organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1404

Di­methyl 5,5′-methyl­enebis(2-hy­dr­oxy­benzoate)

aUniversity of Aveiro, QOPNA, Department of Chemistry, 3810-193 Aveiro, Portugal, and bUniversity of Aveiro, CICECO, Department of Chemistry, 3810-193 Aveiro, Portugal
*Correspondence e-mail: sguieu@ua.pt

(Received 27 March 2012; accepted 11 April 2012; online 18 April 2012)

In the title compound, C17H16O6, the two methyl salicylate moieties are related by crystallographic twofold rotational symmetry with the two benzene rings close to being perpendicular [inter-ring dihedral angle = 86.6 (8)°]. Intra­molecular phenolic O—H⋯O hydrogen bonds with carboxyl O-atom acceptors are present, with these groups also involved in centrosymmetric cyclic inter­molecular O—H⋯O hydrogen-bonding associations [graph set R22(4)], giving infinite chains extending across (101).

Related literature

For the chemistry and applications of methyl­ene bis­phenol derivatives, see: Ogata et al. (1975[Ogata, N., Sanui, K., Kanasugi, K. & Ohira, N. (1975). Polym. J. 7, 544-549.]); Méric et al. (1993[Méric, R., Vigneron, J.-P. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 129-131.]); Shrestha et al. (2007[Shrestha, S., Bhattarai, B. R., Chang, K. J., Lee, K.-H. & Cho, H. (2007). Bioorg. Med. Chem. Lett. 17, 2760-2764.]); Cameron et al. (2002[Cameron, K. S., Fielding, L., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. & Zhang, M.-Q. (2002). Bioorg. Med. Chem. Lett. 12, 753-755.]). For the preparation, see: Cushman & Kanamathareddy (1990[Cushman, M. & Kanamathareddy, S. (1990). Tetrahedron, 46, 1491-1498.]); Méric et al. (1993[Méric, R., Vigneron, J.-P. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 129-131.]). For the structures of similar compounds, see: Lu et al. (2011[Lu, J., Han, L.-W., Lin, J.-X. & Cao, R. (2011). Cryst. Growth Des. 11, 3551-3557.]); Zhang et al. (2009[Zhang, Z.-H., Tan, X. & Chen, S.-C. (2009). Acta Cryst. C65, o457-o459.]); Liu et al. (2009[Liu, Y.-Z., Li, Y.-X., Zhang, L. & Li, X. (2009). Acta Cryst. E65, o1716.]). For graph-set analysis, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O6

  • Mr = 316.31

  • Monoclinic, C 2/c

  • a = 20.4168 (13) Å

  • b = 4.9300 (3) Å

  • c = 15.5470 (12) Å

  • β = 111.290 (3)°

  • V = 1458.08 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.38 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.970

  • 8440 measured reflections

  • 1756 independent reflections

  • 1568 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 0.96

  • 1756 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.87 (2) 1.87 (2) 2.6457 (12) 147 (2)
O1—H1⋯O2i 0.87 (2) 2.32 (1) 3.0067 (11) 134 (9)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+2].

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound C17H16O6 was first reported as a building block for polymer synthesis (Ogata et al., 1975). It is a useful precursor for organic polymers, metal-organic frameworks, cage compounds (Méric et al., 1993) and biologically active compounds (Shrestha et al., 2007; Cameron et al., 2002). In the title compound (Fig. 1), the two methyl salicylate moieties are related by crystallographic twofold rotational symmetry with the two phenyl rings close to perpendicular [inter-ring dihedral angle = 86.6 (8)°]. Bond lengths and angles are within normal ranges (Allen et al., 1987). Intramolecular phenolic O—H···O hydrogen bonds with carboxyl O-atom acceptors are present, with these groups also involved in centrosymmetric cyclic intermolecular hydrogen-bonding associations [graph set R22(4) (Etter et al., 1990)], making the ester group essentially coplanar with the phenyl ring [torsion angle C1—C6—C7—O3, 178.64 (9)°]. The molecules are involved in centrosymmetric cyclic intermolecular phenolic O—H···Ocarboxyl hydrogen-bonding associations [graph set R22(4) giving infinite chains extending across (101) (Figs. 2, 3).

Related literature top

For the chemistry and applications of methylene bisphenol derivatives, see: Ogata et al. (1975); Méric et al. (1993); Shrestha et al. (2007); Cameron et al. (2002). For the preparation, see: Cushman & Kanamathareddy (1990); Méric et al. (1993). For the structures of similar compounds, see: Lu et al. (2011); Zhang et al. (2009); Liu et al. (2009). For graph-set analysis, see Etter et al. (1990). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared in two steps starting with salicylic acid. 5,5'-Methylenebis(salicylic acid) was prepared according to a known procedure (Cushman et al., 1990), and was then esterified with methanol and a catalytic amount of sulfuric acid (Méric et al., 1993). Slow evaporation of a saturated solution in dichloromethane gave single crystals suitable for X-ray diffraction.

Refinement top

The phenolic H-atom (H1) was located in a difference Fourier map and both positional and isotropic displacement parameters were refined. All other H-atoms were placed in geometrically idealized positions and refined using a riding model with C—H = 0.95 Å (aromatic), 0.98 Å (methylene) or 0.97 Å (methyl) and Uiso(H) = 1.2Ueq(C) (aromatic or methylene) or Uiso(H) = 1.5Ueq(C) (methyl).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing atom numbering and displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bonds are shown as dashed lines. Symmetry code: (i) -x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chains in the title compound, with hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The packing of the title compound in the unit cell viewed down the b axis, with hydrogen bonds and other intermolecular interactions shown as dashed lines.
Dimethyl 5,5'-methylenebis(2-hydroxybenzoate) top
Crystal data top
C17H16O6F(000) = 664
Mr = 316.31Dx = 1.441 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8440 reflections
a = 20.4168 (13) Åθ = 2.8–27.9°
b = 4.9300 (3) ŵ = 0.11 mm1
c = 15.5470 (12) ÅT = 150 K
β = 111.290 (3)°Block, colourless
V = 1458.08 (17) Å30.38 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD-detector
diffractometer
1756 independent reflections
Radiation source: fine-focus sealed tube1568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 27.9°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2621
Tmin = 0.953, Tmax = 0.970k = 66
8440 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.9516P]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max = 0.049
109 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H16O6V = 1458.08 (17) Å3
Mr = 316.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.4168 (13) ŵ = 0.11 mm1
b = 4.9300 (3) ÅT = 150 K
c = 15.5470 (12) Å0.38 × 0.30 × 0.24 mm
β = 111.290 (3)°
Data collection top
Bruker SMART CCD-detector
diffractometer
1756 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1568 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.970Rint = 0.025
8440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.23 e Å3
1756 reflectionsΔρmin = 0.33 e Å3
109 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H10.2434 (10)1.009 (5)0.9251 (15)0.070 (6)*
O20.18996 (4)1.12860 (16)0.99304 (5)0.0260 (2)
O10.24736 (4)0.89366 (17)0.88455 (6)0.0265 (2)
O30.08604 (4)0.98089 (17)0.99095 (6)0.0284 (2)
C50.07384 (5)0.6081 (2)0.85532 (7)0.0212 (2)
H50.03720.62880.87890.025*
C60.13366 (5)0.7717 (2)0.89054 (7)0.0189 (2)
C20.18118 (6)0.5483 (2)0.78810 (8)0.0269 (3)
H20.21780.52400.76480.032*
C70.14042 (5)0.9762 (2)0.96221 (7)0.0196 (2)
C30.12105 (6)0.3904 (2)0.75449 (8)0.0277 (3)
H30.11700.26020.70780.033*
C10.18813 (5)0.7425 (2)0.85599 (7)0.0212 (2)
C40.06631 (5)0.4174 (2)0.78730 (7)0.0238 (2)
C90.00000.2479 (3)0.75000.0296 (4)
H9A0.00290.12950.79990.036*0.50
H9B0.00290.12950.70010.036*0.50
C80.09263 (7)1.1785 (3)1.06230 (9)0.0350 (3)
H8A0.05101.17001.07960.053*
H8B0.09661.36041.03930.053*
H8C0.13471.13891.11650.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0226 (4)0.0255 (4)0.0290 (4)0.0081 (3)0.0084 (3)0.0051 (3)
O10.0221 (4)0.0265 (4)0.0335 (5)0.0035 (3)0.0132 (3)0.0013 (3)
O30.0247 (4)0.0324 (5)0.0315 (4)0.0085 (3)0.0142 (3)0.0101 (3)
C50.0180 (4)0.0180 (5)0.0235 (5)0.0006 (4)0.0027 (4)0.0024 (4)
C60.0178 (4)0.0171 (5)0.0188 (5)0.0007 (3)0.0031 (4)0.0023 (4)
C20.0289 (5)0.0259 (5)0.0266 (5)0.0049 (4)0.0110 (4)0.0009 (4)
C70.0175 (4)0.0200 (5)0.0191 (5)0.0013 (3)0.0043 (4)0.0025 (4)
C30.0335 (6)0.0207 (5)0.0235 (5)0.0050 (4)0.0039 (4)0.0024 (4)
C10.0200 (5)0.0199 (5)0.0218 (5)0.0014 (4)0.0052 (4)0.0045 (4)
C40.0227 (5)0.0157 (5)0.0242 (5)0.0020 (4)0.0021 (4)0.0026 (4)
C90.0247 (7)0.0162 (7)0.0350 (8)0.0000.0045 (6)0.000
C80.0396 (7)0.0382 (7)0.0338 (6)0.0085 (5)0.0211 (5)0.0124 (5)
Geometric parameters (Å, º) top
O2—C71.2104 (13)C2—C11.3938 (15)
O1—C11.3508 (13)C2—H20.9500
O1—H10.87 (2)C3—C41.3932 (17)
O3—C71.3390 (12)C3—H30.9500
O3—C81.4455 (14)C4—C91.5157 (13)
C5—C41.3811 (15)C9—C4i1.5157 (13)
C5—C61.3989 (14)C9—H9A0.9900
C5—H50.9500C9—H9B0.9900
C6—C11.4071 (14)C8—H8A0.9800
C6—C71.4715 (14)C8—H8B0.9800
C2—C31.3857 (16)C8—H8C0.9800
C1—O1—H1106.9 (13)O1—C1—C6123.74 (10)
C7—O3—C8114.23 (8)C2—C1—C6118.82 (10)
C4—C5—C6122.07 (10)C5—C4—C3117.65 (10)
C4—C5—H5119.0C5—C4—C9120.26 (10)
C6—C5—H5119.0C3—C4—C9122.08 (9)
C5—C6—C1119.36 (9)C4—C9—C4i113.07 (12)
C5—C6—C7121.34 (9)C4—C9—H9A109.0
C1—C6—C7119.30 (9)C4i—C9—H9A109.0
C3—C2—C1120.27 (10)C4—C9—H9B109.0
C3—C2—H2119.9C4i—C9—H9B109.0
C1—C2—H2119.9H9A—C9—H9B107.8
O2—C7—O3122.15 (9)O3—C8—H8A109.5
O2—C7—C6124.07 (9)O3—C8—H8B109.5
O3—C7—C6113.78 (8)H8A—C8—H8B109.5
C2—C3—C4121.81 (10)O3—C8—H8C109.5
C2—C3—H3119.1H8A—C8—H8C109.5
C4—C3—H3119.1H8B—C8—H8C109.5
O1—C1—C2117.44 (9)
C8—O3—C7—O21.07 (15)C3—C4—C5—C60.43 (15)
C8—O3—C7—C6179.17 (9)C9—C4—C5—C6178.93 (9)
O1—C1—C2—C3178.69 (10)C3—C4—C9—C4i123.32 (10)
C6—C1—C2—C31.01 (16)C5—C4—C9—C4i56.01 (11)
O1—C1—C6—C5178.95 (10)C4—C5—C6—C10.00 (16)
O1—C1—C6—C70.29 (15)C4—C5—C6—C7179.24 (10)
C2—C1—C6—C50.73 (15)C1—C6—C7—O21.60 (16)
C2—C1—C6—C7179.97 (10)C1—C6—C7—O3178.64 (9)
C1—C2—C3—C40.58 (17)C5—C6—C7—O2177.63 (10)
C2—C3—C4—C50.15 (16)C5—C6—C7—O32.13 (14)
C2—C3—C4—C9179.20 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.87 (2)1.87 (2)2.6457 (12)147 (2)
O1—H1···O2ii0.87 (2)2.32 (1)3.0067 (11)134 (9)
Symmetry code: (ii) x+1/2, y+5/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H16O6
Mr316.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)20.4168 (13), 4.9300 (3), 15.5470 (12)
β (°) 111.290 (3)
V3)1458.08 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.953, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8440, 1756, 1568
Rint0.025
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 0.96
No. of reflections1756
No. of parameters109
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.33

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.87 (2)1.87 (2)2.6457 (12)147 (2)
O1—H1···O2i0.87 (2)2.32 (1)3.0067 (11)134 (9)
Symmetry code: (i) x+1/2, y+5/2, z+2.
 

Acknowledgements

Thanks are due to the University of Aveiro and the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for funding the Organic Chemistry Research Unit (project PEst-C/QUI/UI0062/2011) and the CICECO Associate Laboratory (PEst-C/CTM/LA0011/2011). SG also thanks the FCT for a postdoctoral grant (SFRH/BPD/70702/2010).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, K. S., Fielding, L., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. & Zhang, M.-Q. (2002). Bioorg. Med. Chem. Lett. 12, 753–755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCushman, M. & Kanamathareddy, S. (1990). Tetrahedron, 46, 1491–1498.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y.-Z., Li, Y.-X., Zhang, L. & Li, X. (2009). Acta Cryst. E65, o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J., Han, L.-W., Lin, J.-X. & Cao, R. (2011). Cryst. Growth Des. 11, 3551–3557.  Web of Science CSD CrossRef CAS Google Scholar
First citationMéric, R., Vigneron, J.-P. & Lehn, J.-M. (1993). J. Chem. Soc. Chem. Commun. pp. 129–131.  Google Scholar
First citationOgata, N., Sanui, K., Kanasugi, K. & Ohira, N. (1975). Polym. J. 7, 544–549.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrestha, S., Bhattarai, B. R., Chang, K. J., Lee, K.-H. & Cho, H. (2007). Bioorg. Med. Chem. Lett. 17, 2760–2764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-H., Tan, X. & Chen, S.-C. (2009). Acta Cryst. C65, o457–o459.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds