metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m574-m575

catena-Poly[[[aqua­(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc]-μ-3-chloro­benzene-1,2-dicaboxylato-κ2O2:O3] [[(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc]-μ-3-chloro­benzene-1,2-dicaboxylato-κ2O2:O3]]

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zhuyu@zzu.edu.cn

(Received 27 February 2012; accepted 31 March 2012; online 13 April 2012)

In the title compound, {[Zn(C8H3ClO4)(C12H12N2)(H2O)]·[Zn(C8H3ClO4)(C12H12N2)]}n, one Zn2+ ion is five-coordin­ated by two O atoms from two different 3-chloro­benzene-1,2-dicarboxyl­ate ligands, one O atom from a water mol­ecule and two N atoms from a 4,4′-dimethyl-2,2′-bipyridine ligand, while the second Zn2+ ion is four-coordinated by two O atoms from two different 3-chloro­benzene-1,2-dicarboxyl­ate ligands, and two N atoms from a 4,4′-bimethyl-2,2′-bipyridine ligand. The crystal structure exhibits a three-dimensional supra­molecular structure composed of alternate Zn(C8H3O4Cl)(C12H12N2) and Zn(C8H3O4Cl)(C12H12N2)(H2O) chains, which are linked together by face-to-face ππ inter­actions [shortest centroid–centroid distances of 3.661 (4) and 3.6901 (3) Å], O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2011[Zang, S.-Q., Fan, Y.-J., Liang, R., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395-3405.]). For related O—H⋯O hydrogen bonds, see: Desiraju et al. (2004[Desiraju, G. R. (2004). Hydrogen Bonding in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]). For related ππ inter­actions, see: Zang et al. (2010[Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022-8032.]). For related C—H⋯O hydrogen bonds, see: Desiraju et al. (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]). For related C—H⋯π inter­actions, see: Nishio et al. (1998[Nishio, M., Hirota, M. & Umezawa, Y. (1998). In The C—H⋯π Interaction: Evidence, Nature and Consequences. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H3ClO4)(C12H12N2)(H2O)]·[Zn(C8H3ClO4)(C12H12N2)]

  • Mr = 914.38

  • Orthorhombic, P n a 21

  • a = 34.050 (4) Å

  • b = 14.1831 (10) Å

  • c = 7.8764 (6) Å

  • V = 3803.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.971, Tmax = 1.000

  • 10533 measured reflections

  • 6396 independent reflections

  • 5076 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.104

  • S = 1.07

  • 6396 reflections

  • 518 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2200 Friedel pairs

  • Flack parameter: 0.093 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.85 2.10 2.768 (6) 135
O1W—H1WB⋯O4ii 0.85 1.79 2.644 (6) 179
O1W—H1WB⋯O3ii 0.85 2.43 2.930 (5) 118
C17—H17⋯O4i 0.93 2.36 3.202 (8) 150
C20—H20⋯O6iii 0.93 2.28 3.171 (8) 160
C23—H23⋯O6iii 0.93 2.40 3.306 (8) 164
C32—H32⋯O2i 0.93 2.57 3.459 (8) 161
C35—H35⋯O2i 0.93 2.45 3.353 (8) 165
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In recent years, metallosupramolecular compounds have received much attention due to their variety of architectures and the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). Early reports have shown that carboxylate compounds and nitrogen heterocyclic ligands have been successfully employed in the generation of many novel structures (Zang et al., 2011). To further explore various factors that influence the properties and construction of coordination compounds, we undertake synthetic and structural studies on a novel ZnII complex based on 3-chlorophthalic acid (H2cp) and 4,4'-dimethyl-2,2'-bipyridine (dmbpy).

The X-ray diffraction study revealed that the title compound crystallizes in the orthorhombic space group Pna21. The Zn1 atom is five-coordinated by two O atoms from two different 3-chlorobenzene-1,2-dicarboxylato ligands, one O atom from a water molecule and two N atoms from a 4,4'-dimethyl-2,2'-bipyridine ligand, while the Zn2 atom is four-coordinated by two O atoms from two different 3-chlorobenzene-1,2-dicarboxylato ligands, and two N atoms from a 4,4'-bimethyl-2,2'-bipyridine ligand (Fig. 1). Each cp2- ligand acts as a µ2-bridge linking two Zn atoms with both carboxylate groups in monodentate fashion resulting into two chains along the c axis. These two chains are further connected together by face-to-face ππ interactions (Zang et al., 2010) involving pyridine rings of different chains. The shortest Cg···Cg distances of 3.661 (4) and 3.6901 (3) are observed between Cg2 and Cg4, and Cg1 and Cg3, respectively (Cg1 is the centroid of the N1/C17–C21 ring, Cg2 of N2/C22–C26, Cg3 of N3/C34–C38, and Cg4 of N4/C29–C33). Adjacent zippered structures are linked together to form tetra-chain units by intermolecular O1w—H1wa···O4iii hydrogen bonds (Desiraju et al., 2004) and C17—H17···O4iii interactions (symmetry code: iii = -x + 1, -y + 1, z + 1/2). Each unit is further connected to other units through C20—H20···O6iv, C23—H23···O6iv (symmetry code: iv = -x + 1, -y + 1, z - 1/2), C32—H32···O2iii, C35—H35···O2iii (Desiraju et al., 1996) and C—H···π interactions (the shortest one being C37—H37···Cg5v = 2.79 Å; Cg5 centroid of C11–C16; symmetry code: v = -x + 3/2, y - 1/2, z - 1/2) (Nishio et al., 1998) to form a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2011). For related O—H···O hydrogen bonds, see: Desiraju et al. (2004). For related ππ interactions, see: Zang et al. (2010). For related C—H···O hydrogen bonds, see: Desiraju et al. (1996). For related C—H···π interactions, see: Nishio et al. (1998).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of 3-chlorophthalic acid (H2cp) (0.0100 g, 0.05 mmol), 4,4'-bimethyl-2,2'-bipyridine (dmbpy) (0.0092 g, 0.05 mmol), Zn(NO3)2.6H2O (0.0149 g, 0.05 mmol) and NaOH (0.0040 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 days, and then cooled to room temperature. Colourless block crystals were obtained in 71% yield (based on zinc).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methylene H atoms [with Uiso(H) = 1.2Ueq(C)], and O—H = 0.85 Å for the water H atoms [with Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Metal coordination and atom labeling in the title compound (thermal ellipsoids drawn at the 50% probability level). All hydrogen atoms are omitted for clarity. Symmetry code: x, y, z - 1.
[Figure 2] Fig. 2. A view of the layered structure of the title compound. Dotted lines represent the ππ interactions (symmetry code: -x + 1, -y + 1, z + 0.5.)
[Figure 3] Fig. 3. The three-dimensional supramolecular structure of the title compound (hydrogen bonds and C—H–π interactions as dotted lines).
catena-Poly[[[aqua(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')zinc]-µ-3-chlorobenzene-1,2-dicaboxylato- κ2O2:O3] [[(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')zinc]-µ-3-chlorobenzene-1,2-dicaboxylato- κ2O2:O3]] top
Crystal data top
[Zn(C8H3ClO4)(C12H12N2)(H2O)]·[Zn(C8H3ClO4)(C12H12N2)]Dx = 1.597 Mg m3
Mr = 914.38Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, Pna21Cell parameters from 1842 reflections
a = 34.050 (4) Åθ = 2.9–29.3°
b = 14.1831 (10) ŵ = 1.47 mm1
c = 7.8764 (6) ÅT = 291 K
V = 3803.8 (6) Å3Prismatic, colourless
Z = 40.20 × 0.18 × 0.16 mm
F(000) = 1864
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6396 independent reflections
Radiation source: Enhance (Mo) X-ray Source5076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.2312 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1842
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1717
Tmin = 0.971, Tmax = 1.000l = 79
10533 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6396 reflectionsΔρmax = 0.63 e Å3
518 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 2200 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.093 (14)
Crystal data top
[Zn(C8H3ClO4)(C12H12N2)(H2O)]·[Zn(C8H3ClO4)(C12H12N2)]V = 3803.8 (6) Å3
Mr = 914.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 34.050 (4) ŵ = 1.47 mm1
b = 14.1831 (10) ÅT = 291 K
c = 7.8764 (6) Å0.20 × 0.18 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6396 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
5076 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 1.000Rint = 0.044
10533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.63 e Å3
S = 1.07Δρmin = 0.37 e Å3
6396 reflectionsAbsolute structure: Flack (1983), 2200 Friedel pairs
518 parametersAbsolute structure parameter: 0.093 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.446526 (19)0.36444 (4)0.62772 (9)0.02863 (16)
Zn20.73030 (2)0.67276 (5)0.37248 (10)0.03441 (18)
Cl10.53270 (7)0.15962 (15)0.2478 (2)0.0655 (6)
Cl20.84880 (6)0.65033 (13)1.2682 (2)0.0487 (5)
O10.48307 (15)0.3004 (3)0.4755 (5)0.0462 (13)
O1W0.47741 (14)0.4839 (3)0.7036 (6)0.0493 (13)
H1WA0.49180.50280.62200.074*
H1WB0.48810.45240.78300.074*
O20.45488 (16)0.3521 (3)0.2380 (6)0.0524 (14)
O30.46114 (11)0.2980 (3)0.1501 (5)0.0289 (9)
O40.51092 (14)0.3849 (3)0.0516 (5)0.0450 (12)
O50.77114 (14)0.6635 (4)0.5400 (6)0.0487 (13)
O60.73636 (14)0.6683 (4)0.7724 (6)0.0651 (17)
O70.75751 (13)0.7136 (3)1.1661 (5)0.0400 (11)
O80.76227 (13)0.5605 (3)1.1177 (7)0.0553 (13)
N10.39925 (14)0.4462 (3)0.5397 (6)0.0282 (12)
N20.39966 (14)0.2639 (3)0.6065 (7)0.0315 (12)
N30.68490 (14)0.5810 (3)0.3955 (6)0.0335 (12)
N40.68816 (15)0.7651 (3)0.4601 (6)0.0329 (13)
C10.47656 (19)0.2992 (5)0.3164 (7)0.0305 (15)
C1A0.49032 (19)0.3121 (4)0.0579 (7)0.0266 (14)
C20.5919 (2)0.9246 (5)0.6602 (12)0.072 (3)
H2A0.59600.93840.77810.107*
H2B0.56820.88880.64730.107*
H2C0.58980.98240.59750.107*
C30.49776 (19)0.2223 (4)0.2198 (7)0.0264 (14)
C40.50368 (18)0.2278 (4)0.0461 (7)0.0263 (14)
C50.5226 (2)0.1537 (4)0.0331 (9)0.0388 (18)
C60.5346 (2)0.0737 (5)0.0544 (9)0.0463 (19)
H60.54700.02460.00280.056*
C70.5282 (2)0.0680 (5)0.2251 (9)0.0447 (19)
H70.53560.01430.28460.054*
C80.5105 (2)0.1420 (4)0.3089 (8)0.0404 (18)
H80.50710.13880.42580.049*
C90.7673 (2)0.6666 (5)0.7003 (9)0.0356 (17)
C100.77225 (18)0.6434 (4)1.0906 (7)0.0325 (15)
C110.80563 (19)0.6689 (4)0.7983 (7)0.0292 (15)
C120.80732 (19)0.6604 (4)0.9751 (7)0.0251 (14)
C130.8441 (2)0.6620 (4)1.0484 (8)0.0308 (15)
C140.8786 (2)0.6732 (4)0.9570 (9)0.0384 (17)
H140.90280.67511.01150.046*
C150.8759 (2)0.6812 (5)0.7839 (10)0.0473 (19)
H150.89860.68740.71920.057*
C160.8403 (2)0.6802 (4)0.7065 (7)0.0354 (16)
H160.83900.68730.58920.043*
C170.4015 (2)0.5397 (4)0.5072 (9)0.0426 (17)
H170.42480.57170.52980.051*
C180.3702 (2)0.5882 (4)0.4417 (9)0.0448 (18)
H180.37240.65260.42090.054*
C190.3356 (2)0.5428 (4)0.4066 (8)0.0404 (17)
C200.33365 (19)0.4466 (4)0.4388 (8)0.0378 (16)
H200.31050.41360.41810.045*
C210.36621 (18)0.4002 (4)0.5020 (7)0.0281 (14)
C220.36610 (18)0.2978 (4)0.5409 (7)0.0285 (14)
C230.33407 (19)0.2400 (4)0.5094 (8)0.0371 (16)
H230.31120.26500.46310.045*
C240.3363 (2)0.1447 (4)0.5475 (9)0.0441 (18)
C250.3715 (2)0.1119 (4)0.6178 (11)0.0478 (18)
H250.37430.04850.64530.057*
C260.4011 (2)0.1728 (4)0.6454 (9)0.0471 (18)
H260.42400.14970.69470.057*
C270.3001 (2)0.5942 (5)0.3372 (12)0.074 (3)
H27A0.28810.63020.42630.111*
H27B0.28160.54920.29370.111*
H27C0.30820.63570.24750.111*
C280.3008 (2)0.0812 (5)0.5202 (10)0.064 (2)
H28A0.29980.03450.60840.096*
H28B0.30290.05060.41190.096*
H28C0.27720.11840.52330.096*
C290.6922 (2)0.8562 (5)0.4932 (10)0.0499 (19)
H290.71610.88530.47020.060*
C300.6618 (2)0.9098 (4)0.5612 (9)0.049 (2)
H300.66560.97340.58470.059*
C310.62615 (19)0.8681 (4)0.5935 (9)0.0410 (18)
C320.62257 (19)0.7715 (4)0.5612 (8)0.0356 (16)
H320.59890.74080.58270.043*
C330.65364 (19)0.7224 (4)0.4983 (7)0.0290 (14)
C340.65222 (19)0.6193 (4)0.4647 (7)0.0296 (15)
C350.61938 (19)0.5652 (4)0.5012 (7)0.0351 (16)
H350.59730.59380.54800.042*
C360.6189 (2)0.4691 (4)0.4691 (8)0.0384 (17)
C370.6532 (2)0.4317 (4)0.3981 (10)0.0473 (19)
H370.65470.36760.37450.057*
C380.6845 (2)0.4887 (4)0.3632 (10)0.0460 (17)
H380.70670.46170.31440.055*
C390.5834 (2)0.4107 (5)0.5081 (10)0.059 (2)
H39A0.59000.36420.59200.088*
H39B0.57460.37990.40660.088*
H39C0.56290.45060.55090.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0277 (4)0.0328 (3)0.0254 (3)0.0020 (3)0.0000 (4)0.0016 (3)
Zn20.0264 (4)0.0442 (4)0.0327 (4)0.0009 (3)0.0010 (4)0.0032 (4)
Cl10.0765 (16)0.0915 (15)0.0283 (10)0.0279 (13)0.0089 (10)0.0091 (10)
Cl20.0505 (13)0.0658 (12)0.0297 (9)0.0041 (10)0.0054 (8)0.0054 (8)
O10.053 (3)0.070 (3)0.016 (2)0.021 (3)0.002 (2)0.005 (2)
O1W0.060 (4)0.040 (3)0.048 (3)0.014 (2)0.011 (2)0.015 (2)
O20.071 (4)0.056 (3)0.031 (3)0.027 (3)0.005 (3)0.011 (2)
O30.029 (2)0.038 (2)0.020 (2)0.0047 (18)0.0028 (19)0.0053 (19)
O40.048 (3)0.044 (3)0.043 (3)0.015 (2)0.017 (2)0.007 (2)
O50.034 (3)0.081 (4)0.030 (3)0.004 (3)0.003 (2)0.001 (2)
O60.025 (3)0.127 (5)0.043 (3)0.006 (3)0.003 (3)0.007 (3)
O70.041 (3)0.048 (3)0.032 (3)0.008 (2)0.004 (2)0.010 (2)
O80.048 (3)0.041 (3)0.077 (3)0.002 (2)0.018 (3)0.015 (3)
N10.024 (3)0.027 (3)0.033 (3)0.001 (2)0.008 (2)0.000 (2)
N20.032 (3)0.029 (3)0.033 (3)0.001 (2)0.006 (3)0.001 (2)
N30.031 (3)0.033 (3)0.037 (3)0.003 (2)0.000 (3)0.011 (3)
N40.024 (3)0.030 (3)0.045 (3)0.001 (2)0.000 (2)0.007 (2)
C10.025 (4)0.039 (4)0.028 (3)0.001 (3)0.002 (3)0.000 (3)
C1A0.028 (4)0.033 (3)0.019 (3)0.002 (3)0.002 (3)0.004 (3)
C20.050 (5)0.046 (4)0.120 (8)0.003 (4)0.028 (5)0.024 (5)
C30.029 (4)0.032 (3)0.019 (3)0.002 (3)0.005 (3)0.003 (3)
C40.017 (3)0.032 (3)0.029 (3)0.003 (3)0.004 (3)0.004 (3)
C50.038 (5)0.037 (4)0.041 (4)0.001 (3)0.007 (3)0.004 (3)
C60.048 (5)0.037 (4)0.054 (5)0.011 (4)0.003 (4)0.007 (3)
C70.057 (5)0.039 (4)0.038 (4)0.013 (4)0.015 (4)0.007 (3)
C80.049 (5)0.044 (4)0.027 (4)0.000 (4)0.007 (3)0.004 (3)
C90.035 (4)0.040 (4)0.033 (4)0.005 (3)0.008 (3)0.002 (3)
C100.030 (4)0.045 (4)0.022 (4)0.003 (3)0.004 (3)0.003 (3)
C110.027 (4)0.029 (3)0.031 (3)0.003 (3)0.002 (3)0.004 (3)
C120.029 (4)0.023 (3)0.023 (3)0.000 (3)0.000 (3)0.006 (2)
C130.039 (4)0.025 (3)0.028 (3)0.005 (3)0.000 (3)0.002 (3)
C140.034 (4)0.048 (4)0.033 (4)0.003 (3)0.001 (3)0.005 (3)
C150.028 (4)0.059 (5)0.055 (5)0.002 (4)0.007 (4)0.000 (4)
C160.043 (5)0.049 (4)0.014 (3)0.002 (3)0.001 (3)0.002 (3)
C170.033 (4)0.030 (3)0.064 (5)0.003 (3)0.009 (4)0.004 (3)
C180.042 (5)0.026 (3)0.066 (5)0.008 (3)0.007 (4)0.001 (3)
C190.036 (4)0.042 (4)0.043 (4)0.012 (3)0.000 (3)0.000 (3)
C200.027 (4)0.042 (4)0.044 (4)0.002 (3)0.002 (3)0.008 (3)
C210.022 (3)0.038 (3)0.024 (3)0.003 (3)0.002 (3)0.005 (3)
C220.028 (4)0.041 (3)0.017 (3)0.000 (3)0.002 (3)0.002 (3)
C230.026 (4)0.038 (4)0.047 (4)0.005 (3)0.001 (3)0.005 (3)
C240.051 (5)0.035 (4)0.047 (4)0.015 (4)0.001 (4)0.005 (3)
C250.064 (5)0.025 (3)0.055 (4)0.002 (3)0.006 (5)0.001 (4)
C260.054 (5)0.039 (3)0.048 (4)0.003 (3)0.014 (4)0.005 (4)
C270.053 (5)0.057 (5)0.112 (8)0.018 (4)0.018 (6)0.022 (5)
C280.059 (6)0.048 (4)0.086 (6)0.023 (4)0.006 (5)0.005 (4)
C290.040 (5)0.046 (4)0.064 (5)0.011 (4)0.011 (4)0.004 (4)
C300.043 (4)0.028 (3)0.076 (5)0.005 (3)0.003 (4)0.011 (3)
C310.034 (4)0.040 (3)0.050 (5)0.008 (3)0.006 (3)0.015 (3)
C320.028 (4)0.038 (4)0.041 (4)0.005 (3)0.001 (3)0.004 (3)
C330.030 (4)0.031 (3)0.026 (3)0.000 (3)0.006 (3)0.002 (3)
C340.027 (4)0.034 (3)0.027 (3)0.000 (3)0.002 (3)0.004 (3)
C350.025 (4)0.043 (4)0.038 (4)0.004 (3)0.000 (3)0.000 (3)
C360.039 (4)0.031 (3)0.045 (4)0.004 (3)0.011 (3)0.001 (3)
C370.047 (5)0.029 (3)0.066 (5)0.001 (3)0.002 (4)0.002 (4)
C380.034 (4)0.043 (4)0.061 (5)0.007 (3)0.001 (4)0.012 (4)
C390.044 (5)0.034 (4)0.098 (6)0.000 (4)0.001 (5)0.007 (4)
Geometric parameters (Å, º) top
Zn1—O11.952 (4)C12—C131.378 (9)
Zn1—O1W2.082 (4)C13—C141.387 (9)
Zn1—O3i2.049 (4)C14—H140.9300
Zn1—N12.102 (5)C14—C151.371 (8)
Zn1—N22.146 (4)C15—H150.9300
Zn2—O51.921 (5)C15—C161.357 (9)
Zn2—O7ii1.958 (4)C16—H160.9300
Zn2—N32.029 (5)C17—H170.9300
Zn2—N42.062 (5)C17—C181.370 (9)
Cl1—C51.729 (7)C18—H180.9300
Cl2—C131.747 (6)C18—C191.372 (9)
O1—C11.273 (7)C19—C201.389 (8)
O1W—H1WA0.8512C19—C271.513 (9)
O1W—H1WB0.8501C20—H200.9300
O2—C11.220 (8)C20—C211.382 (8)
O3—Zn1ii2.049 (4)C21—C221.484 (8)
O3—C1A1.246 (7)C22—C231.387 (8)
O4—C1A1.249 (7)C23—H230.9300
O5—C91.270 (7)C23—C241.386 (9)
O6—C91.196 (8)C24—C251.400 (9)
O7—Zn2i1.958 (4)C24—C281.523 (9)
O7—C101.264 (7)C25—H250.9300
O8—C101.242 (7)C25—C261.347 (8)
N1—C171.352 (8)C26—H260.9300
N1—C211.334 (7)C27—H27A0.9600
N2—C221.343 (7)C27—H27B0.9600
N2—C261.329 (7)C27—H27C0.9600
N3—C341.353 (7)C28—H28A0.9600
N3—C381.334 (7)C28—H28B0.9600
N4—C291.325 (8)C28—H28C0.9600
N4—C331.357 (8)C29—H290.9300
C1—C31.514 (8)C29—C301.391 (9)
C1A—C41.520 (8)C30—H300.9300
C2—H2A0.9600C30—C311.374 (9)
C2—H2B0.9600C31—C321.400 (8)
C2—H2C0.9600C32—H320.9300
C2—C311.507 (8)C32—C331.360 (8)
C3—C41.385 (7)C33—C341.487 (8)
C3—C81.407 (8)C34—C351.386 (8)
C4—C51.381 (9)C35—H350.9300
C5—C61.389 (9)C35—C361.386 (8)
C6—H60.9300C36—C371.399 (9)
C6—C71.365 (9)C36—C391.498 (9)
C7—H70.9300C37—H370.9300
C7—C81.377 (9)C37—C381.364 (9)
C8—H80.9300C38—H380.9300
C9—C111.518 (9)C39—H39A0.9600
C10—C121.521 (9)C39—H39B0.9600
C11—C121.399 (7)C39—H39C0.9600
C11—C161.394 (9)
O1—Zn1—O1W103.5 (2)C16—C15—C14120.3 (7)
O1—Zn1—O3i98.96 (17)C16—C15—H15119.9
O1—Zn1—N1122.84 (18)C11—C16—H16119.2
O1—Zn1—N296.7 (2)C15—C16—C11121.7 (6)
O1W—Zn1—N191.85 (18)C15—C16—H16119.2
O1W—Zn1—N2159.80 (19)N1—C17—H17119.4
O3i—Zn1—O1W90.36 (16)N1—C17—C18121.3 (6)
O3i—Zn1—N1136.19 (17)C18—C17—H17119.4
O3i—Zn1—N286.66 (17)C17—C18—H18119.7
N1—Zn1—N276.79 (18)C17—C18—C19120.6 (6)
O5—Zn2—O7ii104.35 (19)C19—C18—H18119.7
O5—Zn2—N3116.5 (2)C18—C19—C20117.7 (6)
O5—Zn2—N4108.5 (2)C18—C19—C27122.1 (6)
O7ii—Zn2—N3128.6 (2)C20—C19—C27120.1 (6)
O7ii—Zn2—N4114.78 (19)C19—C20—H20120.1
N3—Zn2—N481.22 (19)C21—C20—C19119.7 (6)
C1—O1—Zn1120.0 (4)C21—C20—H20120.1
Zn1—O1W—H1WA109.3N1—C21—C20121.6 (6)
Zn1—O1W—H1WB89.9N1—C21—C22115.8 (5)
H1WA—O1W—H1WB118.4C20—C21—C22122.6 (6)
C1A—O3—Zn1ii128.1 (4)N2—C22—C21115.3 (5)
C9—O5—Zn2127.2 (5)N2—C22—C23121.8 (5)
C10—O7—Zn2i110.2 (4)C23—C22—C21122.9 (6)
C17—N1—Zn1124.0 (4)C22—C23—H23120.2
C21—N1—Zn1116.7 (4)C24—C23—C22119.7 (6)
C21—N1—C17119.1 (6)C24—C23—H23120.2
C22—N2—Zn1115.1 (4)C23—C24—C25117.1 (6)
C26—N2—Zn1126.8 (4)C23—C24—C28120.2 (7)
C26—N2—C22118.0 (5)C25—C24—C28122.6 (6)
C34—N3—Zn2113.9 (4)C24—C25—H25120.2
C38—N3—Zn2128.4 (4)C26—C25—C24119.6 (6)
C38—N3—C34117.5 (5)C26—C25—H25120.2
C29—N4—Zn2127.8 (5)N2—C26—C25123.9 (6)
C29—N4—C33118.8 (6)N2—C26—H26118.1
C33—N4—Zn2113.2 (4)C25—C26—H26118.1
O1—C1—C3114.9 (6)C19—C27—H27A109.5
O2—C1—O1126.6 (6)C19—C27—H27B109.5
O2—C1—C3118.5 (5)C19—C27—H27C109.5
O3—C1A—O4127.1 (6)H27A—C27—H27B109.5
O3—C1A—C4115.2 (5)H27A—C27—H27C109.5
O4—C1A—C4117.4 (5)H27B—C27—H27C109.5
H2A—C2—H2B109.5C24—C28—H28A109.5
H2A—C2—H2C109.5C24—C28—H28B109.5
H2B—C2—H2C109.5C24—C28—H28C109.5
C31—C2—H2A109.5H28A—C28—H28B109.5
C31—C2—H2B109.5H28A—C28—H28C109.5
C31—C2—H2C109.5H28B—C28—H28C109.5
C4—C3—C1121.7 (6)N4—C29—H29118.9
C4—C3—C8119.5 (6)N4—C29—C30122.1 (6)
C8—C3—C1118.7 (5)C30—C29—H29118.9
C3—C4—C1A122.2 (6)C29—C30—H30120.2
C5—C4—C1A119.7 (5)C31—C30—C29119.6 (6)
C5—C4—C3118.1 (6)C31—C30—H30120.2
C4—C5—Cl1119.9 (5)C30—C31—C2121.3 (6)
C4—C5—C6122.3 (6)C30—C31—C32117.7 (6)
C6—C5—Cl1117.8 (5)C32—C31—C2121.1 (6)
C5—C6—H6120.3C31—C32—H32120.0
C7—C6—C5119.3 (7)C33—C32—C31120.0 (6)
C7—C6—H6120.3C33—C32—H32120.0
C6—C7—H7120.1N4—C33—C32121.7 (5)
C6—C7—C8119.8 (6)N4—C33—C34115.4 (5)
C8—C7—H7120.1C32—C33—C34122.9 (6)
C3—C8—H8119.6N3—C34—C33116.1 (5)
C7—C8—C3120.9 (6)N3—C34—C35121.7 (5)
C7—C8—H8119.6C35—C34—C33122.2 (6)
O5—C9—C11114.7 (6)C34—C35—H35119.5
O6—C9—O5124.3 (7)C36—C35—C34121.0 (6)
O6—C9—C11121.0 (6)C36—C35—H35119.5
O7—C10—C12117.9 (5)C35—C36—C37115.9 (6)
O8—C10—O7123.8 (6)C35—C36—C39121.0 (6)
O8—C10—C12117.9 (6)C37—C36—C39123.1 (6)
C12—C11—C9122.7 (6)C36—C37—H37119.8
C16—C11—C9117.9 (6)C38—C37—C36120.5 (6)
C16—C11—C12119.4 (6)C38—C37—H37119.8
C11—C12—C10125.2 (6)N3—C38—C37123.4 (6)
C13—C12—C10117.7 (5)N3—C38—H38118.3
C13—C12—C11117.0 (6)C37—C38—H38118.3
C12—C13—Cl2119.9 (5)C36—C39—H39A109.5
C12—C13—C14123.6 (6)C36—C39—H39B109.5
C14—C13—Cl2116.6 (5)C36—C39—H39C109.5
C13—C14—H14121.0H39A—C39—H39B109.5
C15—C14—C13118.0 (8)H39A—C39—H39C109.5
C15—C14—H14121.0H39B—C39—H39C109.5
C14—C15—H15119.9
Zn1—O1—C1—O218.8 (10)N3—C34—C35—C360.5 (9)
Zn1—O1—C1—C3159.9 (4)N4—Zn2—O5—C934.9 (7)
Zn1ii—O3—C1A—O422.0 (9)N4—Zn2—N3—C344.7 (4)
Zn1ii—O3—C1A—C4152.6 (4)N4—Zn2—N3—C38179.3 (6)
Zn1—N1—C17—C18176.6 (5)N4—C29—C30—C311.0 (11)
Zn1—N1—C21—C20178.3 (5)N4—C33—C34—N31.9 (8)
Zn1—N1—C21—C224.9 (6)N4—C33—C34—C35178.3 (6)
Zn1—N2—C22—C213.0 (6)C1—C3—C4—C1A1.6 (10)
Zn1—N2—C22—C23175.9 (4)C1—C3—C4—C5178.7 (6)
Zn1—N2—C26—C25175.1 (6)C1—C3—C8—C7176.6 (6)
Zn2—O5—C9—O66.5 (12)C1A—C4—C5—Cl12.7 (9)
Zn2—O5—C9—C11173.1 (4)C1A—C4—C5—C6178.4 (6)
Zn2i—O7—C10—O817.5 (8)C2—C31—C32—C33178.9 (7)
Zn2i—O7—C10—C12155.3 (4)C3—C4—C5—Cl1177.0 (5)
Zn2—N3—C34—C335.0 (6)C3—C4—C5—C61.9 (10)
Zn2—N3—C34—C35175.2 (4)C4—C3—C8—C71.3 (10)
Zn2—N3—C38—C37173.7 (6)C4—C5—C6—C70.9 (12)
Zn2—N4—C29—C30176.3 (5)C5—C6—C7—C81.3 (12)
Zn2—N4—C33—C32178.6 (5)C6—C7—C8—C32.3 (11)
Zn2—N4—C33—C342.0 (6)C8—C3—C4—C1A179.5 (6)
Cl1—C5—C6—C7178.0 (6)C8—C3—C4—C50.8 (10)
Cl2—C13—C14—C15179.1 (5)C9—C11—C12—C103.1 (9)
O1—Zn1—N1—C1790.0 (5)C9—C11—C12—C13178.9 (5)
O1—Zn1—N1—C2184.6 (4)C9—C11—C16—C15178.7 (6)
O1—Zn1—N2—C22118.1 (4)C10—C12—C13—Cl23.1 (7)
O1—Zn1—N2—C2659.4 (6)C10—C12—C13—C14177.4 (6)
O1—C1—C3—C4160.0 (6)C11—C12—C13—Cl2179.2 (4)
O1—C1—C3—C822.1 (9)C11—C12—C13—C141.3 (9)
O1W—Zn1—O1—C1108.3 (5)C12—C11—C16—C151.5 (10)
O1W—Zn1—N1—C1717.3 (5)C12—C13—C14—C151.4 (10)
O1W—Zn1—N1—C21168.0 (4)C13—C14—C15—C161.4 (11)
O1W—Zn1—N2—C2261.4 (8)C14—C15—C16—C111.5 (11)
O1W—Zn1—N2—C26121.2 (6)C16—C11—C12—C10177.1 (6)
O2—C1—C3—C421.2 (10)C16—C11—C12—C131.3 (8)
O2—C1—C3—C8156.7 (6)C17—N1—C21—C203.4 (9)
O3i—Zn1—O1—C1159.2 (5)C17—N1—C21—C22179.8 (5)
O3i—Zn1—N1—C17109.8 (5)C17—C18—C19—C200.3 (10)
O3i—Zn1—N1—C2175.6 (5)C17—C18—C19—C27178.9 (7)
O3i—Zn1—N2—C22143.3 (4)C18—C19—C20—C210.9 (9)
O3i—Zn1—N2—C2639.3 (6)C19—C20—C21—N12.8 (9)
O3—C1A—C4—C3106.9 (7)C19—C20—C21—C22179.4 (5)
O3—C1A—C4—C573.4 (7)C20—C21—C22—N2178.0 (6)
O4—C1A—C4—C377.9 (8)C20—C21—C22—C233.2 (9)
O4—C1A—C4—C5101.8 (7)C21—N1—C17—C182.1 (9)
O5—Zn2—N3—C34101.7 (4)C21—C22—C23—C24179.3 (6)
O5—Zn2—N3—C3872.9 (6)C22—N2—C26—C252.3 (11)
O5—Zn2—N4—C2963.2 (6)C22—C23—C24—C250.4 (9)
O5—Zn2—N4—C33111.5 (4)C22—C23—C24—C28177.5 (6)
O5—C9—C11—C12171.7 (6)C23—C24—C25—C260.1 (11)
O5—C9—C11—C168.5 (9)C24—C25—C26—N21.4 (12)
O6—C9—C11—C128.7 (10)C26—N2—C22—C21179.3 (6)
O6—C9—C11—C16171.1 (7)C26—N2—C22—C231.8 (9)
O7ii—Zn2—O5—C9157.7 (6)C27—C19—C20—C21179.9 (7)
O7ii—Zn2—N3—C34119.5 (4)C28—C24—C25—C26177.0 (7)
O7ii—Zn2—N3—C3865.9 (7)C29—N4—C33—C323.5 (9)
O7ii—Zn2—N4—C2953.1 (6)C29—N4—C33—C34177.2 (6)
O7ii—Zn2—N4—C33132.3 (4)C29—C30—C31—C2177.3 (7)
O7—C10—C12—C1199.1 (7)C29—C30—C31—C322.2 (10)
O7—C10—C12—C1385.1 (7)C30—C31—C32—C330.7 (10)
O8—C10—C12—C1187.7 (8)C31—C32—C33—N42.2 (9)
O8—C10—C12—C1388.1 (7)C31—C32—C33—C34178.6 (5)
N1—Zn1—O1—C17.1 (6)C32—C33—C34—N3177.4 (6)
N1—Zn1—N2—C224.2 (4)C32—C33—C34—C352.4 (9)
N1—Zn1—N2—C26178.4 (6)C33—N4—C29—C301.9 (10)
N1—C17—C18—C190.3 (10)C33—C34—C35—C36179.8 (5)
N1—C21—C22—N21.2 (7)C34—N3—C38—C370.7 (11)
N1—C21—C22—C23180.0 (6)C34—C35—C36—C370.2 (9)
N2—Zn1—O1—C171.5 (5)C34—C35—C36—C39179.9 (6)
N2—Zn1—N1—C17179.5 (5)C35—C36—C37—C380.5 (10)
N2—Zn1—N1—C214.9 (4)C36—C37—C38—N31.0 (12)
N2—C22—C23—C240.5 (9)C38—N3—C34—C33179.8 (6)
N3—Zn2—O5—C954.4 (7)C38—N3—C34—C350.0 (9)
N3—Zn2—N4—C29178.3 (6)C39—C36—C37—C38179.2 (7)
N3—Zn2—N4—C333.6 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4iii0.852.102.768 (6)135
O1W—H1WB···O4i0.851.792.644 (6)179
O1W—H1WB···O3i0.852.432.930 (5)118
C17—H17···O4iii0.932.363.202 (8)150
C20—H20···O6iv0.932.283.171 (8)160
C23—H23···O6iv0.932.403.306 (8)164
C32—H32···O2iii0.932.573.459 (8)161
C35—H35···O2iii0.932.453.353 (8)165
Symmetry codes: (i) x, y, z+1; (iii) x+1, y+1, z+1/2; (iv) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H3ClO4)(C12H12N2)(H2O)]·[Zn(C8H3ClO4)(C12H12N2)]
Mr914.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)291
a, b, c (Å)34.050 (4), 14.1831 (10), 7.8764 (6)
V3)3803.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.971, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10533, 6396, 5076
Rint0.044
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.104, 1.07
No. of reflections6396
No. of parameters518
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.37
Absolute structureFlack (1983), 2200 Friedel pairs
Absolute structure parameter0.093 (14)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.852.102.768 (6)134.8
O1W—H1WB···O4ii0.851.792.644 (6)179.2
O1W—H1WB···O3ii0.852.432.930 (5)118.1
C17—H17···O4i0.932.363.202 (8)149.7
C20—H20···O6iii0.932.283.171 (8)159.5
C23—H23···O6iii0.932.403.306 (8)163.8
C32—H32···O2i0.932.573.459 (8)160.8
C35—H35···O2i0.932.453.353 (8)165.0
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y, z+1; (iii) x+1, y+1, z1/2.
 

References

First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishio, M., Hirota, M. & Umezawa, Y. (1998). In The C—H⋯π Interaction: Evidence, Nature and Consequences. Weinheim: Wiley-VCH.  Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Fan, Y.-J., Liang, R., Hou, H.-W. & Mak, T. C. W. (2011). Cryst. Growth Des. 11, 3395–3405.  Web of Science CSD CrossRef CAS Google Scholar
First citationZang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. 39, 8022–8032.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m574-m575
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds