organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl­pyrrolidine-1-carbo­thio­amide

aDepartment of Chemistry, University of Malakand, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cDepartment of Pharmacy, University of Malakand, Pakistan, and dDepartment of Biotechnology, University of Malakand, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 May 2012; accepted 8 May 2012; online 12 May 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C6H12N2S, in which the N-methyl­thio­formamide unit and the pyrrolidine ring mean plane are oriented at dihedral angles of 5.9 (5) and 5.9 (4)°. In the crystal, zigzag C(4) chains extending along the a axis are formed due to N—H⋯S hydrogen bonds between alternate arrangements of mol­ecules. The chains are inter­linked by C—H⋯S hydrogen bonds.

Related literature

For a related structure, see: Jiang (2009[Jiang, J.-H. (2009). Acta Cryst. E65, o52.]). For graph–set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N2S

  • Mr = 144.25

  • Triclinic, [P \overline 1]

  • a = 8.616 (2) Å

  • b = 9.077 (2) Å

  • c = 10.796 (3) Å

  • α = 73.725 (14)°

  • β = 86.656 (15)°

  • γ = 76.177 (16)°

  • V = 787.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 9119 measured reflections

  • 2699 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.262

  • S = 1.04

  • 2699 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.86 2.73 3.472 (5) 145
N3—H4⋯S1ii 0.86 2.64 3.410 (5) 150
C12—H12B⋯S1iii 0.97 2.84 3.765 (5) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a derivative. The crystal structure of N-phenylpyrrolidine-1-carbothioamide related to this structure (I) has been published previously (Jiang, 2009). In (I), two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the N-methylthioformamide moiety A (C1/N1/C2/S1) and the pyrrolidine ring B (N2/C3–C6) are planar with r.m.s. deviation of 0.0010 Å and 0.0360 Å, respectively. The dihedral angle between A/B is 5.88 (46)°. In second molecule, the similar groups C (C7/N3/C8/S2) and D (N4/C9—C12) are also planar with r.m.s. deviation of 0.0032 Å and 0.0839 Å, respectively and the dihedral angle between C/D is 5.92 (39)°. Both molecules are interlinked through classical intramolecular H–bonding of N—H···S type (Table 1, Fig. 2) with C(4) chains (Bernstein et al., 1995) to form zigzag infinite one-dimensional polymeric chains extending along the a-axis. The polymeric chains are interlinked due to C—H···S type of H–bonding (Table 1, Fig. 2).

Related literature top

For a related structure, see: Jiang (2009). For graph–set notation, see: Bernstein et al. (1995).

Experimental top

A solution of pyrrolidine (0.36 g, 5.00 mmol) in CH3CN (3 ml) was added dropwise to a stirred solution of methyl isothiocyanate (0.47 ml, 5.50 mmol) in CH3CN (10 ml, anhydrous) under cooling in an ice-bath to keep the reaction temperature below 283 K. The ice-bath was removed and stirring was continued at room temperature for 2 h to furnish a yellow-colored solution. The reaction mixture was extracted with ethylacetate and subjected to column chromatography to get the colorless product in 67% yield and then recrystalized with methanol to get colorless prisms of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.96–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules are interlinked to form polymeric chains along the a-axis. The H-atoms not involved in H-bonding are omitted for clarity.
N-Methylpyrrolidine-1-carbothioamide top
Crystal data top
C6H12N2SZ = 4
Mr = 144.25F(000) = 312
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.616 (2) ÅCell parameters from 1204 reflections
b = 9.077 (2) Åθ = 2.4–26.0°
c = 10.796 (3) ŵ = 0.33 mm1
α = 73.725 (14)°T = 296 K
β = 86.656 (15)°Prism, colorless
γ = 76.177 (16)°0.30 × 0.25 × 0.20 mm
V = 787.0 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2699 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 8.10 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.957, Tmax = 0.966l = 1313
9119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.262H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1268P)2 + 0.3916P]
where P = (Fo2 + 2Fc2)/3
2699 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H12N2Sγ = 76.177 (16)°
Mr = 144.25V = 787.0 (3) Å3
Triclinic, P1Z = 4
a = 8.616 (2) ÅMo Kα radiation
b = 9.077 (2) ŵ = 0.33 mm1
c = 10.796 (3) ÅT = 296 K
α = 73.725 (14)°0.30 × 0.25 × 0.20 mm
β = 86.656 (15)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1385 reflections with I > 3σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.067
9119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.262H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
2699 reflectionsΔρmin = 0.33 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4239 (8)0.1340 (7)0.3083 (6)0.101 (2)
H1A0.31860.12090.33500.151*
H1B0.49650.08620.38030.151*
H1C0.45860.08440.24060.151*
C20.3360 (6)0.3972 (7)0.1594 (5)0.0699 (14)
C30.2574 (7)0.6685 (8)0.0191 (5)0.0913 (18)
H3A0.29610.64840.06220.110*
H3B0.14370.67320.02480.110*
C40.2906 (12)0.8143 (10)0.0304 (9)0.153 (3)
H4A0.34520.86110.04630.184*
H4B0.19060.88850.03650.184*
C50.3868 (11)0.7860 (8)0.1411 (7)0.123 (3)
H5A0.32650.83610.20300.148*
H5B0.48010.82970.11660.148*
C60.4365 (7)0.6143 (7)0.1987 (5)0.0846 (17)
H6A0.41230.58690.29000.101*
H6B0.55030.57640.18800.101*
C70.0612 (8)0.8849 (7)0.7020 (6)0.0905 (18)
H7A0.16610.89680.71560.136*
H7B0.00820.91090.76950.136*
H7C0.01990.95420.62020.136*
C80.1664 (6)0.6492 (6)0.6253 (4)0.0668 (14)
C90.2534 (7)0.4014 (7)0.5615 (5)0.0791 (15)
H9A0.36720.38460.57540.095*
H9B0.22920.44970.47040.095*
C100.2012 (10)0.2515 (9)0.6076 (8)0.126 (3)
H10A0.12970.24370.54470.151*
H10B0.29300.16270.61930.151*
C110.1210 (11)0.2487 (8)0.7269 (7)0.125 (3)
H11A0.19330.18640.79800.150*
H11B0.03070.20090.73140.150*
C120.0651 (7)0.4120 (6)0.7365 (5)0.0768 (15)
H12A0.04810.45150.71650.092*
H12B0.08460.41830.82220.092*
N10.4210 (5)0.2971 (5)0.2626 (4)0.0771 (13)
H10.47750.33480.30370.093*
N20.3437 (5)0.5463 (6)0.1280 (4)0.0739 (12)
N30.0697 (5)0.7250 (5)0.7032 (4)0.0746 (12)
H40.01000.67400.75640.089*
N40.1603 (5)0.5002 (5)0.6404 (4)0.0677 (11)
S10.22218 (19)0.3304 (2)0.07310 (14)0.0932 (6)
S20.28575 (19)0.74016 (18)0.51593 (13)0.0881 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.122 (5)0.099 (5)0.083 (4)0.026 (4)0.013 (4)0.024 (4)
C20.071 (3)0.102 (4)0.040 (3)0.018 (3)0.003 (2)0.027 (3)
C30.087 (4)0.116 (5)0.060 (3)0.020 (4)0.009 (3)0.007 (3)
C40.202 (10)0.116 (6)0.127 (7)0.046 (6)0.058 (7)0.007 (5)
C50.180 (8)0.100 (5)0.095 (5)0.040 (5)0.017 (5)0.025 (4)
C60.102 (4)0.107 (5)0.052 (3)0.030 (4)0.004 (3)0.027 (3)
C70.115 (5)0.085 (4)0.078 (4)0.024 (3)0.000 (3)0.032 (3)
C80.071 (3)0.088 (4)0.042 (3)0.018 (3)0.014 (2)0.016 (3)
C90.081 (4)0.100 (4)0.061 (3)0.013 (3)0.001 (3)0.035 (3)
C100.154 (7)0.104 (5)0.136 (7)0.036 (5)0.023 (6)0.061 (5)
C110.187 (8)0.088 (5)0.109 (6)0.044 (5)0.038 (5)0.036 (4)
C120.093 (4)0.096 (4)0.050 (3)0.038 (3)0.000 (3)0.021 (3)
N10.088 (3)0.093 (3)0.054 (3)0.023 (3)0.011 (2)0.022 (2)
N20.081 (3)0.098 (3)0.041 (2)0.020 (3)0.009 (2)0.017 (2)
N30.090 (3)0.086 (3)0.055 (3)0.031 (2)0.008 (2)0.023 (2)
N40.083 (3)0.080 (3)0.045 (2)0.021 (2)0.001 (2)0.023 (2)
S10.0962 (12)0.1408 (15)0.0594 (9)0.0374 (10)0.0056 (8)0.0447 (9)
S20.0935 (12)0.1108 (13)0.0601 (9)0.0357 (9)0.0018 (8)0.0135 (8)
Geometric parameters (Å, º) top
C1—N11.418 (7)C7—H7A0.9600
C1—H1A0.9600C7—H7B0.9600
C1—H1B0.9600C7—H7C0.9600
C1—H1C0.9600C8—N41.330 (6)
C2—N21.316 (6)C8—N31.358 (6)
C2—N11.346 (6)C8—S21.688 (5)
C2—S11.705 (5)C9—N41.475 (6)
C3—C41.457 (9)C9—C101.480 (9)
C3—N21.464 (7)C9—H9A0.9700
C3—H3A0.9700C9—H9B0.9700
C3—H3B0.9700C10—C111.422 (10)
C4—C51.423 (10)C10—H10A0.9700
C4—H4A0.9700C10—H10B0.9700
C4—H4B0.9700C11—C121.476 (8)
C5—C61.473 (8)C11—H11A0.9700
C5—H5A0.9700C11—H11B0.9700
C5—H5B0.9700C12—N41.462 (6)
C6—N21.474 (6)C12—H12A0.9700
C6—H6A0.9700C12—H12B0.9700
C6—H6B0.9700N1—H10.8600
C7—N31.432 (6)N3—H40.8600
N1—C1—H1A109.5N4—C8—N3115.8 (5)
N1—C1—H1B109.5N4—C8—S2122.6 (4)
H1A—C1—H1B109.5N3—C8—S2121.6 (4)
N1—C1—H1C109.5N4—C9—C10103.7 (5)
H1A—C1—H1C109.5N4—C9—H9A111.0
H1B—C1—H1C109.5C10—C9—H9A111.0
N2—C2—N1118.2 (4)N4—C9—H9B111.0
N2—C2—S1121.6 (4)C10—C9—H9B111.0
N1—C2—S1120.2 (4)H9A—C9—H9B109.0
C4—C3—N2104.4 (5)C11—C10—C9108.4 (6)
C4—C3—H3A110.9C11—C10—H10A110.0
N2—C3—H3A110.9C9—C10—H10A110.0
C4—C3—H3B110.9C11—C10—H10B110.0
N2—C3—H3B110.9C9—C10—H10B110.0
H3A—C3—H3B108.9H10A—C10—H10B108.4
C5—C4—C3111.2 (6)C10—C11—C12108.9 (6)
C5—C4—H4A109.4C10—C11—H11A109.9
C3—C4—H4A109.4C12—C11—H11A109.9
C5—C4—H4B109.4C10—C11—H11B109.9
C3—C4—H4B109.4C12—C11—H11B109.9
H4A—C4—H4B108.0H11A—C11—H11B108.3
C4—C5—C6108.3 (6)N4—C12—C11103.6 (5)
C4—C5—H5A110.0N4—C12—H12A111.0
C6—C5—H5A110.0C11—C12—H12A111.0
C4—C5—H5B110.0N4—C12—H12B111.0
C6—C5—H5B110.0C11—C12—H12B111.0
H5A—C5—H5B108.4H12A—C12—H12B109.0
C5—C6—N2104.9 (5)C2—N1—C1124.6 (5)
C5—C6—H6A110.8C2—N1—H1117.7
N2—C6—H6A110.8C1—N1—H1117.7
C5—C6—H6B110.8C2—N2—C3124.3 (5)
N2—C6—H6B110.8C2—N2—C6125.1 (4)
H6A—C6—H6B108.8C3—N2—C6110.6 (5)
N3—C7—H7A109.5C8—N3—C7123.9 (5)
N3—C7—H7B109.5C8—N3—H4118.0
H7A—C7—H7B109.5C7—N3—H4118.0
N3—C7—H7C109.5C8—N4—C12125.5 (4)
H7A—C7—H7C109.5C8—N4—C9123.2 (4)
H7B—C7—H7C109.5C12—N4—C9111.3 (4)
N2—C3—C4—C51.7 (10)C4—C3—N2—C64.0 (7)
C3—C4—C5—C66.6 (11)C5—C6—N2—C2170.9 (6)
C4—C5—C6—N28.6 (8)C5—C6—N2—C37.8 (6)
N4—C9—C10—C1115.4 (8)N4—C8—N3—C7179.3 (5)
C9—C10—C11—C1221.4 (10)S2—C8—N3—C71.0 (7)
C10—C11—C12—N417.9 (8)N3—C8—N4—C123.0 (7)
N2—C2—N1—C1179.6 (5)S2—C8—N4—C12177.3 (4)
S1—C2—N1—C10.3 (7)N3—C8—N4—C9178.1 (4)
N1—C2—N2—C3179.7 (5)S2—C8—N4—C91.6 (6)
S1—C2—N2—C30.3 (7)C11—C12—N4—C8170.9 (5)
N1—C2—N2—C61.1 (8)C11—C12—N4—C98.1 (6)
S1—C2—N2—C6178.8 (4)C10—C9—N4—C8176.9 (5)
C4—C3—N2—C2174.7 (6)C10—C9—N4—C124.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.733.472 (5)145
N3—H4···S1ii0.862.643.410 (5)150
C12—H12B···S1iii0.972.843.765 (5)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H12N2S
Mr144.25
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.616 (2), 9.077 (2), 10.796 (3)
α, β, γ (°)73.725 (14), 86.656 (15), 76.177 (16)
V3)787.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 3σ(I)] reflections
9119, 2699, 1385
Rint0.067
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.262, 1.04
No. of reflections2699
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.733.472 (5)144.8
N3—H4···S1ii0.862.643.410 (5)150.0
C12—H12B···S1iii0.972.843.765 (5)158.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MNU, MS, AA and IK also gratefully acknowledge the financial support provided by the Higher Education Commission (HEC), Islamabad, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJiang, J.-H. (2009). Acta Cryst. E65, o52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds