et al., 1998). Several 18-crown-6 clathrates were discovered to be dielectric-ferroelectric materials (Fu et al., 2011), hence we designed the title compound in attempts to find new hydrogen-bonded dielectric materials. Dielectric-ferroelectric materials, comprising organic ligands, metal-organic coordination compounds and organic-inorganic hybrids almost show temperature dependence of their dielectric constants (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the study of temperature dependence of dielectric constant of the title compound indicates that the permittivity is basically temperature-independent below its melting point (395K—396K). Herein we descibe the crystal structure of this compound.

At room temperature (25°C), the single-crystal X-ray diffraction reveals that the asymmetric unit of the title compound consists of a guanidinium cation, a bromide anion and a half of 18-crown-6 molecule (Fig. 1). The three NH2-groups of guanidinium interact with the oxygen atoms of crown ether molecule and with two bromide anions through two N—H···O and N—H···Br hydrogen bonds (Table 1), thus forming a three-dimensional network (Fig. 2).

Related literature top

For applications of crown ethers, see: Clark et al. 1998). For ferroelectric metal-organic compounds, see: Fu et al. (2009, 2011); Ye et al. (2006); Zhang et al. (2008, 2010). For structures of 18-crown-6 clathrates, see: Zhang & Zhao (2011); Ge & Zhao (2010)

Experimental top

The hydrobromic acid (0.81 g, 10 mmol) and guanidinium carbonate (0.9 g, 5 mmol) were dissolved in 30 ml of water and the solution was combined with methanol solution of dibenzo-18-crown-6 (3.6 g 10 mmol). The mixture was stirred for 30 min to complete the reaction, and good quality blocky single crystals were obtained by slow evaporation of the filtrate after two weeks (the chemical yield 72%).

Refinement top

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.2Uiso(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.
Guanidinium bromide–18-crown-6 (2/1) top
Crystal data top
2CH6N3+·2Br·C12H24O6F(000) = 560
Mr = 544.31Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3638 reflections
a = 8.9354 (18) Åθ = 3.0–27.5°
b = 9.860 (2) ŵ = 3.32 mm1
c = 14.306 (3) ÅT = 293 K
β = 101.39 (3)°Block, colourless
V = 1235.6 (4) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2835 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1111
Tmin = 0.936, Tmax = 0.937k = 1212
12464 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
2835 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
2CH6N3+·2Br·C12H24O6V = 1235.6 (4) Å3
Mr = 544.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9354 (18) ŵ = 3.32 mm1
b = 9.860 (2) ÅT = 293 K
c = 14.306 (3) Å0.20 × 0.20 × 0.20 mm
β = 101.39 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2835 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1968 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.937Rint = 0.077
12464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.11Δρmax = 0.36 e Å3
2835 reflectionsΔρmin = 0.79 e Å3
127 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.1811 (3)0.2005 (3)0.62582 (18)0.0572 (7)
O31.2804 (3)0.0677 (3)0.6025 (2)0.0649 (8)
O10.8672 (3)0.2293 (3)0.5560 (2)0.0759 (9)
C31.3789 (5)0.0401 (5)0.6413 (4)0.0701 (13)
H3A1.46770.00430.68440.084*
H3B1.41350.08870.59050.084*
C60.9606 (6)0.3369 (5)0.5989 (4)0.0805 (14)
H6A1.00240.38540.55090.097*
H6B0.90040.40000.62820.097*
C51.0855 (6)0.2815 (5)0.6716 (3)0.0748 (13)
H5A1.04390.22690.71680.090*
H5B1.14410.35490.70610.090*
C41.2942 (5)0.1325 (4)0.6931 (3)0.0641 (12)
H4A1.36350.19800.72920.077*
H4B1.24650.08140.73720.077*
C70.7498 (6)0.2745 (5)0.4820 (4)0.0882 (16)
H7A0.69340.34710.50500.106*
H7B0.79320.30930.42980.106*
C21.3526 (5)0.1611 (6)0.5511 (4)0.0848 (15)
H2A1.38090.11600.49690.102*
H2B1.44500.19490.59170.102*
N21.1162 (4)0.1452 (4)0.4063 (3)0.0766 (11)
H2C1.10300.13000.46330.092*
H2D1.07090.09540.35990.092*
Br11.01901 (4)0.03281 (4)0.16380 (3)0.05407 (18)
N31.2257 (4)0.2677 (4)0.3022 (2)0.0643 (9)
H3C1.28410.33250.29110.077*
H3D1.18010.21740.25620.077*
C11.2061 (4)0.2453 (4)0.3900 (3)0.0508 (9)
N11.2761 (4)0.3225 (3)0.4595 (2)0.0592 (9)
H1A1.33440.38710.44780.071*
H1B1.26380.30850.51680.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0681 (18)0.0558 (17)0.0495 (15)0.0000 (13)0.0161 (13)0.0003 (13)
O30.0545 (17)0.078 (2)0.0651 (19)0.0106 (15)0.0176 (14)0.0009 (16)
O10.082 (2)0.0625 (19)0.079 (2)0.0205 (16)0.0071 (17)0.0001 (17)
C30.050 (3)0.087 (3)0.073 (3)0.000 (2)0.010 (2)0.027 (3)
C60.100 (4)0.055 (3)0.091 (4)0.019 (3)0.032 (3)0.009 (3)
C50.095 (3)0.065 (3)0.065 (3)0.005 (3)0.018 (3)0.021 (2)
C40.071 (3)0.067 (3)0.050 (2)0.017 (2)0.002 (2)0.010 (2)
C70.106 (4)0.087 (4)0.068 (3)0.055 (3)0.009 (3)0.002 (3)
C20.060 (3)0.122 (4)0.074 (3)0.040 (3)0.015 (2)0.003 (3)
N20.101 (3)0.074 (2)0.059 (2)0.034 (2)0.026 (2)0.0060 (19)
Br10.0649 (3)0.0498 (3)0.0474 (3)0.00012 (18)0.01084 (19)0.00461 (18)
N30.070 (2)0.076 (2)0.045 (2)0.0250 (18)0.0076 (16)0.0070 (17)
C10.050 (2)0.049 (2)0.052 (2)0.0038 (17)0.0091 (18)0.000 (2)
N10.075 (2)0.060 (2)0.0410 (18)0.0135 (17)0.0093 (16)0.0063 (17)
Geometric parameters (Å, º) top
O2—C41.418 (5)C7—C2i1.464 (7)
O2—C51.420 (5)C7—H7A0.9700
O3—C21.411 (5)C7—H7B0.9700
O3—C31.421 (5)C2—C7i1.464 (7)
O1—C71.407 (5)C2—H2A0.9700
O1—C61.413 (5)C2—H2B0.9700
C3—C41.474 (6)N2—C11.322 (5)
C3—H3A0.9700N2—H2C0.8600
C3—H3B0.9700N2—H2D0.8600
C6—C51.472 (7)N3—C11.320 (5)
C6—H6A0.9700N3—H3C0.8600
C6—H6B0.9700N3—H3D0.8600
C5—H5A0.9700C1—N11.309 (5)
C5—H5B0.9700N1—H1A0.8600
C4—H4A0.9700N1—H1B0.8600
C4—H4B0.9700
C4—O2—C5111.5 (3)H4A—C4—H4B108.4
C2—O3—C3112.3 (4)O1—C7—C2i109.1 (4)
C7—O1—C6112.1 (4)O1—C7—H7A109.9
O3—C3—C4108.6 (3)C2i—C7—H7A109.9
O3—C3—H3A110.0O1—C7—H7B109.9
C4—C3—H3A110.0C2i—C7—H7B109.9
O3—C3—H3B110.0H7A—C7—H7B108.3
C4—C3—H3B110.0O3—C2—C7i110.3 (4)
H3A—C3—H3B108.4O3—C2—H2A109.6
O1—C6—C5109.2 (4)C7i—C2—H2A109.6
O1—C6—H6A109.8O3—C2—H2B109.6
C5—C6—H6A109.8C7i—C2—H2B109.6
O1—C6—H6B109.8H2A—C2—H2B108.1
C5—C6—H6B109.8C1—N2—H2C120.0
H6A—C6—H6B108.3C1—N2—H2D120.0
O2—C5—C6108.9 (4)H2C—N2—H2D120.0
O2—C5—H5A109.9C1—N3—H3C120.0
C6—C5—H5A109.9C1—N3—H3D120.0
O2—C5—H5B109.9H3C—N3—H3D120.0
C6—C5—H5B109.9N1—C1—N3119.5 (4)
H5A—C5—H5B108.3N1—C1—N2121.0 (4)
O2—C4—C3108.6 (3)N3—C1—N2119.5 (4)
O2—C4—H4A110.0C1—N1—H1A120.0
C3—C4—H4A110.0C1—N1—H1B120.0
O2—C4—H4B110.0H1A—N1—H1B120.0
C3—C4—H4B110.0
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.862.683.470 (3)154
N1—H1B···O20.862.142.938 (4)155
N2—H2C···O20.862.403.127 (5)143
N2—H2D···Br10.862.823.582 (4)149
N3—H3D···Br10.862.533.354 (3)162
N3—H3C···Br1ii0.862.643.440 (3)156
Symmetry code: (ii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2CH6N3+·2Br·C12H24O6
Mr544.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.9354 (18), 9.860 (2), 14.306 (3)
β (°) 101.39 (3)
V3)1235.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.936, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
12464, 2835, 1968
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.127, 1.11
No. of reflections2835
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.79

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.683.470 (3)154.2
N1—H1B···O20.862.142.938 (4)154.6
N2—H2C···O20.862.403.127 (5)143.3
N2—H2D···Br10.862.823.582 (4)149.1
N3—H3D···Br10.862.533.354 (3)162.0
N3—H3C···Br1i0.862.643.440 (3)155.6
Symmetry code: (i) x+5/2, y1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationClark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169.  CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z. & Xiong, R.-G. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGe, J.-Z. & Zhao, M.-M. (2010). Acta Cryst. E66, o1478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y. & Zhao, M.-M. (2011). Acta Cryst. E67, o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1530
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds