organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Benz­yl­oxy-2-phenyl­pyridazin-3(2H)-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China
*Correspondence e-mail: 374107445@qq.com

(Received 11 April 2012; accepted 26 April 2012; online 5 May 2012)

In the title compound, C17H14N2O2, the central pyridazine ring forms dihedral angles of 47.29 (5) and 88.54 (5)° with the benzene rings, while the dihedral angle between the benzene rings is 62.68 (6)°. In the crystal, molecules are linked by two weak C—H⋯O hydrogen bonds and three weak C—H⋯π inter­actions.

Related literature

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007[Loksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. 44, 1351-1356.]), as pesticides, see: Li et al. (2005[Li, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204-207.]) and as herbicides, see: Xu et al. (2006[Xu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522-530.]). For a related structure, see: Ju et al. (2011[Ju, Z.-Y., Jiang, W.-X. & Yang, F.-L. (2011). Acta Cryst. E67, o1042.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O2

  • Mr = 278.30

  • Triclinic, [P \overline 1]

  • a = 7.390 (4) Å

  • b = 9.385 (5) Å

  • c = 10.587 (6) Å

  • α = 106.618 (7)°

  • β = 97.489 (6)°

  • γ = 101.098 (9)°

  • V = 676.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.982, Tmax = 0.987

  • 7083 measured reflections

  • 3167 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.070

  • S = 1.02

  • 3167 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.54 3.389 (2) 149
C15—H15⋯O1ii 0.95 2.44 3.235 (2) 141
C4—H4⋯Cg2iii 0.95 2.76 3.494 (2) 135
C9—H9⋯Cg2iv 0.95 2.95 3.752 (2) 143
C13—H13⋯Cg1v 0.95 2.63 3.456 (2) 145
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Pyridazinones represent an important class of biologically active compounds. Recently, a substantial number of pyridazinones have been reported to possess highly-selective anti-HIV agents (Loksha et al., 2007), pesticide(Li et al., 2005), highly herbicidal activity (Xu et al., 2006). In order to discover further biologically active Pyridazinone analogues, the title compound, (I), was synthesized, and its crystal structure determined (Fig. 1).

As a continuation of our studies on the crystal structures of Pyridazinone analogues (Ju et al., 2011), we report here the synthesis and crystal structure, an ellipsoid plot of which is shown in Fig. 1. The central pyridazine ring forms dihedral angles of 47.29 (5)° and 88.54 (5)° with the two benzene rings, while the dihedral angle between the two benzene rings is 62.68 (6)°. The structure is stabilized by two weak C—H···O and three C—H···Cg intermolecular hydrogen bonds (Cg's: centroids of the benzene rings) (Table 1).

Related literature top

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007), as pesticides, see: Li et al. (2005) and as herbicides, see: Xu et al. (2006). For a related structure, see: Ju et al. (2011).

Experimental top

3-hydroxyl-1phenyl-6-pyridazone(0.94 g, 5 mmol), benzyl chloride(0.63 g, 5 mmol) and K2CO3 (0.69 g, 5 mmol) were added to absolute ethanol(30 ml). The mixture was stirred in the room temperature for 10 h. The suspension was filtered and the residue was washed with absolute ethanol. The title compound was recrystallized from the mother solution and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 Å and C—H = 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
6-Benzyloxy-2-phenylpyridazin-3(2H)-one top
Crystal data top
C17H14N2O2Z = 2
Mr = 278.30F(000) = 292
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) ÅCell parameters from 2420 reflections
b = 9.385 (5) Åθ = 2.0–27.9°
c = 10.587 (6) ŵ = 0.09 mm1
α = 106.618 (7)°T = 113 K
β = 97.489 (6)°Prism, colorless
γ = 101.098 (9)°0.20 × 0.18 × 0.14 mm
V = 676.9 (6) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3167 independent reflections
Radiation source: rotating anode2103 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.037
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.982, Tmax = 0.987l = 1313
7083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.014P)2]
where P = (Fo2 + 2Fc2)/3
3167 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H14N2O2γ = 101.098 (9)°
Mr = 278.30V = 676.9 (6) Å3
Triclinic, P1Z = 2
a = 7.390 (4) ÅMo Kα radiation
b = 9.385 (5) ŵ = 0.09 mm1
c = 10.587 (6) ÅT = 113 K
α = 106.618 (7)°0.20 × 0.18 × 0.14 mm
β = 97.489 (6)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3167 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2103 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.037
7083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3167 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42844 (11)0.94745 (8)0.63170 (7)0.0233 (2)
O20.77932 (11)0.49972 (8)0.63235 (8)0.0216 (2)
N10.48299 (13)0.75278 (10)0.71052 (9)0.0164 (2)
N20.57426 (13)0.63946 (10)0.71641 (9)0.0175 (2)
C10.36869 (16)0.78488 (12)0.81087 (11)0.0167 (3)
C20.18835 (17)0.79994 (12)0.77449 (12)0.0201 (3)
H20.13870.78790.68360.024*
C30.08053 (17)0.83289 (12)0.87255 (12)0.0220 (3)
H30.04290.84470.84880.026*
C40.15216 (17)0.84853 (12)1.00468 (12)0.0226 (3)
H40.07800.87081.07130.027*
C50.33193 (17)0.83158 (12)1.03932 (12)0.0216 (3)
H50.38050.84141.12980.026*
C60.44193 (17)0.80031 (12)0.94267 (11)0.0194 (3)
H60.56580.78960.96670.023*
C70.50525 (16)0.84005 (12)0.62487 (11)0.0175 (3)
C80.62325 (15)0.79457 (12)0.52976 (11)0.0187 (3)
H80.64040.84610.46530.022*
C90.70914 (16)0.68125 (12)0.53036 (11)0.0190 (3)
H90.78550.65090.46690.023*
C100.68183 (16)0.60737 (12)0.63011 (11)0.0172 (3)
C110.76814 (17)0.43746 (13)0.74356 (11)0.0219 (3)
H11A0.64320.36730.72890.026*
H11B0.78660.52140.82930.026*
C120.91981 (16)0.35233 (12)0.74890 (11)0.0178 (3)
C131.09241 (17)0.42585 (13)0.83407 (11)0.0218 (3)
H131.11420.53020.88740.026*
C141.23333 (17)0.34891 (13)0.84226 (11)0.0230 (3)
H141.35120.40060.90080.028*
C151.20271 (17)0.19639 (13)0.76516 (11)0.0217 (3)
H151.29860.14280.77120.026*
C161.03045 (17)0.12308 (13)0.67916 (11)0.0217 (3)
H161.00900.01890.62550.026*
C170.89004 (17)0.19985 (12)0.67083 (11)0.0206 (3)
H170.77270.14840.61160.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (5)0.0207 (5)0.0235 (5)0.0139 (4)0.0090 (4)0.0113 (4)
O20.0276 (5)0.0237 (5)0.0227 (5)0.0151 (4)0.0099 (4)0.0134 (4)
N10.0187 (6)0.0172 (5)0.0177 (5)0.0093 (4)0.0052 (5)0.0083 (4)
N20.0189 (6)0.0168 (5)0.0198 (5)0.0085 (4)0.0041 (5)0.0074 (4)
C10.0200 (7)0.0130 (6)0.0188 (7)0.0044 (5)0.0066 (5)0.0062 (5)
C20.0241 (7)0.0176 (6)0.0199 (7)0.0065 (5)0.0040 (6)0.0075 (5)
C30.0196 (7)0.0181 (6)0.0314 (8)0.0078 (5)0.0071 (6)0.0096 (5)
C40.0290 (8)0.0176 (7)0.0243 (7)0.0080 (6)0.0129 (6)0.0067 (5)
C50.0271 (8)0.0199 (7)0.0169 (7)0.0034 (6)0.0043 (6)0.0061 (5)
C60.0202 (7)0.0180 (6)0.0209 (7)0.0050 (5)0.0038 (6)0.0077 (5)
C70.0201 (7)0.0170 (6)0.0158 (6)0.0044 (5)0.0016 (5)0.0067 (5)
C80.0224 (7)0.0195 (6)0.0165 (6)0.0056 (5)0.0052 (6)0.0081 (5)
C90.0201 (7)0.0215 (7)0.0163 (7)0.0053 (5)0.0056 (5)0.0062 (5)
C100.0185 (7)0.0164 (6)0.0170 (6)0.0067 (5)0.0012 (5)0.0051 (5)
C110.0255 (8)0.0243 (7)0.0223 (7)0.0104 (6)0.0078 (6)0.0132 (5)
C120.0210 (7)0.0199 (6)0.0185 (7)0.0098 (5)0.0081 (6)0.0102 (5)
C130.0270 (8)0.0166 (6)0.0238 (7)0.0074 (6)0.0066 (6)0.0074 (5)
C140.0194 (7)0.0240 (7)0.0257 (7)0.0058 (6)0.0014 (6)0.0090 (6)
C150.0249 (7)0.0259 (7)0.0229 (7)0.0151 (6)0.0095 (6)0.0128 (6)
C160.0322 (8)0.0167 (6)0.0186 (7)0.0101 (6)0.0071 (6)0.0056 (5)
C170.0219 (7)0.0216 (7)0.0187 (7)0.0052 (5)0.0020 (5)0.0080 (5)
Geometric parameters (Å, º) top
O1—C71.2379 (14)C8—C91.3405 (15)
O2—C101.3526 (14)C8—H80.9500
O2—C111.4611 (14)C9—C101.4343 (16)
N1—N21.3758 (13)C9—H90.9500
N1—C71.3899 (14)C11—C121.5006 (16)
N1—C11.4429 (14)C11—H11A0.9900
N2—C101.2967 (14)C11—H11B0.9900
C1—C21.3836 (17)C12—C131.3862 (16)
C1—C61.3850 (17)C12—C171.3907 (16)
C2—C31.3911 (16)C13—C141.3839 (16)
C2—H20.9500C13—H130.9500
C3—C41.3851 (17)C14—C151.3875 (17)
C3—H30.9500C14—H140.9500
C4—C51.3829 (17)C15—C161.3875 (16)
C4—H40.9500C15—H150.9500
C5—C61.3896 (16)C16—C171.3799 (16)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—H170.9500
C7—C81.4432 (16)
C10—O2—C11115.71 (9)C8—C9—H9121.1
N2—N1—C7125.17 (10)C10—C9—H9121.1
N2—N1—C1113.91 (9)N2—C10—O2119.85 (10)
C7—N1—C1120.75 (10)N2—C10—C9124.22 (12)
C10—N2—N1116.73 (10)O2—C10—C9115.93 (11)
C2—C1—C6120.99 (11)O2—C11—C12107.55 (9)
C2—C1—N1119.79 (11)O2—C11—H11A110.2
C6—C1—N1119.22 (11)C12—C11—H11A110.2
C1—C2—C3119.21 (11)O2—C11—H11B110.2
C1—C2—H2120.4C12—C11—H11B110.2
C3—C2—H2120.4H11A—C11—H11B108.5
C4—C3—C2120.34 (12)C13—C12—C17119.09 (12)
C4—C3—H3119.8C13—C12—C11119.69 (11)
C2—C3—H3119.8C17—C12—C11121.21 (11)
C5—C4—C3119.82 (11)C14—C13—C12120.71 (11)
C5—C4—H4120.1C14—C13—H13119.6
C3—C4—H4120.1C12—C13—H13119.6
C4—C5—C6120.45 (12)C13—C14—C15120.09 (12)
C4—C5—H5119.8C13—C14—H14120.0
C6—C5—H5119.8C15—C14—H14120.0
C1—C6—C5119.19 (12)C14—C15—C16119.22 (12)
C1—C6—H6120.4C14—C15—H15120.4
C5—C6—H6120.4C16—C15—H15120.4
O1—C7—N1121.54 (11)C17—C16—C15120.69 (12)
O1—C7—C8123.94 (10)C17—C16—H16119.7
N1—C7—C8114.53 (11)C15—C16—H16119.7
C9—C8—C7121.43 (11)C16—C17—C12120.20 (12)
C9—C8—H8119.3C16—C17—H17119.9
C7—C8—H8119.3C12—C17—H17119.9
C8—C9—C10117.73 (11)
C7—N1—N2—C103.67 (15)N1—C7—C8—C92.77 (16)
C1—N1—N2—C10178.83 (9)C7—C8—C9—C100.74 (16)
N2—N1—C1—C2134.36 (10)N1—N2—C10—O2178.41 (9)
C7—N1—C1—C250.24 (14)N1—N2—C10—C90.47 (16)
N2—N1—C1—C645.70 (13)C11—O2—C10—N25.75 (15)
C7—N1—C1—C6129.70 (12)C11—O2—C10—C9173.22 (9)
C6—C1—C2—C30.78 (16)C8—C9—C10—N22.57 (17)
N1—C1—C2—C3179.16 (9)C8—C9—C10—O2176.35 (9)
C1—C2—C3—C40.80 (16)C10—O2—C11—C12166.04 (9)
C2—C3—C4—C50.13 (16)O2—C11—C12—C1394.70 (12)
C3—C4—C5—C60.58 (16)O2—C11—C12—C1786.01 (13)
C2—C1—C6—C50.09 (16)C17—C12—C13—C140.35 (17)
N1—C1—C6—C5179.85 (9)C11—C12—C13—C14178.96 (10)
C4—C5—C6—C10.60 (16)C12—C13—C14—C150.22 (18)
N2—N1—C7—O1174.84 (10)C13—C14—C15—C160.68 (17)
C1—N1—C7—O10.01 (17)C14—C15—C16—C170.59 (17)
N2—N1—C7—C85.19 (16)C15—C16—C17—C120.02 (17)
C1—N1—C7—C8179.96 (9)C13—C12—C17—C160.44 (17)
O1—C7—C8—C9177.26 (11)C11—C12—C17—C16178.85 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.543.389 (2)149
C15—H15···O1ii0.952.443.235 (2)141
C4—H4···Cg2iii0.952.763.494 (2)135
C9—H9···Cg2iv0.952.953.752 (2)143
C13—H13···Cg1v0.952.633.456 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14N2O2
Mr278.30
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.390 (4), 9.385 (5), 10.587 (6)
α, β, γ (°)106.618 (7), 97.489 (6), 101.098 (9)
V3)676.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7083, 3167, 2103
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.070, 1.02
No. of reflections3167
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.543.389 (2)149
C15—H15···O1ii0.952.443.235 (2)141
C4—H4···Cg2iii0.952.763.494 (2)135
C9—H9···Cg2iv0.952.953.752 (2)143
C13—H13···Cg1v0.952.633.456 (2)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20972143 and 20972130), the Natural Science Foundation of Henan Province Education Committee, China (No. 2010 A150021) and the Natural Science Foundation of Xuchang University (grant No. 2012064).

References

First citationJu, Z.-Y., Jiang, W.-X. & Yang, F.-L. (2011). Acta Cryst. E67, o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204–207.  CAS Google Scholar
First citationLoksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. 44, 1351–1356.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522–530.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds