organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­butano­yl)-3-(2-nitro­phen­yl)thio­urea

aKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, bDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Menggabang Telipot, 21030 Kuala Terengganu, Malaysia, and cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 3 May 2012; accepted 14 May 2012; online 19 May 2012)

The asymmetric unit of the title compound, C11H12ClN3O3S, contains two independent mol­ecules with different conformations in which the benzene ring and the thio­urea fragment form dihedral angles of 87.28 (12) and 66.44 (10)°. The O atom of the thio­amide group is involved in bifurcated N—H⋯O intra- and inter­molecular hydrogen bonding; the latter inter­action links the independent mol­ecules into a dimer. In the crystal, N—H⋯S inter­actions link the mol­ecules into chains propagating along the c axis.

Related literature

For related structures, see: Yusof et al. (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.], 2012)[Yusof, M. S. M., Embong, N. F., Yamin, B. M. & Ngah, N. (2012). Acta Cryst. E68, o1536.]. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN3O3S

  • Mr = 301.75

  • Monoclinic, P 21 /c

  • a = 14.593 (4) Å

  • b = 11.288 (3) Å

  • c = 17.828 (5) Å

  • β = 110.765 (5)°

  • V = 2745.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 K

  • 0.36 × 0.35 × 0.34 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.859, Tmax = 0.866

  • 15815 measured reflections

  • 5117 independent reflections

  • 3968 reflections with I > 2/s(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.03

  • 5117 reflections

  • 343 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S2i 0.86 2.60 3.455 (2) 175
N2—H2A⋯O1 0.86 1.98 2.647 (3) 134
N2—H2A⋯O4 0.86 2.47 3.192 (3) 141
N4—H4A⋯S1ii 0.86 2.62 3.425 (2) 156
N5—H5A⋯O1 0.86 2.47 3.178 (3) 139
N5—H5A⋯O4 0.86 1.98 2.658 (3) 135
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I), contains two crystallographically independent molecules with different conformations. The title molecule is similar to the previously reported 1-(4-chlorobutanoyl)-3-(2-chlorophenyl)thiourea (Yusof et al., 2012) except the present of nitro group at the same position. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with other similar substituent thiourea (Yusof et al., 2011). The benzene rings [(C6—C11) & (C17—C22)] and thiourea fragments [(N1/N2/C4/S1/C5) & (N4/N5/C15/S2/C16)] are each planar with N5 atom deviates by 0.033 (2) Å from that plane. In each independent molecule, the benzene and thiourea fragments make dihedral angles of 87.28 (12)° and 66.44 (10)°, respectively and comparable to those reported by Yusof et al., (2012). Each of oxygen atom in respective thioamide group [(C4/C5/O1/N1/N2/S1) & (C15/C16/O4/N4/N5/S2)] is involves in bifurcated intra and intermolecular N—H···O hydrogen bonds. The latter ones links the molecule into dimer. In the crystal structure, the molecule is further stabilized by N—H···S interactions to form one dimensional chain propagates along c axis.

Related literature top

For related structures, see: Yusof et al. (2011, 2012). For bond-length data, see: Allen et al. (1987).

Experimental top

30 ml acetone solution of 2-nitroanaline (1.83 g, 13.26 mmol) was added into a round-bottom flask containing a solution of 4-chlorobenzoylchloride (1.87 g, 13.26 mmol) and ammonium thiocyanate (1.00 g, 13.26 mmol). The solution mixture was refluxed for 1.5 h then filtered off and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. The yellowish crystals were obtained by recrystallization of the precipitate in DMSO, suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2eq(C & N). A rigid body restraint (DELU in SHELXL97; Sheldrick, 2008) was applied to N3, N6, O2, O3, O5 and O6 atoms. The ISOR (SHELXTL97; Sheldrick, 2008) was applied to O2 and O5 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I) viewed down the b axis.
1-(4-Chlorobutanoyl)-3-(2-nitrophenyl)thiourea top
Crystal data top
C11H12ClN3O3SZ = 8
Mr = 301.75F(000) = 1248
Monoclinic, P21/cDx = 1.460 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.593 (4) Åθ = 2.1–25.5°
b = 11.288 (3) ŵ = 0.44 mm1
c = 17.828 (5) ÅT = 298 K
β = 110.765 (5)°Block, light yellow
V = 2745.8 (12) Å30.36 × 0.35 × 0.34 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5117 independent reflections
Radiation source: fine-focus sealed tube3968 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.028
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.1°
ω scanh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.859, Tmax = 0.866l = 2115
15815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.5901P]
where P = (Fo2 + 2Fc2)/3
5117 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.73 e Å3
18 restraintsΔρmin = 0.44 e Å3
Crystal data top
C11H12ClN3O3SV = 2745.8 (12) Å3
Mr = 301.75Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.593 (4) ŵ = 0.44 mm1
b = 11.288 (3) ÅT = 298 K
c = 17.828 (5) Å0.36 × 0.35 × 0.34 mm
β = 110.765 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3968 reflections with I > 2/s(I)
Tmin = 0.859, Tmax = 0.866Rint = 0.028
15815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04618 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
5117 reflectionsΔρmin = 0.44 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.24412 (6)0.79386 (9)0.71487 (5)0.0756 (3)
Cl20.47919 (7)0.83444 (9)0.03285 (6)0.0889 (3)
S10.76404 (5)0.50753 (6)0.47256 (4)0.0493 (2)
S21.03228 (4)1.01443 (6)0.16703 (4)0.04415 (18)
O10.94192 (14)0.81777 (18)0.43547 (12)0.0606 (6)
O20.5292 (2)0.8151 (3)0.3985 (2)0.1216 (12)
O30.6705 (3)0.8670 (3)0.4071 (2)0.1155 (11)
O40.80541 (12)0.89874 (19)0.27305 (11)0.0522 (5)
O51.1880 (2)1.2063 (2)0.3510 (3)0.1318 (15)
O61.04315 (17)1.16326 (19)0.34087 (16)0.0728 (6)
N10.91463 (14)0.65268 (19)0.49776 (12)0.0413 (5)
H1A0.94040.60880.53940.050*
N20.78153 (14)0.6862 (2)0.38280 (13)0.0455 (5)
H2A0.81310.74650.37500.055*
N30.6020 (2)0.8010 (3)0.38258 (19)0.0722 (8)
N40.85978 (13)0.97251 (17)0.17751 (12)0.0364 (4)
H4A0.83981.00060.12960.044*
N50.99262 (13)0.93177 (18)0.29187 (12)0.0386 (5)
H5A0.95000.91390.31320.046*
N61.12681 (18)1.1360 (2)0.35275 (16)0.0560 (6)
C11.2274 (2)0.8592 (3)0.61931 (19)0.0652 (9)
H1B1.25460.93850.62740.078*
H1C1.26280.81300.59260.078*
C21.12111 (19)0.8653 (3)0.56658 (17)0.0510 (7)
H2B1.11550.90370.51650.061*
H2C1.08610.91320.59270.061*
C31.07414 (17)0.7445 (2)0.54881 (16)0.0448 (6)
H3A1.11430.69380.52900.054*
H3B1.07310.71030.59840.054*
C40.97212 (17)0.7454 (2)0.48887 (15)0.0413 (6)
C50.82146 (17)0.6218 (2)0.44845 (14)0.0382 (5)
C60.68819 (17)0.6588 (2)0.32493 (15)0.0426 (6)
C70.60209 (19)0.7115 (3)0.32442 (17)0.0494 (7)
C80.5123 (2)0.6819 (3)0.2662 (2)0.0657 (9)
H8A0.45480.71670.26670.079*
C90.5099 (2)0.6008 (4)0.2084 (2)0.0735 (10)
H9A0.45040.58160.16880.088*
C100.5934 (2)0.5483 (3)0.2086 (2)0.0709 (9)
H10A0.59070.49290.16930.085*
C110.6824 (2)0.5763 (3)0.26647 (17)0.0572 (7)
H11A0.73910.53910.26600.069*
C120.5051 (2)0.9274 (3)0.11797 (19)0.0635 (8)
H12A0.49641.00950.10070.076*
H12B0.45920.91050.14480.076*
C130.60803 (18)0.9100 (3)0.17614 (16)0.0526 (7)
H13A0.61580.95390.22480.063*
H13B0.61750.82670.19020.063*
C140.68560 (17)0.9485 (2)0.14479 (15)0.0441 (6)
H14A0.67441.03070.12820.053*
H14B0.68040.90160.09790.053*
C150.78730 (17)0.9361 (2)0.20533 (15)0.0387 (5)
C160.96013 (16)0.9697 (2)0.21656 (14)0.0349 (5)
C171.09327 (16)0.9188 (2)0.33935 (14)0.0358 (5)
C181.15787 (17)1.0128 (2)0.36830 (15)0.0384 (5)
C191.25516 (19)0.9937 (3)0.41403 (17)0.0500 (7)
H19A1.29751.05760.43210.060*
C201.2893 (2)0.8798 (3)0.43287 (18)0.0557 (7)
H20A1.35470.86640.46380.067*
C211.2264 (2)0.7864 (3)0.40572 (18)0.0564 (7)
H21A1.24920.70950.41890.068*
C221.12941 (19)0.8053 (2)0.35899 (16)0.0464 (6)
H22A1.08790.74080.34050.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0570 (5)0.0986 (7)0.0547 (5)0.0123 (4)0.0006 (4)0.0010 (4)
Cl20.0714 (6)0.0930 (7)0.0774 (6)0.0241 (5)0.0043 (5)0.0185 (5)
S10.0428 (4)0.0587 (4)0.0406 (4)0.0163 (3)0.0077 (3)0.0052 (3)
S20.0353 (3)0.0575 (4)0.0400 (3)0.0052 (3)0.0138 (3)0.0014 (3)
O10.0468 (11)0.0608 (12)0.0579 (12)0.0145 (9)0.0014 (9)0.0186 (10)
O20.111 (2)0.158 (3)0.120 (3)0.053 (2)0.072 (2)0.018 (2)
O30.124 (3)0.106 (2)0.126 (3)0.019 (2)0.056 (2)0.044 (2)
O40.0342 (9)0.0766 (14)0.0419 (10)0.0042 (9)0.0085 (8)0.0142 (9)
O50.0838 (19)0.0484 (14)0.253 (5)0.0123 (14)0.047 (2)0.031 (2)
O60.0634 (14)0.0513 (12)0.1023 (18)0.0153 (10)0.0277 (13)0.0092 (12)
N10.0333 (10)0.0483 (12)0.0363 (11)0.0070 (9)0.0048 (8)0.0053 (9)
N20.0338 (11)0.0521 (13)0.0433 (12)0.0100 (9)0.0046 (9)0.0086 (10)
N30.0732 (19)0.0735 (19)0.079 (2)0.0116 (15)0.0388 (17)0.0104 (15)
N40.0310 (10)0.0401 (11)0.0347 (10)0.0000 (8)0.0074 (8)0.0044 (8)
N50.0280 (10)0.0481 (12)0.0373 (11)0.0027 (8)0.0088 (8)0.0055 (9)
N60.0536 (15)0.0385 (12)0.0713 (16)0.0029 (11)0.0163 (12)0.0024 (11)
C10.0432 (16)0.090 (2)0.0577 (18)0.0242 (15)0.0115 (14)0.0058 (16)
C20.0436 (15)0.0568 (17)0.0479 (15)0.0148 (12)0.0104 (12)0.0011 (13)
C30.0315 (12)0.0504 (15)0.0471 (14)0.0041 (11)0.0074 (11)0.0006 (12)
C40.0355 (13)0.0455 (14)0.0397 (13)0.0043 (11)0.0094 (11)0.0023 (11)
C50.0321 (12)0.0464 (14)0.0340 (12)0.0016 (10)0.0091 (10)0.0034 (10)
C60.0308 (12)0.0524 (15)0.0394 (13)0.0067 (11)0.0061 (10)0.0086 (11)
C70.0424 (14)0.0545 (16)0.0523 (16)0.0018 (12)0.0181 (12)0.0155 (13)
C80.0303 (14)0.088 (2)0.074 (2)0.0007 (14)0.0128 (14)0.0335 (19)
C90.0416 (17)0.101 (3)0.060 (2)0.0244 (17)0.0032 (14)0.0148 (19)
C100.058 (2)0.090 (2)0.0549 (18)0.0229 (18)0.0081 (15)0.0102 (17)
C110.0424 (15)0.071 (2)0.0540 (17)0.0072 (14)0.0116 (13)0.0057 (15)
C120.0357 (14)0.091 (2)0.0580 (18)0.0044 (15)0.0101 (13)0.0002 (17)
C130.0335 (13)0.076 (2)0.0444 (15)0.0032 (13)0.0094 (11)0.0044 (13)
C140.0332 (12)0.0538 (15)0.0413 (14)0.0008 (11)0.0084 (10)0.0074 (12)
C150.0327 (12)0.0411 (13)0.0395 (13)0.0021 (10)0.0092 (10)0.0021 (11)
C160.0322 (12)0.0326 (12)0.0372 (13)0.0004 (9)0.0089 (10)0.0031 (9)
C170.0315 (12)0.0413 (13)0.0336 (12)0.0008 (10)0.0105 (9)0.0022 (10)
C180.0364 (12)0.0370 (13)0.0403 (13)0.0001 (10)0.0116 (10)0.0018 (10)
C190.0373 (13)0.0549 (17)0.0518 (16)0.0089 (12)0.0082 (12)0.0027 (13)
C200.0358 (14)0.0668 (19)0.0558 (17)0.0091 (13)0.0056 (12)0.0111 (14)
C210.0533 (17)0.0462 (16)0.0656 (18)0.0154 (13)0.0159 (14)0.0118 (14)
C220.0442 (14)0.0384 (14)0.0521 (15)0.0009 (11)0.0115 (12)0.0001 (11)
Geometric parameters (Å, º) top
Cl1—C11.792 (3)C3—H3A0.9700
Cl2—C121.772 (3)C3—H3B0.9700
S1—C51.675 (3)C6—C111.378 (4)
S2—C161.674 (2)C6—C71.387 (4)
O1—C41.213 (3)C7—C81.393 (4)
O2—N31.205 (4)C8—C91.369 (5)
O3—N31.198 (4)C8—H8A0.9300
O4—C151.216 (3)C9—C101.354 (5)
O5—N61.203 (3)C9—H9A0.9300
O6—N61.203 (3)C10—C111.379 (4)
N1—C51.377 (3)C10—H10A0.9300
N1—C41.385 (3)C11—H11A0.9300
N1—H1A0.8600C12—C131.505 (4)
N2—C51.324 (3)C12—H12A0.9700
N2—C61.421 (3)C12—H12B0.9700
N2—H2A0.8600C13—C141.494 (4)
N3—C71.447 (4)C13—H13A0.9700
N4—C151.380 (3)C13—H13B0.9700
N4—C161.381 (3)C14—C151.500 (3)
N4—H4A0.8600C14—H14A0.9700
N5—C161.326 (3)C14—H14B0.9700
N5—C171.419 (3)C17—C221.382 (3)
N5—H5A0.8600C17—C181.391 (3)
N6—C181.458 (3)C18—C191.381 (4)
C1—C21.503 (4)C19—C201.376 (4)
C1—H1B0.9700C19—H19A0.9300
C1—H1C0.9700C20—C211.369 (4)
C2—C31.508 (4)C20—H20A0.9300
C2—H2B0.9700C21—C221.380 (4)
C2—H2C0.9700C21—H21A0.9300
C3—C41.493 (3)C22—H22A0.9300
C5—N1—C4128.3 (2)C10—C9—C8120.5 (3)
C5—N1—H1A115.9C10—C9—H9A119.7
C4—N1—H1A115.9C8—C9—H9A119.7
C5—N2—C6122.0 (2)C9—C10—C11120.6 (3)
C5—N2—H2A119.0C9—C10—H10A119.7
C6—N2—H2A119.0C11—C10—H10A119.7
O3—N3—O2121.6 (4)C6—C11—C10120.7 (3)
O3—N3—C7118.9 (3)C6—C11—H11A119.7
O2—N3—C7119.1 (3)C10—C11—H11A119.7
C15—N4—C16128.5 (2)C13—C12—Cl2111.7 (2)
C15—N4—H4A115.7C13—C12—H12A109.3
C16—N4—H4A115.7Cl2—C12—H12A109.3
C16—N5—C17124.1 (2)C13—C12—H12B109.3
C16—N5—H5A118.0Cl2—C12—H12B109.3
C17—N5—H5A118.0H12A—C12—H12B107.9
O6—N6—O5122.9 (3)C14—C13—C12114.1 (2)
O6—N6—C18120.3 (2)C14—C13—H13A108.7
O5—N6—C18116.8 (3)C12—C13—H13A108.7
C2—C1—Cl1112.1 (2)C14—C13—H13B108.7
C2—C1—H1B109.2C12—C13—H13B108.7
Cl1—C1—H1B109.2H13A—C13—H13B107.6
C2—C1—H1C109.2C13—C14—C15113.0 (2)
Cl1—C1—H1C109.2C13—C14—H14A109.0
H1B—C1—H1C107.9C15—C14—H14A109.0
C1—C2—C3112.4 (2)C13—C14—H14B109.0
C1—C2—H2B109.1C15—C14—H14B109.0
C3—C2—H2B109.1H14A—C14—H14B107.8
C1—C2—H2C109.1O4—C15—N4122.4 (2)
C3—C2—H2C109.1O4—C15—C14123.9 (2)
H2B—C2—H2C107.9N4—C15—C14113.7 (2)
C4—C3—C2114.1 (2)N5—C16—N4116.9 (2)
C4—C3—H3A108.7N5—C16—S2124.43 (18)
C2—C3—H3A108.7N4—C16—S2118.69 (17)
C4—C3—H3B108.7C22—C17—C18117.7 (2)
C2—C3—H3B108.7C22—C17—N5117.9 (2)
H3A—C3—H3B107.6C18—C17—N5124.4 (2)
O1—C4—N1122.2 (2)C19—C18—C17121.3 (2)
O1—C4—C3124.0 (2)C19—C18—N6116.5 (2)
N1—C4—C3113.8 (2)C17—C18—N6122.2 (2)
N2—C5—N1116.8 (2)C20—C19—C18119.8 (2)
N2—C5—S1123.08 (18)C20—C19—H19A120.1
N1—C5—S1120.11 (18)C18—C19—H19A120.1
C11—C6—C7118.2 (2)C21—C20—C19119.6 (2)
C11—C6—N2118.8 (2)C21—C20—H20A120.2
C7—C6—N2123.0 (3)C19—C20—H20A120.2
C6—C7—C8120.8 (3)C20—C21—C22120.7 (3)
C6—C7—N3121.7 (3)C20—C21—H21A119.7
C8—C7—N3117.5 (3)C22—C21—H21A119.7
C9—C8—C7119.2 (3)C21—C22—C17120.9 (2)
C9—C8—H8A120.4C21—C22—H22A119.6
C7—C8—H8A120.4C17—C22—H22A119.6
Cl1—C1—C2—C360.9 (3)Cl2—C12—C13—C1466.4 (3)
C1—C2—C3—C4173.1 (2)C12—C13—C14—C15177.0 (3)
C5—N1—C4—O14.6 (4)C16—N4—C15—O42.7 (4)
C5—N1—C4—C3173.4 (2)C16—N4—C15—C14177.9 (2)
C2—C3—C4—O129.3 (4)C13—C14—C15—O40.0 (4)
C2—C3—C4—N1152.8 (2)C13—C14—C15—N4179.4 (2)
C6—N2—C5—N1176.2 (2)C17—N5—C16—N4177.3 (2)
C6—N2—C5—S13.7 (4)C17—N5—C16—S23.1 (3)
C4—N1—C5—N21.9 (4)C15—N4—C16—N52.9 (4)
C4—N1—C5—S1178.2 (2)C15—N4—C16—S2177.4 (2)
C5—N2—C6—C1184.7 (3)C16—N5—C17—C22110.9 (3)
C5—N2—C6—C795.3 (3)C16—N5—C17—C1869.9 (3)
C11—C6—C7—C80.1 (4)C22—C17—C18—C191.0 (4)
N2—C6—C7—C8179.8 (2)N5—C17—C18—C19179.8 (2)
C11—C6—C7—N3178.6 (3)C22—C17—C18—N6178.5 (2)
N2—C6—C7—N31.4 (4)N5—C17—C18—N60.7 (4)
O3—N3—C7—C632.9 (5)O6—N6—C18—C19152.6 (3)
O2—N3—C7—C6154.8 (3)O5—N6—C18—C1928.9 (4)
O3—N3—C7—C8145.6 (4)O6—N6—C18—C1727.0 (4)
O2—N3—C7—C826.7 (4)O5—N6—C18—C17151.6 (3)
C6—C7—C8—C90.9 (4)C17—C18—C19—C201.1 (4)
N3—C7—C8—C9177.6 (3)N6—C18—C19—C20178.4 (3)
C7—C8—C9—C101.2 (5)C18—C19—C20—C210.3 (4)
C8—C9—C10—C110.6 (5)C19—C20—C21—C220.7 (5)
C7—C6—C11—C100.8 (4)C20—C21—C22—C170.8 (4)
N2—C6—C11—C10179.2 (3)C18—C17—C22—C210.0 (4)
C9—C10—C11—C60.5 (5)N5—C17—C22—C21179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.982.647 (3)134
N5—H5A···O40.861.982.658 (3)135
N2—H2A···O40.862.473.192 (3)141
N5—H5A···O10.862.473.178 (3)139
N1—H1A···S2i0.862.603.455 (2)175
N4—H4A···S1ii0.862.623.425 (2)156
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12ClN3O3S
Mr301.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.593 (4), 11.288 (3), 17.828 (5)
β (°) 110.765 (5)
V3)2745.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.36 × 0.35 × 0.34
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.859, 0.866
No. of measured, independent and
observed [I > 2/s(I)] reflections
15815, 5117, 3968
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.03
No. of reflections5117
No. of parameters343
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.982.647 (3)134
N5—H5A···O40.861.982.658 (3)135
N2—H2A···O40.862.473.192 (3)141
N5—H5A···O10.862.473.178 (3)139
N1—H1A···S2i0.862.603.455 (2)175
N4—H4A···S1ii0.862.623.425 (2)156
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thanks the Ministry of Higher Education of Malaysia, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Inter­national Islamic University Malaysia for facilities and the research grant vot 59178.

References

First citationAllen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Yamin, B. M. & Ngah, N. (2012). Acta Cryst. E68, o1536.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds