metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamidato- $\kappa^{3}O,N^{2},S$]nickel(II) dimethylformamide monosolvate

Amna Qasem Ali,^{a,b} Naser Eltaher Eltayeb,^c‡Siang Guan Teoh,^a* Abdussalam Salhin^a and Hoong-Kun Fun^d§

 ^aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia,
 ^bFaculty of Science, Sabha University, Libya, ^cDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: sgteoh@usm.my

Received 20 February 2012; accepted 23 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.041; wR factor = 0.107; data-to-parameter ratio = 19.6.

The asymmetric unit of the title compound, $[Ni(C_{15}H_{11}-N_4OS)_2]\cdot C_3H_7NO$, contains one Ni^{II} complex molecule and one disordered dimethylformamide solvent molecule. The Ni^{II} ion is six-coordinated in a distorted octahedral geometry by two N, two O and two S atoms. An intramolecular $C-H\cdots S$ hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked through intermolecular $N-H\cdots S$, $N-H\cdots O$, $C-H\cdots N$, $C-H\cdots O$ and $C-H\cdots S$ hydrogen bonds into infinite two-dimensional network parallel to the *ab* plane. The structure is further stablized by weak $C-H\cdots \pi$ interactions. The dimethylformamide solvent molecule is disordered over two sets of sites in a 0.514 (15):0.486 (15) ratio.

Related literature

For related structures, see: Qasem Ali *et al.* (2011*a,b*, 2012*a,b*); Ali *et al.* (2012). For the biological activity of Schiff bases, see: Bhandari *et al.* (2008); Bhardwaj *et al.* (2010); Pandeya *et al.* (1999); Sridhar *et al.* (2002); Suryavanshi & Pai (2006). For the cytotoxic and anticancer activity of isatin and its derivatives, see: Vine *et al.* (2009). For graph-set analysis, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $[\text{Ni}(\text{C}_{15}\text{H}_{11}\text{N}_4\text{OS})_2] \cdot \text{C}_3\text{H}_7\text{NO}$ $M_r = 722.48$ Triclinic, $P\overline{1}$ a = 12.2491 (2) Å b = 12.3170 (3) Å c = 13.1142 (2) Å $\alpha = 104.854$ (1)° $\beta = 112.943$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.723, T_{\rm max} = 0.906$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.039435 reflections 481 parameters 25 restraints $\gamma = 102.798 (1)^{\circ}$ $V = 1642.31 (5) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.77 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.15 \times 0.13 \text{ mm}$

34412 measured reflections 9435 independent reflections 7397 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.63\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.37\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

Ni1-N2	2.0342 (15)	Ni1-O2	2.2441 (13)
Ni1-N6	2.0373 (15)	Ni1-S1	2.3564 (5)
Ni1-O1	2.1886 (13)	Ni1-S2	2.3866 (5)

[‡] Thomson Reuters ResearcherID: E-9395-2011.

[§] Thomson Reuters ResearcherID: A-3561-2009.

Table 2

Hydrogen-bond geometry (Å, °).

Cg5, Cg7, Cg9 and Cg10 are the centroids of the N1/C1/C8/C7/C2, C2-C7, C17-C22 and C25-C30 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N8-H1N8\cdots S2^{i}$	0.86 (2)	2.48 (3)	3.301 (2)	159 (2)
$N1-H1N1\cdotsO1^{ii}$	0.79 (4)	2.04 (4)	2.811 (2)	165 (4)
$N5-H1N5\cdotsO3X^{iii}$	0.89 (4)	1.84 (4)	2.729 (9)	173 (3)
$N4-H1N4\cdots O2^{iv}$	0.82 (3)	2.22 (3)	3.006 (3)	161 (2)
C3−H3A···N7 ⁱⁱ	0.95	2.56	3.500 (3)	173
$C11-H11A\cdots O2^{iv}$	0.95	2.55	3.349 (3)	142
$C15-H15A \cdot \cdot \cdot S1$	0.95	2.53	3.194 (3)	127
$C20-H20A\cdots S1^{v}$	0.95	2.71	3.443 (2)	135
$C30-H30A\cdots S2^{i}$	0.95	2.84	3.551 (2)	132
$C31X - H31E \cdot \cdot \cdot Cg9^{vi}$	0.98	2.97	3.567 (11)	121
$C31X - H31F \cdot \cdot \cdot Cg7^{iv}$	0.98	2.79	3.460 (10)	126
$C32X - H32D \cdots Cg10^{vii}$	0.98	2.91	3.769 (12)	147
$C31-H31B\cdots Cg9^{vi}$	0.98	2.98	3.66 (2)	128
$C31-H31C\cdots Cg7^{iv}$	0.98	2.78	3.47 (2)	127
$C32-H32B\cdots Cg5^{iv}$	0.98	2.82	3.577 (16)	135

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y + 1, -z; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 1, -y, -z; (vi) x, y + 1, z; (vii) x + 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/ PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2062).

References

- Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285–o286.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). *Bioorg. Med. Chem.* 16, 1822–1831.
- Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.
- Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, 03141–03142.
- Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, 03476–03477.
- Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012a). Acta Cryst. E68, 0953–0954.
- Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012b). Acta Cryst. E68, 0962–0963.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.
- Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.
- Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents Med. Chem. 9, 397–414.

supporting information

Acta Cryst. (2012). E68, m538-m539 [doi:10.1107/S1600536812012834]

Bis[2-(2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamidato- $\kappa^{3}O, N^{2}, S$]nickel(II) dimethylformamide monosolvate

Amna Qasem Ali, Naser Eltaher Eltayeb, Siang Guan Teoh, Abdussalam Salhin and Hoong-Kun Fun

S1. Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya *et al.*, 1999), anti-depressant and anti-inflammatory activities (Bhandari *et al.*, 2008). Recently, we reported the crystal structure of (*Z*)-*N*-methyl-2-(5-nitro-2-oxoindolin-3-ylidene) hydrazinecarbothioamide (Qasem Ali *et al.*, 2012*a*). In the present paper we describe the single-crystal X-ray diffraction study of title compound, Fig.1.

In the title compound, (Fig. 1), the asymmetric unit contains one Ni^{II} complex, $[Ni(C_{15}H_{11}N_4OS)_2]$ and one solvent molecule, $[C_3H_7NO]$, which displays disorder. Ni^{II} ion is six-coordinated in a distorted octahedral geometry by two N, two O and two S atoms. The Ni—N, Ni—O and Ni—S bond distances (Table 1) and the bond angles around Ni1 are normal (Allen *et al.*, 1987).

Intramolecular C15—H15A···S1 hydrogen bond generate an S(6) rings motif (Bernstein *et al.*, 1995)] (Table 2). Intramolecular interactions C26—H26A···N7 and C32X—H32D···O3X are also present.

In the crystal, molecules are linked through intermolecular N8—H1N8···S2, N1—H1N1···O1, N5—H1N5···O3X, N4—H1N4···O2, C3—H3A···N7, C11—H11A···O2, C20—H20A···S1 and C30—H30A···S2 hydrogen bonds into infinite two-dimensional network, (Table 1, Fig.2). Weak C—H··· π interactions are also present: C31X—H31E···*Cg*9, C31X—H31F···*Cg*7, C32X—H32D···*Cg*10, C31—H31B···*Cg*9, C31—H31C···*Cg*7 and C32—H32B···*Cg*5 (Table 2). *Cg*5, *Cg*7, *Cg*9 and *Cg*10 are centroid of N1/C1/C8/C7/C2, C2—C7, C17—C22 and C25—C30 ring, respectively.

S2. Experimental

The Ni-complex has been synthesized by refluxing the reaction mixture of hot ethanolic solution (30 ml) of NiCl₂ (0.01 mol) and hot ethanolic solution (30 ml) of the ligand as reported before (Qasem Ali, 2012*b*) (0.02 mol) for 2 hrs. The precipitate formed during reflux was filtered, washed with cold EtOH and recrystallized from hot EtOH. Yield (m.p.): 67% (>573 K). The green crystals were grown in acetone-DMF (4:1) by slow evaporation at room temperature.

S3. Refinement

N bound atoms were located in a difference Fourier map and were refined freely. The H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 Å for aromatic ring and and C–H = 0.96–0.98 Å for methyl group with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(C)$ for aromatic ring and methyl group respectively. The highest residual electron density peak is located at 0.97 Å from H33B and the deepest hole is located at 0.58 Å from N9.

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

$Bis [2-(2-oxoindolin-3-ylidene)-N-phenylhydrazine carbothio amidato-\ \kappa^3 O, N^2, S]nickel (II)\ dimethyl formamide$

monosolvate

Crystal data	
$[Ni(C_{15}H_{11}N_4OS)_2] \cdot C_3H_7NO$	$\gamma = 102.798 \ (1)^{\circ}$
$M_r = 722.48$	$V = 1642.31 (5) Å^3$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 748
a = 12.2491 (2) Å	$D_{\rm x} = 1.461 {\rm Mg} {\rm m}^{-3}$
b = 12.3170 (3) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 13.1142 (2) Å	Cell parameters from 9906 reflections
$\alpha = 104.854 (1)^{\circ}$	$\theta = 2.7 - 29.9^{\circ}$
$\beta = 112.943 (1)^{\circ}$	$\mu=0.77~\mathrm{mm^{-1}}$

T = 100 K	$0.45 \times 0.15 \times 0.13 \text{ mm}$
Data collection	
Bruker APEXII CCD	34412 measured reflections
diffractometer	9435 independent reflections
Radiation source: fine-focus sealed tube	7397 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Bruker, 2005)	$k = -16 \rightarrow 17$
$T_{\min} = 0.723, \ T_{\max} = 0.906$	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
9435 reflections	and constrained refinement
481 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.8476P]$
25 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.37 \ m e \ m \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.78451 (2)	0.19687 (2)	0.41425 (2)	0.01968 (7)	
S1	0.70744 (4)	0.35633 (4)	0.42739 (5)	0.02561 (11)	
S2	0.65024 (5)	0.08658 (4)	0.47337 (4)	0.02594 (11)	
01	0.90909 (12)	0.09464 (11)	0.45887 (12)	0.0248 (3)	
O2	0.87054 (12)	0.23656 (11)	0.29881 (12)	0.0241 (3)	
N1	1.12110 (15)	0.15001 (14)	0.60044 (15)	0.0242 (3)	
N2	0.94274 (14)	0.33207 (13)	0.55479 (14)	0.0201 (3)	
N3	0.95747 (15)	0.44742 (13)	0.59700 (14)	0.0223 (3)	
N4	0.86366 (17)	0.58352 (14)	0.58507 (16)	0.0260 (4)	
N5	0.83284 (18)	0.11914 (17)	0.10848 (16)	0.0309 (4)	
N6	0.66127 (14)	0.05595 (13)	0.25591 (14)	0.0199 (3)	
N7	0.55864 (15)	-0.03271 (14)	0.23367 (14)	0.0223 (3)	
N8	0.44456 (16)	-0.10476 (15)	0.32126 (16)	0.0271 (4)	

C1	1.01396 (18)	0.17003 (16)	0.54342 (17)	0.0220 (4)
C2	1.22052 (18)	0.26024 (16)	0.68514 (17)	0.0228 (4)
C3	1.34585 (19)	0.27929 (18)	0.75792 (18)	0.0272 (4)
H3A	1.3761	0.2145	0.7565	0.033*
C4	1.42602 (19)	0.39775 (18)	0.83346 (19)	0.0302 (4)
H4A	1.5128	0.4140	0.8849	0.036*
C5	1.38212 (19)	0.49286 (18)	0.83545 (18)	0.0286 (4)
H5A	1.4392	0.5726	0.8883	0.034*
C6	1.25508 (18)	0.47278 (17)	0.76076 (17)	0.0247 (4)
H6A	1.2254	0.5378	0.7614	0.030*
C7	1.17367 (18)	0.35500 (16)	0.68558 (16)	0.0220 (4)
C8	1.04087 (17)	0.29907 (15)	0.59716 (16)	0.0205 (3)
C9	0.84681 (17)	0.46578 (16)	0.54011 (17)	0.0217(4)
C10	0.78016 (19)	0.64753 (17)	0.56415 (18)	0.0248(4)
C11	0.8371 (2)	0 77289 (18)	0.6156 (2)	0.0306(4)
H11A	0.9271	0.8096	0.6597	0.037*
C12	0.9271 0.7638 (2)	0.8445(2)	0.6031(2)	0.037
H12A	0.8039	0.9297	0.6383	0.0302 (3)
C13	0.6330(2)	0.9297 0.7927 (2)	0.5401(2)	0.045
U13 H13A	0.0550 (2)	0.7727 (2)	0.5318	0.0333 (3)
C14	0.5820	0.6410	0.3318 0.4805 (3)	0.042
	0.3770 (2)	0.0099(2)	0.4695 (5)	0.0444(0)
П14А С15	0.4809	0.0340	0.4439	0.033°
	0.0487(2)	0.5905 (2)	0.3003 (2)	0.0418(0)
HI5A C1(0.0070	0.5112	0.20257 (17)	0.050^{*}
C16	0.80929 (18)	0.14680(17)	0.2025/(1/)	0.0246 (4)
C1/	0.7387(2)	0.00967 (19)	0.01605 (18)	0.0292 (4)
C18	0.7279 (2)	-0.0482 (2)	-0.0946 (2)	0.0383 (5)
H18A	0.7892	-0.0172	-0.1171	0.046*
C19	0.6232 (2)	-0.1538 (2)	-0.1715 (2)	0.0385 (5)
H19A	0.6121	-0.1951	-0.2488	0.046*
C20	0.5349 (2)	-0.2000(2)	-0.13809 (19)	0.0347 (5)
H20A	0.4647	-0.2725	-0.1927	0.042*
C21	0.5470 (2)	-0.14246 (18)	-0.02595 (18)	0.0289 (4)
H21A	0.4864	-0.1750	-0.0032	0.035*
C22	0.64997 (19)	-0.03614 (17)	0.05159 (17)	0.0248 (4)
C23	0.69379 (17)	0.04848 (16)	0.17166 (16)	0.0217 (4)
C24	0.54556 (18)	-0.02168 (16)	0.33181 (17)	0.0236 (4)
C25	0.35014 (19)	-0.21055 (18)	0.22267 (18)	0.0282 (4)
C26	0.3149 (2)	-0.2297 (2)	0.10356 (19)	0.0317 (4)
H26A	0.3559	-0.1699	0.0835	0.038*
C27	0.2200 (2)	-0.3359 (2)	0.0138 (2)	0.0381 (5)
H27A	0.1963	-0.3484	-0.0676	0.046*
C28	0.1592 (2)	-0.4240 (2)	0.0413 (2)	0.0438 (6)
H28A	0.0950	-0.4971	-0.0207	0.053*
C29	0.1926 (2)	-0.4047 (2)	0.1598 (2)	0.0456 (6)
H29A	0.1500	-0.4644	0.1790	0.055*
C30	0.2880 (2)	-0.2989 (2)	0.2512 (2)	0.0361 (5)
H30A	0.3109	-0.2865	0.3325	0.043*

N9	0.8695 (2)	0.7307 (2)	0.0180 (3)	0.0608 (7)	
C33	0.8769 (3)	0.7217 (4)	-0.0834 (4)	0.0751 (11)	
H33A	0.8143	0.6683	-0.1624	0.090*	0.486 (15)
H33B	0.7932	0.6948	-0.1495	0.090*	0.514 (15)
03	0.9859 (7)	0.7999 (10)	-0.0528 (10)	0.070 (2)	0.486 (15)
C31	0.7511 (15)	0.6693 (17)	0.0101 (17)	0.113 (6)	0.486 (15)
H31A	0.6901	0.6178	-0.0736	0.169*	0.486 (15)
H31B	0.7179	0.7284	0.0404	0.169*	0.486 (15)
H31C	0.7640	0.6197	0.0583	0.169*	0.486 (15)
C32	0.9682 (15)	0.8108 (15)	0.1582 (11)	0.140 (7)	0.486 (15)
H32A	1.0540	0.8423	0.1681	0.210*	0.486 (15)
H32B	0.9671	0.7606	0.2052	0.210*	0.486 (15)
H32C	0.9430	0.8781	0.1861	0.210*	0.486 (15)
O3X	0.9563 (5)	0.7356 (8)	-0.1188 (8)	0.056 (2)	0.514 (15)
C31X	0.7529 (9)	0.6800 (9)	0.0153 (8)	0.040 (2)	0.514 (15)
H31D	0.6858	0.6375	-0.0680	0.061*	0.514 (15)
H31E	0.7319	0.7441	0.0564	0.061*	0.514 (15)
H31F	0.7600	0.6232	0.0558	0.061*	0.514 (15)
C32X	0.9868 (9)	0.7923 (8)	0.1185 (9)	0.070 (3)	0.514 (15)
H32D	1.0535	0.7815	0.0979	0.105*	0.514 (15)
H32E	0.9902	0.7609	0.1808	0.105*	0.514 (15)
H32F	1.0001	0.8782	0.1483	0.105*	0.514 (15)
H1N8	0.442 (2)	-0.092 (2)	0.388 (2)	0.037 (7)*	
H1N1	1.127 (3)	0.086 (3)	0.590 (2)	0.045 (8)*	
H1N5	0.901 (3)	0.162 (3)	0.107 (3)	0.055 (8)*	
H1N4	0.938 (2)	0.627 (2)	0.630 (2)	0.033 (7)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01728 (12)	0.01467 (11)	0.02259 (12)	0.00379 (9)	0.00726 (9)	0.00553 (9)
S1	0.0183 (2)	0.0182 (2)	0.0310(2)	0.00567 (18)	0.00575 (19)	0.00578 (19)
S2	0.0247 (2)	0.0222 (2)	0.0242 (2)	0.00144 (19)	0.0111 (2)	0.00564 (18)
01	0.0202 (7)	0.0157 (6)	0.0281 (7)	0.0044 (5)	0.0050 (6)	0.0051 (5)
O2	0.0210 (7)	0.0196 (6)	0.0250 (7)	0.0007 (5)	0.0099 (6)	0.0057 (5)
N1	0.0217 (8)	0.0147 (7)	0.0282 (8)	0.0075 (6)	0.0055 (7)	0.0054 (6)
N2	0.0200 (8)	0.0149 (7)	0.0234 (7)	0.0055 (6)	0.0090 (6)	0.0069 (6)
N3	0.0204 (8)	0.0141 (7)	0.0272 (8)	0.0057 (6)	0.0081 (6)	0.0056 (6)
N4	0.0191 (8)	0.0163 (7)	0.0359 (9)	0.0069 (7)	0.0087 (7)	0.0065 (7)
N5	0.0284 (9)	0.0325 (9)	0.0300 (9)	0.0049 (8)	0.0165 (8)	0.0103 (8)
N6	0.0156 (7)	0.0163 (7)	0.0244 (8)	0.0043 (6)	0.0075 (6)	0.0073 (6)
N7	0.0182 (8)	0.0192 (7)	0.0256 (8)	0.0038 (6)	0.0094 (6)	0.0071 (6)
N8	0.0243 (9)	0.0248 (8)	0.0254 (8)	0.0006 (7)	0.0117 (7)	0.0065 (7)
C1	0.0213 (9)	0.0161 (8)	0.0246 (9)	0.0070 (7)	0.0078 (7)	0.0064 (7)
C2	0.0216 (9)	0.0174 (8)	0.0240 (9)	0.0062 (7)	0.0074 (7)	0.0060(7)
C3	0.0243 (10)	0.0220 (9)	0.0305 (10)	0.0101 (8)	0.0081 (8)	0.0092 (8)
C4	0.0219 (10)	0.0269 (10)	0.0308 (10)	0.0064 (8)	0.0043 (8)	0.0095 (8)
C5	0.0238 (10)	0.0200 (9)	0.0281 (10)	0.0027 (8)	0.0045 (8)	0.0054 (8)

supporting information

C6	0.0251 (10)	0.0182 (8)	0.0262 (9)	0.0067 (8)	0.0096 (8)	0.0066 (7)
C7	0.0209 (9)	0.0187 (8)	0.0228 (9)	0.0067 (7)	0.0075 (7)	0.0076 (7)
C8	0.0199 (9)	0.0144 (8)	0.0231 (9)	0.0051 (7)	0.0075 (7)	0.0061 (7)
C9	0.0203 (9)	0.0170 (8)	0.0263 (9)	0.0060 (7)	0.0106 (7)	0.0075 (7)
C10	0.0253 (10)	0.0208 (9)	0.0308 (10)	0.0118 (8)	0.0134 (8)	0.0103 (8)
C11	0.0263 (10)	0.0213 (9)	0.0406 (12)	0.0105 (8)	0.0136 (9)	0.0082 (9)
C12	0.0397 (13)	0.0257 (10)	0.0477 (13)	0.0180 (10)	0.0223 (11)	0.0128 (10)
C13	0.0365 (12)	0.0351 (11)	0.0456 (13)	0.0238 (10)	0.0219 (10)	0.0192 (10)
C14	0.0260 (11)	0.0378 (13)	0.0644 (17)	0.0176 (10)	0.0152 (11)	0.0166 (12)
C15	0.0255 (11)	0.0243 (10)	0.0644 (16)	0.0094 (9)	0.0139 (11)	0.0116 (11)
C16	0.0244 (10)	0.0247 (9)	0.0276 (9)	0.0103 (8)	0.0127 (8)	0.0124 (8)
C17	0.0304 (11)	0.0290 (10)	0.0280 (10)	0.0097 (9)	0.0138 (9)	0.0115 (8)
C18	0.0472 (14)	0.0384 (12)	0.0341 (11)	0.0148 (11)	0.0242 (11)	0.0134 (10)
C19	0.0537 (15)	0.0356 (12)	0.0253 (10)	0.0175 (11)	0.0183 (10)	0.0094 (9)
C20	0.0410 (13)	0.0260 (10)	0.0264 (10)	0.0099 (9)	0.0094 (9)	0.0064 (8)
C21	0.0297 (11)	0.0239 (9)	0.0274 (10)	0.0080 (8)	0.0100 (8)	0.0081 (8)
C22	0.0249 (10)	0.0234 (9)	0.0247 (9)	0.0094 (8)	0.0099 (8)	0.0090 (8)
C23	0.0189 (9)	0.0215 (8)	0.0232 (9)	0.0077 (7)	0.0087 (7)	0.0078 (7)
C24	0.0194 (9)	0.0193 (8)	0.0278 (9)	0.0052 (7)	0.0087 (8)	0.0083 (7)
C25	0.0213 (9)	0.0240 (9)	0.0308 (10)	0.0029 (8)	0.0110 (8)	0.0043 (8)
C26	0.0244 (10)	0.0321 (11)	0.0312 (10)	0.0057 (9)	0.0112 (9)	0.0082 (9)
C27	0.0288 (11)	0.0371 (12)	0.0330 (11)	0.0042 (10)	0.0108 (9)	0.0029 (10)
C28	0.0335 (12)	0.0298 (11)	0.0434 (14)	-0.0027 (10)	0.0131 (11)	-0.0028 (10)
C29	0.0407 (14)	0.0292 (11)	0.0513 (15)	-0.0024 (10)	0.0201 (12)	0.0076 (11)
C30	0.0339 (12)	0.0277 (10)	0.0370 (12)	0.0011 (9)	0.0163 (10)	0.0072 (9)
N9	0.0493 (14)	0.0616 (16)	0.0837 (19)	0.0229 (13)	0.0305 (14)	0.0451 (15)
C33	0.064 (2)	0.104 (3)	0.119 (3)	0.049 (2)	0.062 (2)	0.089 (3)
03	0.058 (3)	0.091 (6)	0.074 (5)	0.012 (4)	0.048 (4)	0.037 (5)
C31	0.069 (10)	0.143 (13)	0.140 (13)	0.023 (9)	0.065 (9)	0.063 (10)
C32	0.130 (10)	0.151 (13)	0.056 (6)	-0.048 (9)	0.043 (6)	0.001 (7)
O3X	0.038 (2)	0.069 (4)	0.064 (4)	0.006 (2)	0.030 (3)	0.033 (4)
C31X	0.049 (5)	0.063 (4)	0.052 (4)	0.042 (4)	0.037 (4)	0.047 (4)
C32X	0.070 (5)	0.054 (4)	0.048 (5)	0.021 (4)	0.003 (4)	0.004 (4)

Geometric parameters (Å, °)

Ni1—N2	2.0342 (15)	C14—C15	1.391 (3)	
Ni1—N6	2.0373 (15)	C14—H14A	0.9500	
Ni1—O1	2.1886 (13)	C15—H15A	0.9500	
Ni1—02	2.2441 (13)	C16—C23	1.475 (3)	
Ni1—S1	2.3564 (5)	C17—C18	1.381 (3)	
Ni1—S2	2.3866 (5)	C17—C22	1.405 (3)	
S1—C9	1.7053 (19)	C18—C19	1.390 (3)	
S2—C24	1.728 (2)	C18—H18A	0.9500	
01—C1	1.255 (2)	C19—C20	1.382 (3)	
O2—C16	1.248 (2)	C19—H19A	0.9500	
N1-C1	1.347 (2)	C20—C21	1.392 (3)	
N1—C2	1.414 (2)	C20—H20A	0.9500	

N1—H1N1	0.79 (3)	C21—C22	1.388 (3)
N2—C8	1.315 (2)	C21—H21A	0.9500
N2—N3	1.328 (2)	C22—C23	1.451 (3)
N3—C9	1.371 (2)	C25—C26	1.386 (3)
N4—C9	1.352 (2)	C25—C30	1.403 (3)
N4—C10	1.412 (2)	C26—C27	1.385 (3)
N4—H1N4	0.81 (3)	C26—H26A	0.9500
N5—C16	1.352 (3)	C27—C28	1.384 (4)
N5—C17	1.414 (3)	С27—Н27А	0.9500
N5—H1N5	0.89 (3)	C28—C29	1.383 (4)
N6—C23	1.302 (2)	C28—H28A	0.9500
N6—N7	1.342 (2)	C29—C30	1.390 (3)
N7—C24	1.335 (2)	С29—Н29А	0.9500
N8—C24	1.353 (2)	C30—H30A	0.9500
N8—C25	1.418 (3)	N9—C33	1.347 (4)
N8—H1N8	0.85 (3)	N9—C32X	1.381 (9)
C1—C8	1.464 (2)	N9—C31X	1.408 (10)
C2—C3	1.381 (3)	N9—C31	1.429 (16)
C2—C7	1.410 (2)	N9—C32	1.619 (12)
C3—C4	1.393 (3)	C33—O3X	1.229 (6)
C3—H3A	0.9500	C33—O3	1.298 (8)
C4—C5	1.392 (3)	С33—Н33А	0.9500
C4—H4A	0.9500	С33—Н33В	0.9600
C5—C6	1.400 (3)	С31—Н31А	0.9800
С5—Н5А	0.9500	C31—H31B	0.9800
C6—C7	1.389 (3)	C31—H31C	0.9800
С6—Н6А	0.9500	С32—Н32А	0.9800
C7—C8	1.445 (3)	С32—Н32В	0.9800
C10—C15	1.386 (3)	С32—Н32С	0.9800
C10—C11	1.396 (3)	C31X—H31D	0.9800
C11—C12	1.386 (3)	C31X—H31E	0.9800
C11—H11A	0.9500	C31X—H31F	0.9800
C12—C13	1.379 (3)	C32X—H32D	0.9800
C12—H12A	0.9500	С32Х—Н32Е	0.9800
C13—C14	1.367 (3)	C32X—H32F	0.9800
C13—H13A	0.9500		
N2—Ni1—N6	163.87 (6)	C10—C15—H15A	120.1
N2—Ni1—O1	80.64 (5)	C14—C15—H15A	120.1
N6—Ni1—O1	89.97 (5)	O2—C16—N5	128.61 (19)
N2—Ni1—O2	86.61 (5)	O2—C16—C23	124.53 (17)
N6—Ni1—O2	79.65 (5)	N5-C16-C23	106.86 (17)
O1—Ni1—O2	86.10 (5)	C18—C17—C22	122.1 (2)
N2—Ni1—S1	80.27 (4)	C18—C17—N5	128.4 (2)
N6—Ni1—S1	109.33 (4)	C22—C17—N5	109.45 (18)
O1—Ni1—S1	160.66 (4)	C17—C18—C19	117.1 (2)
O2—Ni1—S1	95.85 (4)	C17—C18—H18A	121.4
N2—Ni1—S2	113.35 (5)	C19—C18—H18A	121.4

N6—Ni1—S2	79.44 (4)	C20—C19—C18	121.4 (2)
01—Ni1—S2	89.75 (4)	С20—С19—Н19А	119.3
O2—Ni1—S2	158.67 (4)	C18—C19—H19A	119.3
S1—Ni1—S2	94.949 (19)	C19—C20—C21	121.3 (2)
C9—S1—Ni1	96.51 (6)	C19—C20—H20A	119.3
C24—S2—Ni1	95.92 (7)	C21—C20—H20A	119.3
C1—O1—Ni1	105.85 (11)	C22—C21—C20	118.1 (2)
C16—O2—Ni1	104.98 (12)	C22—C21—H21A	121.0
C1—N1—C2	110.03 (15)	C20—C21—H21A	121.0
C1—N1—H1N1	125 (2)	C21—C22—C17	119.86 (19)
C2—N1—H1N1	125 (2)	C21—C22—C23	134.39 (19)
C8—N2—N3	119.43 (15)	C17—C22—C23	105.75 (17)
C8—N2—Ni1	113.80 (12)	N6-C23-C22	137.10 (18)
N3—N2—Ni1	126.43 (12)	N6-C23-C16	115.45 (16)
N2—N3—C9	111.47 (15)	C22—C23—C16	107.37 (16)
C9—N4—C10	133.07 (18)	N7—C24—N8	117.60 (17)
C9—N4—H1N4	113.1 (17)	N7—C24—S2	125.57 (15)
C10—N4—H1N4	113.6 (17)	N8—C24—S2	116.77 (15)
C16—N5—C17	110.54 (17)	C26—C25—C30	119.45 (19)
C16—N5—H1N5	124.5 (19)	C26—C25—N8	124.72 (19)
C17—N5—H1N5	124.9 (19)	C30—C25—N8	115.81 (19)
C23—N6—N7	117.97 (16)	C27—C26—C25	120.1 (2)
C23—N6—Ni1	114.66 (12)	С27—С26—Н26А	120.0
N7—N6—Ni1	127.13 (12)	С25—С26—Н26А	120.0
C24—N7—N6	111.61 (15)	C26—C27—C28	120.8 (2)
C24—N8—C25	130.78 (18)	С26—С27—Н27А	119.6
C24—N8—H1N8	112.5 (17)	С28—С27—Н27А	119.6
C25—N8—H1N8	116.5 (17)	C29—C28—C27	119.4 (2)
01—C1—N1	127.81 (17)	C29—C28—H28A	120.3
O1—C1—C8	124.69 (16)	C27—C28—H28A	120.3
N1—C1—C8	107.50 (16)	C28—C29—C30	120.6 (2)
C3—C2—C7	122.46 (17)	С28—С29—Н29А	119.7
C3—C2—N1	128.16 (17)	С30—С29—Н29А	119.7
C7—C2—N1	109.37 (16)	C29—C30—C25	119.6 (2)
C2—C3—C4	117.01 (18)	С29—С30—Н30А	120.2
С2—С3—НЗА	121.5	С25—С30—Н30А	120.2
С4—С3—НЗА	121.5	C33—N9—C32X	111.8 (6)
C5—C4—C3	121.63 (19)	C33—N9—C31X	121.5 (4)
С5—С4—Н4А	119.2	C32X—N9—C31X	126.7 (6)
C3—C4—H4A	119.2	C33—N9—C31	119.3 (8)
C4—C5—C6	120.96 (18)	C32X—N9—C31	128.6 (10)
С4—С5—Н5А	119.5	C33—N9—C32	132.9 (6)
С6—С5—Н5А	119.5	C31X—N9—C32	104.9 (7)
C7—C6—C5	118.11 (17)	C31—N9—C32	107.6 (9)
С7—С6—Н6А	120.9	O3X—C33—N9	140.3 (5)
С5—С6—Н6А	120.9	O3—C33—N9	107.0 (6)
C6—C7—C2	119.83 (17)	O3X—C33—H33A	89.3
C6—C7—C8	134.55 (17)	O3—C33—H33A	126.5

C2—C7—C8	105.60 (15)	N9—C33—H33A	126.5
N2—C8—C7	137.86 (17)	O3X—C33—H33B	109.8
N2—C8—C1	114.74 (16)	O3—C33—H33B	133.6
C7—C8—C1	107.39 (15)	N9—C33—H33B	109.9
N4—C9—N3	110.48 (16)	N9—C31—H31A	109.5
N4—C9—S1	124.46 (14)	N9—C31—H31B	109.5
N3—C9—S1	125.06 (14)	N9—C31—H31C	109.5
C15—C10—C11	118.47 (18)	N9—C32—H32A	109.5
C15—C10—N4	125.52 (18)	N9—C32—H32B	109.5
C11—C10—N4	115.98 (18)	N9—C32—H32C	109.5
C12—C11—C10	120.7 (2)	N9—C31X—H31D	109.5
C12—C11—H11A	119.6	N9—C31X—H31E	109.5
C10—C11—H11A	119.6	H31D—C31X—H31E	109.5
C13—C12—C11	120.4 (2)	N9—C31X—H31F	109.5
C13—C12—H12A	119.8	H31D—C31X—H31F	109.5
C11—C12—H12A	119.8	H_{31E} C_{31X} H_{31E}	109.5
C14-C13-C12	119.0 (2)	N9—C32X—H32D	109.5
C14—C13—H13A	120.5	N9—C32X—H32E	109.5
C12-C13-H13A	120.5	H_{32D} C_{32X} H_{32E}	109.5
C_{13} C_{14} C_{15}	121.6 (2)	N9_C32X_H32F	109.5
C13 - C14 - H14A	119.2	H_{32D} C_{32X} H_{32F}	109.5
C15 - C14 - H14A	119.2	$H_{32F} = C_{32X} = H_{32F}$	109.5
C10-C15-C14	119.8 (2)	11522 05277 11521	109.0
	119.0 (2)		
N2—Ni1—S1—C9	3.18 (8)	O1—C1—C8—C7	-176.31 (18)
N6—Ni1—S1—C9	-163.42 (8)	N1—C1—C8—C7	3.1 (2)
O1—Ni1—S1—C9	12.56 (14)	C10—N4—C9—N3	-175.2 (2)
O2—Ni1—S1—C9	-82.36(7)	C10—N4—C9—S1	5.4 (3)
S2—Ni1—S1—C9	116.05 (7)	N2—N3—C9—N4	179.52 (16)
N2—Ni1—S2—C24	-173.88(8)	N2—N3—C9—S1	-1.1 (2)
N6—Ni1—S2—C24	-4.18(7)	Ni1—S1—C9—N4	177.06 (16)
01—Ni1—S2—C24	-94.19 (7)	Ni1—S1—C9—N3	-2.25(17)
O2—Ni1—S2—C24	-15.62 (13)	C9—N4—C10—C15	11.0 (4)
S1-Ni1-S2-C24	104.59 (6)	C9—N4—C10—C11	-170.9(2)
N2—Ni1—O1—C1	-2.40(12)	C15-C10-C11-C12	-0.1(3)
N6—Ni1—O1—C1	164.43 (13)	N4-C10-C11-C12	-178.4(2)
02-Ni1-01-C1	84.80 (12)	C10-C11-C12-C13	0.4 (4)
S1 - Ni1 - O1 - C1	-11.8(2)	$C_{11} - C_{12} - C_{13} - C_{14}$	-0.4(4)
$s_{2} = Ni_{1} = 0_{1} = 0_{1}$	-11613(12)	C12-C13-C14-C15	01(4)
$N_2 = N_1 = 0_2 = 0_1$	164 17 (12)	C_{11} C_{10} C_{15} C_{14}	-0.1(4)
N6-Ni1-O2-C16	-7.35(12)	N4-C10-C15-C14	1780(2)
01 - Ni1 - 02 - C16	83 33 (12)	C_{13} C_{14} C_{15} C_{10}	0.1(4)
S1 - Ni1 - O2 - C16	-115.98 (11)	Ni1 - O2 - C16 - N5	-171 38 (18)
$S_{2} = N_{11} = O_{2} = C_{16}$	4 09 (19)	Ni1 -02 -C16 $-C23$	84(2)
N_{6} Ni1 N2 C8	-50 5 (3)	C17 - N5 - C16 - O2	-179.06 (10)
01 - Ni1 - N2 - C8	4 60 (13)	C17 - N5 - C16 - C23	11(2)
01 - 101 - 102 - 00 02 - 011 - 02 - 08	-82 01 (13)	$C_{17} = -10 = C_{10} = C_{23}$ $C_{16} = N_5 = C_{17} = C_{18}$	1.1(2) 1791(2)
S1 Nil N2 C9	-17854(13)	$C_{10} = 0.0 = 0$	-0.1(2)
51 - 1011 - 102 - 00	1/0.34 (13)	$U_{10} - M_{3} - U_{1} - U_{2}$	0.1(2)

S2—Ni1—N2—C8	90.24 (13)	C22—C17—C18—C19	1.2 (3)
N6—Ni1—N2—N3	122.6 (2)	N5-C17-C18-C19	-177.9 (2)
O1—Ni1—N2—N3	177.76 (16)	C17—C18—C19—C20	-1.0(3)
O2—Ni1—N2—N3	91.15 (15)	C18—C19—C20—C21	0.2 (4)
S1—Ni1—N2—N3	-5.38 (14)	C19—C20—C21—C22	0.6 (3)
S2—Ni1—N2—N3	-96.60 (14)	C20—C21—C22—C17	-0.5(3)
C8—N2—N3—C9	178.00 (16)	C20—C21—C22—C23	179.3 (2)
Ni1—N2—N3—C9	5.2 (2)	C18—C17—C22—C21	-0.4 (3)
N2—Ni1—N6—C23	-26.1 (3)	N5-C17-C22-C21	178.82 (18)
O1—Ni1—N6—C23	-80.17 (13)	C18—C17—C22—C23	179.8 (2)
O2—Ni1—N6—C23	5.88 (12)	N5-C17-C22-C23	-1.0(2)
S1—Ni1—N6—C23	98.50 (13)	N7—N6—C23—C22	-2.1 (3)
S2—Ni1—N6—C23	-169.91 (13)	Ni1—N6—C23—C22	172.66 (19)
N2—Ni1—N6—N7	148.11 (19)	N7—N6—C23—C16	-178.39 (15)
O1—Ni1—N6—N7	94.07 (14)	Ni1—N6—C23—C16	-3.6 (2)
O2—Ni1—N6—N7	-179.88 (15)	C21—C22—C23—N6	5.4 (4)
S1—Ni1—N6—N7	-87.26 (14)	C17—C22—C23—N6	-174.8 (2)
S2—Ni1—N6—N7	4.33 (13)	C21—C22—C23—C16	-178.1 (2)
C23—N6—N7—C24	172.15 (16)	C17—C22—C23—C16	1.6 (2)
Ni1—N6—N7—C24	-1.9 (2)	O2-C16-C23-N6	-4.2 (3)
Ni1-01-C1-N1	-179.24 (18)	N5-C16-C23-N6	175.61 (16)
Ni1-01-C1-C8	0.1 (2)	O2-C16-C23-C22	178.46 (18)
C2-N1-C1-01	176.12 (19)	N5-C16-C23-C22	-1.7 (2)
C2—N1—C1—C8	-3.3 (2)	N6—N7—C24—N8	179.18 (16)
C1—N1—C2—C3	-177.1 (2)	N6—N7—C24—S2	-3.5 (2)
C1—N1—C2—C7	2.3 (2)	C25—N8—C24—N7	4.8 (3)
C7—C2—C3—C4	0.1 (3)	C25—N8—C24—S2	-172.74 (17)
N1—C2—C3—C4	179.3 (2)	Ni1—S2—C24—N7	5.77 (17)
C2—C3—C4—C5	-0.2 (3)	Ni1—S2—C24—N8	-176.93 (14)
C3—C4—C5—C6	-0.3 (3)	C24—N8—C25—C26	-24.4 (3)
C4—C5—C6—C7	0.8 (3)	C24—N8—C25—C30	157.2 (2)
C5—C6—C7—C2	-0.8 (3)	C30—C25—C26—C27	-0.7 (3)
C5—C6—C7—C8	-179.1 (2)	N8—C25—C26—C27	-179.1 (2)
C3—C2—C7—C6	0.4 (3)	C25—C26—C27—C28	0.0 (4)
N1—C2—C7—C6	-178.94 (17)	C26—C27—C28—C29	0.9 (4)
C3—C2—C7—C8	179.16 (18)	C27—C28—C29—C30	-1.1 (4)
N1—C2—C7—C8	-0.2 (2)	C28—C29—C30—C25	0.5 (4)
N3—N2—C8—C7	0.8 (3)	C26—C25—C30—C29	0.5 (3)
Ni1—N2—C8—C7	174.5 (2)	N8-C25-C30-C29	179.0 (2)
N3—N2—C8—C1	-179.47 (16)	C32X—N9—C33—O3X	13.7 (9)
Ni1—N2—C8—C1	-5.8 (2)	C31X—N9—C33—O3X	-165.7 (8)
C6—C7—C8—N2	-3.5 (4)	C31—N9—C33—O3X	-160.5 (10)
C2C7C8N2	178.0 (2)	C32—N9—C33—O3X	26.4 (12)
C6—C7—C8—C1	176.7 (2)	C32X—N9—C33—O3	-16.0 (6)
C2—C7—C8—C1	-1.7 (2)	C31X—N9—C33—O3	164.6 (5)
O1—C1—C8—N2	3.9 (3)	C31—N9—C33—O3	169.7 (9)
N1-C1-C8-N2	-176.67 (16)	C32—N9—C33—O3	-3.3 (10)

Hydrogen-bond geometry (Å, °)

Cg5, Cg7, Cg9 and Cg10 are the centroids of the N1/C1/C8/C7/C2, C2–C7, C17–C22 and C25–C30 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N8—H1N8…S2 ⁱ	0.86 (2)	2.48 (3)	3.301 (2)	159 (2)
N1—H1N1···O1 ⁱⁱ	0.79 (4)	2.04 (4)	2.811 (2)	165 (4)
N5—H1 <i>N</i> 5····O3 <i>X</i> ⁱⁱⁱ	0.89 (4)	1.84 (4)	2.729 (9)	173 (3)
N4—H1 N 4····O2 ^{iv}	0.82 (3)	2.22 (3)	3.006 (3)	161 (2)
C3—H3A····N7 ⁱⁱ	0.95	2.56	3.500 (3)	173
C11—H11 <i>A</i> ···O2 ^{iv}	0.95	2.55	3.349 (3)	142
C15—H15A…S1	0.95	2.53	3.194 (3)	127
C20—H20 A ···S1 ^v	0.95	2.71	3.443 (2)	135
C26—H26A···N7	0.95	2.35	2.900 (3)	116
C30—H30 <i>A</i> ···S2 ⁱ	0.95	2.84	3.551 (2)	132
С32Х—Н32Д…О3Х	0.98	2.46	2.859 (14)	104
C31 <i>X</i> —H31 <i>E</i> ··· <i>Cg</i> 9 ^{vi}	0.98	2.97	3.567 (11)	121
C31 X —H31 F ···C $g7^{iv}$	0.98	2.79	3.460 (10)	126
C32 <i>X</i> —H32 <i>D</i> ··· <i>Cg</i> 10 ^{vii}	0.98	2.91	3.769 (12)	147
C31—H31 <i>B</i> ··· <i>Cg</i> 9 ^{vi}	0.98	2.98	3.66 (2)	128
C31—H31 C ··· $Cg7^{iv}$	0.98	2.78	3.47 (2)	127
C32—H32 B ···C $g5^{iv}$	0.98	2.82	3.577 (16)	135

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y, -z; (vi) x, y+1, z; (vii) x+1, y+1, z.