metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-(pyrazin-2-yl)-5-(pyridin-2-yl-κN)-1,2,4-triazol-1-ido-κN1]copper(II)

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
*Correspondence e-mail: cezlliu@imu.edu.cn

(Received 19 March 2012; accepted 17 April 2012; online 25 April 2012)

In the mononuclear title complex, [Cu(C11H7N6)2], the CuII atom lies on a crystallographic inversion centre and is coordinated by four N atoms from two bidentate chelate monoanionic 3-(pyrazin-2-yl)-5-(pyridin-2-yl-1,2,4-triazol-1-ido ligands, two from the triazolide rings [Cu—N = 1.969 (2) Å] and two from the pyridine rings [Cu—N = 2.027 (2) Å], giving a slightly distorted square-planar geometry.

Related literature

For details of the synthesis and properties of related copper compounds showing a similar coordination environment, see: Meng et al. (2009[Meng, Z.-S., Yun, L., Zhang, W.-X., Hong, C.-G., Herchel, R., Ou, Y.-C., Leng, J.-D., Peng, M.-X., Lin, Z.-J. & Tong, M.-L. (2009). Dalton Trans. pp. 10284-10295.]); Cheng et al. (2007[Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135-1143.]); Zhang et al. (2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258-1260.]). For the structure of an RuII complex with the same ligand, see: Browne et al. (2002[Browne, W. R., O'Connor, C. M., Hughes, H. P., Hage, R., Walter, O., Doering, M., Gallagher, J. F. & Vos, J. G. (2002). J. Chem. Soc. Dalton Trans. pp. 4048-4054.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H7N6)2]

  • Mr = 509.99

  • Monoclinic, P 21 /c

  • a = 11.9735 (4) Å

  • b = 10.7539 (3) Å

  • c = 8.0162 (3) Å

  • β = 106.500 (4)°

  • V = 989.67 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.795, Tmax = 0.795

  • 3248 measured reflections

  • 1739 independent reflections

  • 1451 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.06

  • 1739 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-(5-Pyridin-2-yl)-1,2,4-triazol-3-yl)pyrazine (Hptp) is a potentially multidentate ligand containing multiple N coordination sites. The synthesis and properties of copper complexes with similar ligands have been described (Meng et al., 2009; Cheng et al., 2007; Zhang et al., 2005). However, only one crystal structure of a metal complex with the named ligand has been reported in the crystallographic literature, that with Ru (Browne et al., 2002). Herein, we report the synthesis and crystal structure of the copper(II) complex with the ptp- ligand, the title complex [Cu(C11H7N6)2].

As shown in Fig. 1, this complex is a discrete neutral monomer, in which the CuII atom resides on a crystallographic inversion centre. The CuII atom is in a slightly distorted [N4] square planar environment, with the coordination sphere defined by two pyridyl N-atom donors [Cu—Npyridine = 2.027 (2) Å] and two triazolate N-atom donors [Cu—Ntriazolide = 1.969 (2) Å] from two bidentate chelate ptp- anion ligands. The dihedral angle between the coordinated pyridyl group and the triazolato ring is 1.33 (9)°. In the crystal packing there are only minor weak intermolecular C—H···N hydrogen-bonding interactions (Table 1).

Related literature top

For details of the synthesis and properties of related copper compounds showing a similar coordination environment, see: Meng et al. (2009); Cheng et al. (2007); Zhang et al. (2005). For the structure of an RuII complex with the same ligand, see: Browne et al. (2002).

Experimental top

CuCl2 ` 2H2O (1 mmol, 0.1704 g), Hptp (1 mmol, 0.2242 g), aqueous ammonia (25%, 2.0 ml) and water (15 ml) were heated in a 23-ml Teflon-lined autoclave at 160 °C for 3 days, followed by slow cooling (5 °C h-1) to room temperature. The black block crystals were filtered off and washed with water (yield 42%, based on CuCl2 ` 2H2O). IR (KBr, cm-1): 3424 (br), 3048 (w), 1620 (s), 1465 (s), 1401 (m), 1377 (m), 1120 (w), 1026 (w), 763 (m).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids. For symmetry code (a): -x + 2, -y + 2, -z.
Bis[3-(pyrazin-2-yl)-5-(pyridin-2-yl-κN)-1,2,4-triazol-1-ido- κN1]copper(II) top
Crystal data top
[Cu(C11H7N6)2]F(000) = 518
Mr = 509.99Dx = 1.711 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2919 reflections
a = 11.9735 (4) Åθ = 2.6–25.0°
b = 10.7539 (3) ŵ = 1.15 mm1
c = 8.0162 (3) ÅT = 293 K
β = 106.500 (4)°Block, black
V = 989.67 (6) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX I
diffractometer
1739 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω–2θ scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.795, Tmax = 0.795l = 96
3248 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.5521P]
where P = (Fo2 + 2Fc2)/3
1739 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C11H7N6)2]V = 989.67 (6) Å3
Mr = 509.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.9735 (4) ŵ = 1.15 mm1
b = 10.7539 (3) ÅT = 293 K
c = 8.0162 (3) Å0.20 × 0.20 × 0.20 mm
β = 106.500 (4)°
Data collection top
Bruker SMART APEX I
diffractometer
1739 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1451 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.795Rint = 0.021
3248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
1739 reflectionsΔρmin = 0.27 e Å3
160 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.000001.000000.000000.0286 (2)
N11.10513 (18)0.85051 (18)0.0123 (3)0.0267 (7)
N20.91236 (19)0.87911 (18)0.0980 (3)0.0288 (7)
N30.81241 (19)0.87336 (18)0.1478 (3)0.0298 (7)
N40.88670 (18)0.67872 (18)0.1531 (3)0.0282 (7)
N50.6786 (2)0.5834 (2)0.2120 (3)0.0376 (8)
N60.5319 (2)0.7455 (2)0.3250 (3)0.0398 (8)
C11.0605 (2)0.7434 (2)0.0551 (3)0.0250 (8)
C21.1125 (2)0.6297 (2)0.0511 (3)0.0319 (8)
C31.2139 (2)0.6250 (2)0.0029 (4)0.0344 (9)
C41.2622 (2)0.7337 (2)0.0353 (4)0.0355 (9)
C51.2058 (2)0.8444 (2)0.0294 (3)0.0307 (8)
C60.9528 (2)0.7623 (2)0.1032 (3)0.0257 (8)
C70.8009 (2)0.7528 (2)0.1784 (3)0.0262 (8)
C80.6998 (2)0.7053 (2)0.2278 (3)0.0258 (8)
C90.6261 (2)0.7845 (2)0.2850 (4)0.0328 (9)
C100.5123 (3)0.6236 (3)0.3091 (4)0.0420 (10)
C110.5841 (3)0.5442 (3)0.2539 (4)0.0446 (10)
H21.079800.557500.080600.0380*
H31.249500.549000.003900.0410*
H41.332000.732300.064700.0430*
H51.238700.917700.055300.0370*
H90.643900.868800.295700.0390*
H100.447700.591200.336500.0500*
H110.566400.459800.245200.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0274 (3)0.0210 (2)0.0417 (3)0.0025 (2)0.0166 (2)0.0069 (2)
N10.0255 (11)0.0248 (11)0.0306 (12)0.0007 (9)0.0092 (9)0.0017 (9)
N20.0296 (12)0.0218 (11)0.0384 (13)0.0016 (9)0.0150 (10)0.0034 (9)
N30.0308 (12)0.0241 (11)0.0392 (13)0.0009 (10)0.0174 (10)0.0027 (10)
N40.0278 (12)0.0226 (11)0.0364 (13)0.0014 (9)0.0127 (10)0.0008 (9)
N50.0386 (14)0.0235 (11)0.0580 (16)0.0004 (11)0.0257 (12)0.0021 (11)
N60.0340 (14)0.0332 (13)0.0579 (16)0.0034 (11)0.0222 (12)0.0018 (11)
C10.0237 (13)0.0249 (13)0.0252 (13)0.0014 (11)0.0051 (11)0.0005 (11)
C20.0345 (15)0.0234 (13)0.0378 (15)0.0019 (12)0.0104 (12)0.0004 (11)
C30.0341 (16)0.0282 (14)0.0429 (16)0.0073 (12)0.0142 (13)0.0013 (12)
C40.0304 (15)0.0365 (15)0.0433 (17)0.0050 (13)0.0166 (14)0.0024 (13)
C50.0262 (14)0.0270 (14)0.0408 (16)0.0008 (11)0.0127 (12)0.0046 (12)
C60.0269 (14)0.0204 (13)0.0301 (15)0.0008 (11)0.0085 (12)0.0019 (10)
C70.0287 (14)0.0231 (12)0.0282 (14)0.0015 (11)0.0106 (12)0.0003 (10)
C80.0279 (14)0.0226 (13)0.0279 (14)0.0006 (11)0.0097 (11)0.0022 (11)
C90.0350 (16)0.0233 (13)0.0428 (16)0.0003 (12)0.0156 (13)0.0003 (12)
C100.0337 (16)0.0381 (16)0.060 (2)0.0052 (13)0.0225 (15)0.0020 (14)
C110.0429 (18)0.0256 (14)0.073 (2)0.0053 (13)0.0291 (17)0.0016 (14)
Geometric parameters (Å, º) top
Cu1—N12.027 (2)C1—C21.377 (3)
Cu1—N21.969 (2)C1—C61.461 (3)
Cu1—N1i2.027 (2)C2—C31.376 (4)
Cu1—N2i1.969 (2)C3—C41.377 (3)
N1—C11.354 (3)C4—C51.376 (3)
N1—C51.341 (3)C7—C81.468 (3)
N2—N31.366 (3)C8—C91.394 (3)
N2—C61.343 (3)C10—C111.371 (5)
N3—C71.334 (3)C2—H20.9300
N4—C61.332 (3)C3—H30.9300
N4—C71.360 (3)C4—H40.9300
N5—C81.334 (3)C5—H50.9300
N5—C111.337 (4)C9—H90.9300
N6—C91.325 (4)C10—H100.9300
N6—C101.332 (4)C11—H110.9300
N1—Cu1—N281.43 (9)N4—C6—C1129.0 (2)
N1—Cu1—N1i180.00N3—C7—N4114.8 (2)
N1—Cu1—N2i98.58 (9)N3—C7—C8121.6 (2)
N1i—Cu1—N298.58 (9)N4—C7—C8123.5 (2)
N2—Cu1—N2i180.00N5—C8—C7117.7 (2)
N1i—Cu1—N2i81.43 (9)N5—C8—C9120.7 (2)
Cu1—N1—C1113.74 (17)C7—C8—C9121.6 (2)
Cu1—N1—C5128.07 (16)N6—C9—C8123.2 (2)
C1—N1—C5118.0 (2)N6—C10—C11122.3 (3)
Cu1—N2—N3139.18 (16)N5—C11—C10122.5 (3)
Cu1—N2—C6113.69 (18)C1—C2—H2121.00
N3—N2—C6106.66 (19)C3—C2—H2121.00
N2—N3—C7104.0 (2)C2—C3—H3120.00
C6—N4—C7100.83 (19)C4—C3—H3120.00
C8—N5—C11116.0 (2)C3—C4—H4120.00
C9—N6—C10115.3 (3)C5—C4—H4120.00
N1—C1—C2122.4 (2)N1—C5—H5119.00
N1—C1—C6112.9 (2)C4—C5—H5119.00
C2—C1—C6124.7 (2)N6—C9—H9118.00
C1—C2—C3118.7 (2)C8—C9—H9118.00
C2—C3—C4119.4 (2)N6—C10—H10119.00
C3—C4—C5119.1 (2)C11—C10—H10119.00
N1—C5—C4122.4 (2)N5—C11—H11119.00
N2—C6—N4113.6 (2)C10—C11—H11119.00
N2—C6—C1117.4 (2)
N2—Cu1—N1—C18.16 (18)C7—N4—C6—N20.2 (3)
N2i—Cu1—N1—C1171.84 (18)C6—N4—C7—C8177.0 (2)
N2—Cu1—N1—C5177.6 (2)C8—N5—C11—C100.3 (4)
N2i—Cu1—N1—C52.4 (2)C11—N5—C8—C7178.3 (2)
N1—Cu1—N2—N3178.5 (3)C11—N5—C8—C90.0 (4)
N1i—Cu1—N2—N31.5 (3)C9—N6—C10—C110.5 (4)
N1—Cu1—N2—C67.77 (18)C10—N6—C9—C80.8 (4)
N1i—Cu1—N2—C6172.23 (18)N1—C1—C6—N20.5 (3)
Cu1—N1—C5—C4172.0 (2)N1—C1—C2—C30.4 (4)
C1—N1—C5—C42.1 (4)C2—C1—C6—N41.1 (4)
Cu1—N1—C1—C2172.57 (18)C2—C1—C6—N2179.0 (2)
C5—N1—C1—C22.3 (4)N1—C1—C6—N4179.5 (2)
Cu1—N1—C1—C66.9 (3)C6—C1—C2—C3179.8 (2)
C5—N1—C1—C6178.2 (2)C1—C2—C3—C41.7 (4)
N3—N2—C6—C1179.9 (2)C2—C3—C4—C52.0 (4)
Cu1—N2—C6—N4173.66 (17)C3—C4—C5—N10.0 (4)
Cu1—N2—N3—C7170.9 (2)N3—C7—C8—N5162.8 (2)
C6—N2—N3—C70.2 (3)N4—C7—C8—C9167.4 (2)
N3—N2—C6—N40.0 (3)N4—C7—C8—N514.3 (4)
Cu1—N2—C6—C16.4 (3)N3—C7—C8—C915.5 (4)
N2—N3—C7—C8177.0 (2)C7—C8—C9—N6177.6 (2)
N2—N3—C7—N40.3 (3)N5—C8—C9—N60.6 (4)
C7—N4—C6—C1179.9 (2)N6—C10—C11—N50.1 (5)
C6—N4—C7—N30.3 (3)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N5ii0.932.523.303 (3)141
C5—H5···N3i0.932.393.169 (3)141
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C11H7N6)2]
Mr509.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9735 (4), 10.7539 (3), 8.0162 (3)
β (°) 106.500 (4)
V3)989.67 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX I
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.795, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
3248, 1739, 1451
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.06
No. of reflections1739
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the NSFC (21061009) and the Inner Mongolia Autonomous Region Fund for Natural Science (2010MS0201) for their financial support.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrowne, W. R., O'Connor, C. M., Hughes, H. P., Hage, R., Walter, O., Doering, M., Gallagher, J. F. & Vos, J. G. (2002). J. Chem. Soc. Dalton Trans. pp. 4048–4054.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007). Inorg. Chem. 46, 1135–1143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeng, Z.-S., Yun, L., Zhang, W.-X., Hong, C.-G., Herchel, R., Ou, Y.-C., Leng, J.-D., Peng, M.-X., Lin, Z.-J. & Tong, M.-L. (2009). Dalton Trans. pp. 10284–10295.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). Chem. Commun. pp. 1258–1260.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds