organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1326

(2-Chloro­phen­yl)(4-hy­dr­oxy-1,1-dioxo-2H-1,2-benzo­thia­zin-3-yl)methanone

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bChemistry Department, Govt. College University, Faisalabad, Pakistan, cChemistry Department, University of Sargodha, Sargodha 40100, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 8 March 2012; accepted 1 April 2012; online 6 April 2012)

In the title mol­ecule, C15H10ClNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.527 (7) and 0.216 (7) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is consolidated by an intra­molecular O—H⋯O inter­action and the crystal packing is stabilized by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background information on the synthesis of related compounds, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]). For the biological activity of 1,2-benzothia­zine derivatives, see: Ikeda et al. (1992[Ikeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett. 2, 709-714.]); Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-494.]); Gupta et al. (2002[Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For bromo analogue of the title compound, see: Sattar et al. (2012[Sattar, N., Siddiqui, H. L., Siddiqui, W. A., Akram, M. & Parvez, M. (2012). Acta Cryst. E68, o1247.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO4S

  • Mr = 335.75

  • Monoclinic, P 21 /c

  • a = 12.1078 (6) Å

  • b = 8.4057 (5) Å

  • c = 14.7022 (9) Å

  • β = 105.541 (3)°

  • V = 1441.60 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 173 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.951, Tmax = 0.975

  • 5606 measured reflections

  • 3204 independent reflections

  • 2383 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.138

  • S = 1.12

  • 3204 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.84 (4) 2.06 (4) 2.857 (4) 158 (4)
C13—H13⋯O2ii 0.95 2.59 3.307 (5) 132
C5—H5⋯O1iii 0.95 2.55 3.369 (5) 145
O3—H3O⋯O4 0.84 1.80 2.536 (3) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The nucleus 1,2-benzothiazine 1,1-dioxide represents a class of pharmaceutically important heterocyclic compounds that have received considerable attention because of their dynamic structural features and a wide range of biological activities. They are known to be anti-allergy (Ikeda et al., 1992), anti-inflammatory (Lombardino et al., 1973), analgesic (Gupta et al., 2002), anti-bacterial (Zia-ur-Rehman et al., 2006) etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010) we report herein the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported for its bromo analogue with which it is isomorphic (Sattar et al., 2012). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.216 (7) and 0.527 (7) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The molecular structure is stabilized by intramolecular interactions O4–H4O···O3 and the crystal packing is consolidated by N1—H1N···O4 and C13—H13···O2 intermolecular hydrogen bonds (Figure 2 and Table 1).

Related literature top

For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Ikeda et al. (1992); Lombardino et al. (1973); Gupta et al. (2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For bromo analogue of the title compound, see: Sattar et al. (2012).

Experimental top

A mixture of 2-[2-(o-chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (10.1 g, 30 mmol) and sodium methoxide (2.2 g, 40.0 mmol) in freshly dried methanol (25 ml) was subjected to reflux for 30 minutes. The reaction was quenched with ice-cold water and acidified to pH = 3 with dilute HCl. The precipitates were filtered, washed with water and ethanol (25 ml, each) to get yellow powder of the title compound (9.4 g, 70%). The crystals suitable for X-ray crystallographic analysis were grown from a mixture of solvents chloroform and methanol (2:1) by slow evaporation at room temperature.

Refinement top

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O—H and C—H = 0.84 and 0.95 Å, respectively. The amino H-atom was allowed to refine freely. The Uiso(H) were allowed at 1.2Ueq(parent atom).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular and intramoilecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
(2-Chlorophenyl)(4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin-3-yl)methanone top
Crystal data top
C15H10ClNO4SF(000) = 688
Mr = 335.75Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2930 reflections
a = 12.1078 (6) Åθ = 1.0–27.5°
b = 8.4057 (5) ŵ = 0.43 mm1
c = 14.7022 (9) ÅT = 173 K
β = 105.541 (3)°Prism, pale yellow
V = 1441.60 (14) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube2383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.951, Tmax = 0.975k = 1010
5606 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + 4.364P]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H10ClNO4SV = 1441.60 (14) Å3
Mr = 335.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1078 (6) ŵ = 0.43 mm1
b = 8.4057 (5) ÅT = 173 K
c = 14.7022 (9) Å0.12 × 0.10 × 0.06 mm
β = 105.541 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2383 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.975Rint = 0.051
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.36 e Å3
3204 reflectionsΔρmin = 0.36 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71096 (9)0.38782 (15)0.83022 (8)0.0469 (3)
S10.18808 (7)0.39935 (12)0.60671 (6)0.0281 (2)
O10.1528 (2)0.2392 (3)0.58127 (18)0.0358 (7)
O20.1631 (2)0.5208 (4)0.53640 (19)0.0396 (7)
O30.3300 (2)0.2131 (3)0.88114 (18)0.0340 (6)
H3O0.39200.16610.88370.041*
O40.5099 (2)0.1471 (3)0.83156 (18)0.0341 (6)
N10.3252 (2)0.3988 (4)0.6544 (2)0.0278 (7)
H1N0.358 (3)0.487 (5)0.655 (3)0.033*
C10.1348 (3)0.4509 (5)0.7026 (3)0.0273 (8)
C20.0344 (3)0.5377 (5)0.6909 (3)0.0386 (10)
H20.00380.58120.63120.046*
C30.0087 (4)0.5595 (5)0.7679 (3)0.0411 (10)
H30.07780.61790.76050.049*
C40.0460 (3)0.4985 (5)0.8555 (3)0.0386 (10)
H40.01470.51550.90740.046*
C50.1461 (3)0.4128 (5)0.8679 (3)0.0318 (8)
H50.18320.36990.92810.038*
C60.1931 (3)0.3892 (4)0.7913 (2)0.0249 (7)
C70.3004 (3)0.3016 (4)0.8035 (2)0.0253 (7)
C80.3659 (3)0.3096 (4)0.7403 (2)0.0250 (7)
C90.4744 (3)0.2291 (5)0.7586 (3)0.0284 (8)
C100.5468 (3)0.2430 (4)0.6910 (3)0.0265 (8)
C110.6580 (3)0.3042 (5)0.7190 (3)0.0300 (8)
C120.7263 (4)0.3083 (5)0.6570 (3)0.0406 (10)
H120.80110.35250.67650.049*
C130.6856 (4)0.2483 (5)0.5672 (3)0.0406 (10)
H130.73260.25020.52480.049*
C140.5764 (4)0.1854 (5)0.5387 (3)0.0391 (10)
H140.54900.14170.47720.047*
C150.5063 (3)0.1858 (5)0.5996 (3)0.0349 (9)
H150.43010.14650.57850.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0364 (5)0.0581 (7)0.0450 (6)0.0087 (5)0.0087 (4)0.0126 (5)
S10.0242 (4)0.0341 (5)0.0262 (4)0.0017 (4)0.0072 (3)0.0021 (4)
O10.0359 (14)0.0401 (16)0.0324 (14)0.0094 (13)0.0109 (11)0.0065 (13)
O20.0331 (14)0.0514 (19)0.0334 (15)0.0028 (14)0.0073 (12)0.0157 (14)
O30.0298 (14)0.0426 (17)0.0314 (14)0.0113 (13)0.0112 (11)0.0104 (13)
O40.0292 (13)0.0410 (17)0.0329 (14)0.0093 (12)0.0096 (11)0.0062 (13)
N10.0233 (15)0.0292 (17)0.0328 (17)0.0023 (14)0.0106 (13)0.0036 (14)
C10.0260 (17)0.028 (2)0.0296 (18)0.0022 (15)0.0096 (14)0.0008 (16)
C20.032 (2)0.042 (2)0.041 (2)0.0089 (19)0.0087 (17)0.007 (2)
C30.034 (2)0.039 (2)0.054 (3)0.0106 (19)0.0177 (19)0.000 (2)
C40.037 (2)0.043 (2)0.044 (2)0.0059 (19)0.0248 (19)0.000 (2)
C50.0342 (19)0.035 (2)0.0291 (19)0.0018 (18)0.0140 (16)0.0007 (17)
C60.0235 (16)0.0253 (18)0.0263 (17)0.0032 (15)0.0075 (14)0.0001 (15)
C70.0248 (17)0.0252 (19)0.0257 (17)0.0006 (15)0.0067 (14)0.0005 (15)
C80.0217 (16)0.0281 (19)0.0254 (17)0.0016 (15)0.0063 (13)0.0006 (15)
C90.0262 (18)0.031 (2)0.0279 (18)0.0024 (16)0.0077 (14)0.0055 (16)
C100.0248 (17)0.0269 (19)0.0306 (18)0.0054 (15)0.0124 (14)0.0016 (15)
C110.0272 (18)0.027 (2)0.037 (2)0.0015 (16)0.0111 (16)0.0030 (16)
C120.033 (2)0.039 (2)0.055 (3)0.0013 (19)0.021 (2)0.004 (2)
C130.047 (2)0.040 (2)0.043 (2)0.008 (2)0.027 (2)0.008 (2)
C140.041 (2)0.044 (3)0.034 (2)0.007 (2)0.0143 (18)0.0022 (19)
C150.031 (2)0.042 (2)0.033 (2)0.0027 (18)0.0104 (16)0.0012 (18)
Geometric parameters (Å, º) top
Cl1—C111.737 (4)C4—H40.9500
S1—O21.427 (3)C5—C61.404 (5)
S1—O11.431 (3)C5—H50.9500
S1—N11.620 (3)C6—C71.462 (5)
S1—C11.755 (4)C7—C81.376 (5)
O3—C71.329 (4)C8—C91.438 (5)
O3—H3O0.8400C9—C101.497 (5)
O4—C91.250 (4)C10—C151.387 (5)
N1—C81.437 (5)C10—C111.395 (5)
N1—H1N0.84 (4)C11—C121.386 (5)
C1—C21.388 (5)C12—C131.375 (6)
C1—C61.405 (5)C12—H120.9500
C2—C31.380 (6)C13—C141.381 (6)
C2—H20.9500C13—H130.9500
C3—C41.379 (6)C14—C151.388 (5)
C3—H30.9500C14—H140.9500
C4—C51.379 (5)C15—H150.9500
O2—S1—O1119.57 (18)O3—C7—C8122.4 (3)
O2—S1—N1108.01 (17)O3—C7—C6114.4 (3)
O1—S1—N1108.05 (18)C8—C7—C6123.2 (3)
O2—S1—C1110.69 (18)C7—C8—N1119.7 (3)
O1—S1—C1107.08 (17)C7—C8—C9120.9 (3)
N1—S1—C1102.01 (17)N1—C8—C9119.4 (3)
C7—O3—H3O109.5O4—C9—C8120.5 (3)
C8—N1—S1116.8 (2)O4—C9—C10119.1 (3)
C8—N1—H1N114 (3)C8—C9—C10120.4 (3)
S1—N1—H1N115 (3)C15—C10—C11118.5 (3)
C2—C1—C6121.0 (3)C15—C10—C9119.9 (3)
C2—C1—S1121.9 (3)C11—C10—C9121.5 (3)
C6—C1—S1116.9 (3)C12—C11—C10120.9 (4)
C3—C2—C1118.6 (4)C12—C11—Cl1118.3 (3)
C3—C2—H2120.7C10—C11—Cl1120.7 (3)
C1—C2—H2120.7C13—C12—C11119.9 (4)
C4—C3—C2121.5 (4)C13—C12—H12120.0
C4—C3—H3119.2C11—C12—H12120.0
C2—C3—H3119.2C12—C13—C14120.0 (4)
C5—C4—C3120.2 (4)C12—C13—H13120.0
C5—C4—H4119.9C14—C13—H13120.0
C3—C4—H4119.9C13—C14—C15120.3 (4)
C4—C5—C6119.9 (4)C13—C14—H14119.9
C4—C5—H5120.0C15—C14—H14119.9
C6—C5—H5120.0C10—C15—C14120.4 (4)
C5—C6—C1118.7 (3)C10—C15—H15119.8
C5—C6—C7120.8 (3)C14—C15—H15119.8
C1—C6—C7120.5 (3)
O2—S1—N1—C8166.9 (3)C6—C7—C8—N14.5 (6)
O1—S1—N1—C862.4 (3)O3—C7—C8—C93.8 (6)
C1—S1—N1—C850.2 (3)C6—C7—C8—C9175.9 (3)
O2—S1—C1—C233.6 (4)S1—N1—C8—C734.2 (5)
O1—S1—C1—C298.3 (4)S1—N1—C8—C9145.4 (3)
N1—S1—C1—C2148.3 (3)C7—C8—C9—O41.7 (6)
O2—S1—C1—C6151.4 (3)N1—C8—C9—O4177.9 (3)
O1—S1—C1—C676.7 (3)C7—C8—C9—C10178.0 (3)
N1—S1—C1—C636.7 (3)N1—C8—C9—C102.4 (5)
C6—C1—C2—C31.5 (6)O4—C9—C10—C15117.4 (4)
S1—C1—C2—C3173.3 (3)C8—C9—C10—C1563.0 (5)
C1—C2—C3—C40.6 (7)O4—C9—C10—C1158.7 (5)
C2—C3—C4—C50.2 (7)C8—C9—C10—C11120.9 (4)
C3—C4—C5—C60.7 (6)C15—C10—C11—C120.3 (6)
C4—C5—C6—C11.6 (6)C9—C10—C11—C12176.4 (4)
C4—C5—C6—C7178.7 (4)C15—C10—C11—Cl1176.4 (3)
C2—C1—C6—C52.0 (6)C9—C10—C11—Cl17.5 (5)
S1—C1—C6—C5173.0 (3)C10—C11—C12—C131.5 (6)
C2—C1—C6—C7178.4 (4)Cl1—C11—C12—C13177.7 (3)
S1—C1—C6—C76.6 (5)C11—C12—C13—C140.6 (7)
C5—C6—C7—O317.5 (5)C12—C13—C14—C151.5 (7)
C1—C6—C7—O3162.2 (3)C11—C10—C15—C141.8 (6)
C5—C6—C7—C8162.3 (4)C9—C10—C15—C14174.4 (4)
C1—C6—C7—C818.0 (6)C13—C14—C15—C102.7 (6)
O3—C7—C8—N1175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.84 (4)2.06 (4)2.857 (4)158 (4)
C13—H13···O2ii0.952.593.307 (5)132
C5—H5···O1iii0.952.553.369 (5)145
O3—H3O···O40.841.802.536 (3)146
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10ClNO4S
Mr335.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.1078 (6), 8.4057 (5), 14.7022 (9)
β (°) 105.541 (3)
V3)1441.60 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.951, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5606, 3204, 2383
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.138, 1.12
No. of reflections3204
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.36

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.84 (4)2.06 (4)2.857 (4)158 (4)
C13—H13···O2ii0.952.593.307 (5)132.3
C5—H5···O1iii0.952.553.369 (5)144.7
O3—H3O···O40.841.802.536 (3)145.5
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIkeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett. 2, 709–714.  CrossRef CAS Web of Science Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–494.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSattar, N., Siddiqui, H. L., Siddiqui, W. A., Akram, M. & Parvez, M. (2012). Acta Cryst. E68, o1247.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds