organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-2-methyl-1-[4-(methyl­sulfan­yl)phen­yl]propan-1-one

aSchool of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003 Jiangsu Province, People's Republic of China, and bGraduate School, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
*Correspondence e-mail: huanhailf@yahoo.com.cn

(Received 16 April 2012; accepted 11 May 2012; online 16 May 2012)

In the title compound, C11H13BrOS, the thio­ether unit and the phenyl ring adopt an essentially planar conformation, with a maximum deviation of 0.063 Å. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, extending in zigzag chains along the b axis. A weak intra­molecular C—H⋯Br hydrogen bond is also observed, which forms an S(6) ring motif.

Related literature

For general background to the properties of the title compound, a key inter­mediate for the preparation of a UV initiator, and its synthesis, see: Zhao et al. (2010[Zhao, W., Yan, Q., Wen, C., Ma, Z., Wang, Y. & Ren, J. (2010). Chinese Patent CN101659644.]); Liu et al. (2010[Liu, B., Zhang, Y., Zhang, X. & Liu, H. (2010). Chinese Patent CN101633647.]). For related structures, see: Anuradha et al. (2008[Anuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2118-o2119.]); Moreno-Fuquen et al. (2011[Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Grande, C. & Kennedy, A. R. (2011). Acta Cryst. E67, o2446.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrOS

  • Mr = 273.18

  • Monoclinic, P 21 /n

  • a = 11.061 (3) Å

  • b = 7.120 (2) Å

  • c = 14.721 (4) Å

  • β = 97.638 (3)°

  • V = 1149.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 153 K

  • 0.27 × 0.23 × 0.18 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.433, Tmax = 0.551

  • 9900 measured reflections

  • 3625 independent reflections

  • 2901 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.00

  • 3625 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.98 2.47 3.359 (2) 150
C5—H5⋯Br1 0.95 2.78 3.387 (2) 123
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC. (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is a key intermediate for the preparation of 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-propanone, which is used as a UV initiator (Zhao et al., 2010). It was prepared from thioanisole, which was reacted with isobutyryl chloride in the presence of aluminium cloride, followed by bromination with bromine/acetic acid (Liu et al., 2010).

C—S bond lengths and the C—S—C angle agree with those in (E)-3-(4-fluorophenyl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one (Anuradha et al., 2008). The S—Csp3 bond length (1.7954 Å) is longer than the S—Csp2 one (1.7548 Å) and the C—Br distance length (1.9962 Å) is in the normal range for this type of bonds (Moreno-Fuquen et al., 2011).

The thioether moiety and phenyl ring adopt an essentially planar conformation with a maximum deviation of 0.063 Å (Fig. 1). In the crystal, molecules are linked by C—H···O hydrogen bonds, extending as zigzag chains along the b axis (Fig. 2). In addition, a weak intramolecular C—H···Br hydrogen bond is also observed, forming an S(6) ring motif. This H-bond geometry is listed in Table 1.

Related literature top

For general backgroud to the properties of the title compound, a key intermediate for the preparation of a UV initiator, and its synthesis, see: Zhao et al. (2010); Liu et al. (2010). For related structures, see: Anuradha et al. (2008); Moreno-Fuquen et al. (2011).

Experimental top

To a mixture of dichloroethane (50 ml) and aluminium cloride (17.4 g, 130 mmol) was added isobutyryl chloride (13.8 g, 130 mmol) at 298 K. Thioanisole (10.8 g, 100 mmol) was added dropwise to the mixture. After completion, it was poured into diluted hydrochloric acid and the organic layer was extracted.

To the organic layer, acetic acid (7.4 g, 123 mmol) and 30% hydrogen peroxide solution (7.4 g, 65 mmol) were added. Then, bromine (10.4 g, 65 mmol) was added at 303 K. After completion, water was added, and the organic layer was washed by 5% sodium bicarbonate solution and concentrated to yield the title compound with a yield of 77.3%. The crude product was recrystallized by slow evaporation from ethanol to give the single crystals used for data collection.

Refinement top

C—bound H atoms were positioned geometrically with C—H 0.95 Å and 0.98 Å for Csp2 and methyl C, respectively, and were treated as riding on their parent atoms, with Uiso(H)=1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the crystal structure of (I), showing the intramolecular hydrogen bonds and the zigzag chains formed by C—H···O hydrogen bonds (dotted lines).
2-Bromo-2-methyl-1-[4-(methylsulfanyl)phenyl]propan-1-one top
Crystal data top
C11H13BrOSF(000) = 552
Mr = 273.18Dx = 1.579 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4327 reflections
a = 11.061 (3) Åθ = 2.2–31.0°
b = 7.120 (2) ŵ = 3.73 mm1
c = 14.721 (4) ÅT = 153 K
β = 97.638 (3)°Block, colourless
V = 1149.1 (5) Å30.27 × 0.23 × 0.18 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3625 independent reflections
Radiation source: Rotating Anode2901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 31.0°, θmin = 2.8°
phi and ω scansh = 1614
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 108
Tmin = 0.433, Tmax = 0.551l = 2121
9900 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
3625 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C11H13BrOSV = 1149.1 (5) Å3
Mr = 273.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.061 (3) ŵ = 3.73 mm1
b = 7.120 (2) ÅT = 153 K
c = 14.721 (4) Å0.27 × 0.23 × 0.18 mm
β = 97.638 (3)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3625 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2901 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.551Rint = 0.033
9900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.00Δρmax = 0.57 e Å3
3625 reflectionsΔρmin = 0.72 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.327247 (17)0.69311 (3)0.037381 (13)0.03062 (7)
S10.86419 (4)0.48317 (6)0.36691 (3)0.02352 (10)
O10.25965 (11)0.5378 (2)0.26208 (9)0.0358 (3)
C10.71222 (15)0.4889 (2)0.31441 (12)0.0184 (3)
C20.62070 (15)0.4850 (2)0.37198 (12)0.0211 (3)
H20.64260.47980.43660.025*
C30.49965 (15)0.4886 (2)0.33555 (12)0.0213 (3)
H30.43890.48560.37550.026*
C40.46416 (15)0.4968 (2)0.24059 (11)0.0186 (3)
C50.55563 (15)0.5004 (2)0.18392 (12)0.0201 (3)
H50.53390.50610.11930.024*
C60.67786 (16)0.4957 (2)0.22041 (12)0.0212 (3)
H60.73870.49720.18050.025*
C70.94956 (16)0.4878 (3)0.27138 (13)0.0256 (4)
H7A0.92450.38240.23030.031*
H7B1.03680.47730.29370.031*
H7C0.93400.60630.23800.031*
C80.33064 (16)0.5063 (2)0.20746 (12)0.0214 (4)
C90.27806 (15)0.4717 (2)0.10720 (12)0.0213 (4)
C100.13996 (16)0.4720 (3)0.09560 (14)0.0325 (4)
H10A0.10840.45810.03050.039*
H10B0.11100.59080.11850.039*
H10C0.11110.36730.13030.039*
C110.32472 (17)0.2949 (2)0.06566 (13)0.0264 (4)
H11A0.30030.18460.09870.032*
H11B0.41390.29980.07050.032*
H11C0.29000.28610.00100.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03163 (12)0.03130 (13)0.02925 (11)0.00122 (8)0.00520 (8)0.00951 (8)
S10.0197 (2)0.0277 (2)0.0229 (2)0.00113 (17)0.00177 (16)0.00186 (17)
O10.0213 (7)0.0622 (10)0.0251 (7)0.0015 (7)0.0078 (5)0.0100 (7)
C10.0189 (8)0.0163 (8)0.0201 (8)0.0003 (6)0.0028 (6)0.0008 (6)
C20.0234 (9)0.0247 (9)0.0155 (8)0.0015 (7)0.0036 (6)0.0007 (6)
C30.0230 (8)0.0229 (9)0.0194 (8)0.0001 (7)0.0077 (6)0.0014 (7)
C40.0193 (8)0.0178 (8)0.0193 (8)0.0004 (6)0.0054 (6)0.0005 (6)
C50.0213 (8)0.0240 (9)0.0158 (8)0.0008 (7)0.0060 (6)0.0001 (6)
C60.0218 (8)0.0230 (9)0.0204 (8)0.0011 (7)0.0085 (6)0.0001 (7)
C70.0187 (8)0.0266 (10)0.0323 (10)0.0008 (7)0.0063 (7)0.0006 (8)
C80.0207 (8)0.0234 (9)0.0209 (8)0.0004 (7)0.0058 (6)0.0006 (7)
C90.0199 (8)0.0253 (9)0.0192 (8)0.0021 (7)0.0047 (6)0.0019 (7)
C100.0189 (9)0.0487 (13)0.0294 (10)0.0018 (8)0.0018 (7)0.0004 (9)
C110.0278 (10)0.0273 (11)0.0244 (9)0.0048 (7)0.0045 (7)0.0039 (7)
Geometric parameters (Å, º) top
Br1—C91.9962 (17)C6—H60.9500
S1—C11.7548 (17)C7—H7A0.9800
S1—C71.7954 (19)C7—H7B0.9800
O1—C81.217 (2)C7—H7C0.9800
C1—C61.386 (2)C8—C91.533 (2)
C1—C21.404 (2)C9—C101.514 (2)
C2—C31.375 (2)C9—C111.520 (2)
C2—H20.9500C10—H10A0.9800
C3—C41.402 (2)C10—H10B0.9800
C3—H30.9500C10—H10C0.9800
C4—C51.395 (2)C11—H11A0.9800
C4—C81.494 (2)C11—H11B0.9800
C5—C61.387 (2)C11—H11C0.9800
C5—H50.9500
C1—S1—C7103.15 (9)H7A—C7—H7C109.5
C6—C1—C2118.63 (16)H7B—C7—H7C109.5
C6—C1—S1124.05 (13)O1—C8—C4119.29 (16)
C2—C1—S1117.32 (13)O1—C8—C9118.05 (16)
C3—C2—C1120.47 (16)C4—C8—C9122.63 (14)
C3—C2—H2119.8C10—C9—C11110.31 (15)
C1—C2—H2119.8C10—C9—C8110.88 (14)
C2—C3—C4121.25 (15)C11—C9—C8114.50 (15)
C2—C3—H3119.4C10—C9—Br1106.31 (12)
C4—C3—H3119.4C11—C9—Br1108.46 (12)
C5—C4—C3117.90 (16)C8—C9—Br1105.95 (11)
C5—C4—C8124.62 (16)C9—C10—H10A109.5
C3—C4—C8117.45 (14)C9—C10—H10B109.5
C6—C5—C4121.01 (16)H10A—C10—H10B109.5
C6—C5—H5119.5C9—C10—H10C109.5
C4—C5—H5119.5H10A—C10—H10C109.5
C1—C6—C5120.74 (15)H10B—C10—H10C109.5
C1—C6—H6119.6C9—C11—H11A109.5
C5—C6—H6119.6C9—C11—H11B109.5
S1—C7—H7A109.5H11A—C11—H11B109.5
S1—C7—H7B109.5C9—C11—H11C109.5
H7A—C7—H7B109.5H11A—C11—H11C109.5
S1—C7—H7C109.5H11B—C11—H11C109.5
C7—S1—C1—C60.14 (17)C4—C5—C6—C10.5 (3)
C7—S1—C1—C2179.45 (13)C5—C4—C8—O1166.18 (16)
C6—C1—C2—C30.2 (3)C3—C4—C8—O112.1 (2)
S1—C1—C2—C3179.84 (13)C5—C4—C8—C915.8 (3)
C1—C2—C3—C40.2 (3)C3—C4—C8—C9165.99 (15)
C2—C3—C4—C50.2 (3)O1—C8—C9—C103.6 (2)
C2—C3—C4—C8178.13 (15)C4—C8—C9—C10174.51 (16)
C3—C4—C5—C60.1 (2)O1—C8—C9—C11129.15 (17)
C8—C4—C5—C6178.36 (16)C4—C8—C9—C1148.9 (2)
C2—C1—C6—C50.6 (3)O1—C8—C9—Br1111.37 (16)
S1—C1—C6—C5179.83 (13)C4—C8—C9—Br170.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.473.359 (2)150
C5—H5···Br10.952.783.387 (2)123
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H13BrOS
Mr273.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)11.061 (3), 7.120 (2), 14.721 (4)
β (°) 97.638 (3)
V3)1149.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.27 × 0.23 × 0.18
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.433, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
9900, 3625, 2901
Rint0.033
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.00
No. of reflections3625
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.72

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.982.473.359 (2)150
C5—H5···Br10.952.783.387 (2)123
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

References

First citationAnuradha, N., Thiruvalluvar, A., Mahalinga, M. & Butcher, R. J. (2008). Acta Cryst. E64, o2118–o2119.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, B., Zhang, Y., Zhang, X. & Liu, H. (2010). Chinese Patent CN101633647.  Google Scholar
First citationMoreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Grande, C. & Kennedy, A. R. (2011). Acta Cryst. E67, o2446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC. (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, W., Yan, Q., Wen, C., Ma, Z., Wang, Y. & Ren, J. (2010). Chinese Patent CN101659644.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds