

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-2,4,6-Trimethyl-N-(pyridin-2-ylmethylidene)aniline

Yu-Wei Dong, Rui-Qing Fan,* Ping Wang and Yu-Lin Yang

Department of Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China

Correspondence e-mail: fanruiqing@hit.edu.cn

Received 14 March 2012; accepted 12 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.056; wR factor = 0.200; data-to-parameter ratio = 19.4.

In the title compound, $C_{15}H_{16}N_2$, has an *E* conformation about the central N=C bond. The benzene and pyridine rings are almost normal to one another with a dihedral angle of $87.47(8)^{\circ}$. In the crystal, there are no classical hydrogen bonds.

Related literature

For C–N bond forming reactions, see: Alonso-Moreno *et al.* (2009); Qiu *et al.* (2009). For imino C—N bonds in a related structure, see: Nienkemper *et al.* (2006). For the preparation of related compounds, see: Bianchini *et al.* (2001); Fan *et al.* (2009).

Experimental

Crystal data

 $C_{15}H_{16}N_2$ $M_r = 224.30$ Monoclinic, $P2_1/c$

a = 8.2490 (16) Å
b = 16.136 (3) Å
c = 10.150 (2) Å

 $\beta = 104.76 (3)^{\circ}$ $V = 1306.4 (4) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.976, T_{max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.200$ S = 1.032982 reflections $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K $0.36 \times 0.34 \times 0.29 \text{ mm}$

12591 measured reflections 2982 independent reflections 1952 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

154 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXP97* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by the National Natural Science Foundation of China (grant Nos. 20971031, 21071035 and 21171044), the China Postdoctoral Science Foundation Funded Project (No. 65204) and the Key Natural Science Foundation of the Heilongjiang Province, China (No. ZD201009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2067).

References

- Alonso-Moreno, C., Carrillo-Hermosilla, F., Romero-Fernández, J., Rodríguez, A. M., Otero, A. & Antiñolo, A. (2009). Adv. Synth. Catal. 351, 881– 890.
- Bianchini, C., Lee, H. M., Mantovani, G., Meli, A. & Oberhauser, W. (2001). New J. Chem. 26, 387–397.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, R. Q., Yang, Y. L., Yin, Y. B., Hasi, W. L. J. & Mu, Y. (2009). *Inorg. Chem.* **48**, 6034–6043.
- Nienkemper, K., Kotov, V. V., Kehr, G., Erker, G. & Fröhlich, R. (2006). Eur. J. Inorg. Chem. pp. 366–379.
- Qiu, C. J., Zhang, Y. C., Gao, Y. & Zhao, J. Q. (2009). J. Organomet. Chem. 694, 3418–3424.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1427 [doi:10.1107/S1600536812015905]

(E)-2,4,6-Trimethyl-N-(pyridin-2-ylmethylidene)aniline

Yu-Wei Dong, Rui-Qing Fan, Ping Wang and Yu-Lin Yang

S1. Comment

C—N bond forming reactions are of considerable interest in both synthetic organic due to the importance of amines and their derivatives in almost all areas of chemistry (Alonso-Moreno *et al.*, 2009, Qiu *et al.*, 2009). It is still challenging to design and rationally synthesize ligand with unique structures and functions. For this regard, we reported the crystal structure of compound (I). The molecular structure of (I) is shown in Fig. 1 and selected bond distances are given in Table 1. The imino C==N bonds have typical double-bond characteristic with bond lengths of 1.240 (2), which are similar to that in (2,6-diisopropylphenyl)[1-(pyridin-2-yl)ethylidene]amine, 1.280 (2) Å (Nienkemper *et al.*, 2006). The compound (I) possesses a structure with approximate $P2_1/c$ symmetry. The dihedral angles between 2,4,6- trimethyl-substituted phenyl rings and the pyridine ring are 87.5° respectively.

S2. Experimental

The Schiff base was prepared according to the literature methods for analogous compounds (Fan *et al.*, 2009, Bianchini *et al.*, 2002). Pyridine-2-carboxaldehyde (1.69 g, 15.8 mmol) and 2,4,6-trimethyaniline (2.13 g, 15.7 mmol) were dissolved in 20 ml of methanol containing a few drops of formic acid and the resulting mixture was heated at reflux temperature for 4 h. Partial evaporation of solvent under reduced pressure gave yellow soild.Yellow block crystals suitable for X-ray diffraction analysis were obtained by recrystallization from n-hexane,and the specific method was that a solution of yellow soild in 15 ml of n-hexane was heated at 338 K and then allowed to cool down to room temperature.Yield:76% (2.68 g).

S3. Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93–0.96 Å, and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}(C)$ for CH₂ groups, and 1.5 $U_{eq}(C)$ for CH₃ groups.

Figure 1

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing of (I) along c axis direction.

(E)-2,4,6-Trimethyl-N-(pyridin-2-ylmethylidene)aniline

Crystal data

C₁₅H₁₆N₂ $M_r = 224.30$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2490 (16) Å b = 16.136 (3) Å c = 10.150 (2) Å $\beta = 104.76$ (3)° V = 1306.4 (4) Å³ Z = 4 F(000) = 480 $D_x = 1.140 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 12591 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.36 \times 0.34 \times 0.29 \text{ mm}$ Data collection

Bruker SMART APEX CCD area-detector	12591 measured reflections
diffractometer	2982 independent reflections
Radiation source: fine-focus sealed tube	1952 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.044$
phi and ω scans	$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Bruker, 2000)	$k = -20 \rightarrow 20$
$T_{\min} = 0.976, T_{\max} = 0.981$	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.200$	neighbouring sites
S = 1.03	H-atom parameters constrained
2982 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1315P)^2]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.017$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.22$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	r	12	7	<i>∐*/∐</i>	
	<i>A</i>	<i>y</i>	2		
N1	-0.08242 (19)	-0.04738 (10)	0.77519 (15)	0.0748 (5)	
N2	0.20612 (16)	0.11712 (9)	0.82639 (12)	0.0612 (4)	
C1	-0.02245 (18)	0.02378 (10)	0.74182 (15)	0.0559 (4)	
C2	-0.0893 (2)	0.06280 (13)	0.61937 (16)	0.0714 (5)	
H2A	-0.0460	0.1131	0.5993	0.086*	
C3	-0.2097 (2)	-0.08143 (14)	0.6828 (2)	0.0830 (6)	
H3A	-0.2515	-0.1318	0.7042	0.100*	
C4	-0.2827 (2)	-0.04703 (15)	0.55889 (18)	0.0816 (6)	
H4A	-0.3718	-0.0731	0.4983	0.098*	
C5	-0.2218 (3)	0.02585 (16)	0.52670 (19)	0.0854 (6)	
H5A	-0.2686	0.0509	0.4431	0.102*	
C6	0.12079 (18)	0.05750 (10)	0.84678 (15)	0.0572 (4)	
H6A	0.1483	0.0328	0.9324	0.069*	
C7	0.34417 (17)	0.14354 (9)	0.93500 (15)	0.0529 (4)	
C8	0.50580 (18)	0.11695 (10)	0.93612 (15)	0.0561 (4)	
C9	0.63854 (18)	0.14503 (10)	1.04089 (16)	0.0598 (4)	

H9A	0.7465	0.1274	1.0430	0.072*
C10	0.61645 (18)	0.19772 (10)	1.14131 (17)	0.0600 (4)
C11	0.45476 (19)	0.22368 (11)	1.13626 (16)	0.0611 (4)
H11A	0.4379	0.2595	1.2033	0.073*
C12	0.31661 (18)	0.19793 (10)	1.03427 (15)	0.0556 (4)
C13	0.5355 (2)	0.05931 (13)	0.82917 (18)	0.0760 (5)
H13A	0.6532	0.0479	0.8462	0.114*
H13B	0.4964	0.0846	0.7411	0.114*
H13C	0.4758	0.0085	0.8316	0.114*
C14	0.7641 (2)	0.22552 (14)	1.2553 (2)	0.0844 (6)
H14A	0.8654	0.2017	1.2422	0.127*
H14B	0.7479	0.2076	1.3413	0.127*
H14C	0.7723	0.2849	1.2546	0.127*
C15	0.1431 (2)	0.22807 (13)	1.0332 (2)	0.0755 (6)
H15A	0.1494	0.2642	1.1094	0.113*
H15B	0.0730	0.1815	1.0393	0.113*
H15C	0.0965	0.2577	0.9501	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0668 (9)	0.0740 (10)	0.0716 (9)	-0.0142 (7)	-0.0044 (7)	0.0011 (7)
N2	0.0550 (7)	0.0706 (9)	0.0494 (7)	-0.0078 (6)	-0.0024 (6)	0.0029 (6)
C1	0.0461 (7)	0.0634 (9)	0.0540 (8)	0.0000 (6)	0.0050 (6)	-0.0066 (7)
C2	0.0625 (9)	0.0853 (13)	0.0584 (9)	-0.0121 (8)	0.0006 (8)	0.0021 (8)
C3	0.0724 (11)	0.0809 (13)	0.0839 (13)	-0.0218 (9)	-0.0016 (10)	-0.0076 (10)
C4	0.0599 (10)	0.1080 (16)	0.0677 (11)	-0.0180 (10)	-0.0007 (9)	-0.0236 (11)
C5	0.0723 (12)	0.1173 (17)	0.0541 (9)	-0.0139 (11)	-0.0067 (8)	0.0006 (10)
C6	0.0515 (8)	0.0627 (9)	0.0499 (7)	-0.0020 (7)	-0.0008 (6)	0.0013 (7)
C7	0.0489 (7)	0.0565 (9)	0.0470 (7)	-0.0056 (6)	0.0006 (6)	0.0057 (6)
C8	0.0537 (8)	0.0609 (9)	0.0506 (8)	-0.0007 (7)	0.0077 (6)	0.0032 (6)
C9	0.0429 (7)	0.0695 (10)	0.0631 (9)	-0.0015 (6)	0.0062 (7)	0.0033 (7)
C10	0.0473 (8)	0.0654 (10)	0.0600 (9)	-0.0091 (7)	0.0001 (7)	-0.0011 (7)
C11	0.0556 (8)	0.0634 (10)	0.0593 (8)	-0.0052 (7)	0.0055 (7)	-0.0090 (7)
C12	0.0463 (7)	0.0590 (9)	0.0564 (8)	-0.0009 (6)	0.0038 (6)	0.0015 (7)
C13	0.0742 (11)	0.0847 (13)	0.0654 (10)	0.0051 (9)	0.0113 (9)	-0.0099 (9)
C14	0.0577 (10)	0.0992 (15)	0.0829 (12)	-0.0133 (9)	-0.0066 (9)	-0.0186 (11)
C15	0.0522 (9)	0.0831 (12)	0.0836 (12)	0.0113 (8)	0.0035 (8)	-0.0091 (10)

Geometric parameters (Å, °)

N1-C1	1.328 (2)	C8—C13	1.496 (2)	
N1—C3	1.335 (2)	C9—C10	1.375 (2)	
N2—C6	1.240 (2)	С9—Н9А	0.9300	
N2—C7	1.4333 (18)	C10-C11	1.386 (2)	
C1—C2	1.377 (2)	C10—C14	1.518 (2)	
C1—C6	1.478 (2)	C11—C12	1.393 (2)	
C2—C5	1.383 (2)	C11—H11A	0.9300	

C2—H2A	0.9300	C12—C15	1.509 (2)
C3—C4	1.366 (3)	C13—H13A	0.9600
С3—НЗА	0.9300	C13—H13B	0.9600
C4—C5	1.351 (3)	С13—Н13С	0.9600
C4—H4A	0.9300	C14—H14A	0.9600
С5—Н5А	0.9300	C14—H14B	0.9600
С6—Н6А	0.9300	C14—H14C	0.9600
C7—C12	1.398 (2)	C15—H15A	0.9600
C7—C8	1.398 (2)	C15—H15B	0.9600
С8—С9	1.394 (2)	C15—H15C	0.9600
C1—N1—C3	117.01 (15)	С8—С9—Н9А	118.7
C6—N2—C7	118.42 (13)	C9—C10—C11	117.87 (14)
N1—C1—C2	122.42 (15)	C9—C10—C14	121.05 (15)
N1—C1—C6	114.57 (13)	C11—C10—C14	121.08 (17)
C2—C1—C6	123.01 (16)	C10-C11-C12	122.30 (16)
C1—C2—C5	118.83 (19)	C10-C11-H11A	118.8
C1—C2—H2A	120.6	C12—C11—H11A	118.8
С5—С2—Н2А	120.6	C11—C12—C7	118.05 (14)
N1—C3—C4	124.2 (2)	C11—C12—C15	120.26 (16)
N1—C3—H3A	117.9	C7—C12—C15	121.68 (14)
С4—С3—НЗА	117.9	C8—C13—H13A	109.5
C5—C4—C3	118.21 (16)	C8—C13—H13B	109.5
C5—C4—H4A	120.9	H13A—C13—H13B	109.5
C3—C4—H4A	120.9	С8—С13—Н13С	109.5
C4—C5—C2	119.27 (17)	H13A—C13—H13C	109.5
С4—С5—Н5А	120.4	H13B—C13—H13C	109.5
С2—С5—Н5А	120.4	C10—C14—H14A	109.5
N2-C6-C1	123.27 (14)	C10-C14-H14B	109.5
N2—C6—H6A	118.4	H14A—C14—H14B	109.5
С1—С6—Н6А	118.4	C10—C14—H14C	109.5
C12—C7—C8	121.12 (13)	H14A—C14—H14C	109.5
C12—C7—N2	119.87 (13)	H14B—C14—H14C	109.5
C8—C7—N2	118.96 (14)	C12—C15—H15A	109.5
C9—C8—C7	117.96 (15)	C12—C15—H15B	109.5
C9—C8—C13	120.92 (14)	H15A—C15—H15B	109.5
C7—C8—C13	121.12 (14)	С12—С15—Н15С	109.5
C10—C9—C8	122.69 (14)	H15A—C15—H15C	109.5
С10—С9—Н9А	118.7	H15B—C15—H15C	109.5