inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium penta­potassium penta­nickel tetra­(diphosphate), NaK5Ni5(P2O7)4

aLaboratoire de Physico-Chimie des Matériaux Inorganiques, Faculté des Sciences Aïn Chock, Casablanca, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_lamire@yahoo.fr

(Received 21 April 2012; accepted 4 May 2012; online 12 May 2012)

The structure of the title compound, NaK5Ni5(P2O7)4, is characterized by the presence of two crystallographically independent P2O7 groups with different conformations. The conformation of the first P2O7 group is eclipsed, whereas that of the second is staggered. All atoms are in general positions except for two nickel and one potassium ions which lie on symmetry centers. Moreover, the structure exhibits disorder of the cationic sites with one general position fully occupied equally by Na+ and Ni2+ cations. This mixed site is surrounded by five O atoms forming a square-based pyramid. The crystal structure consists of edge-sharing [NiO6] octa­hedra forming infinite zigzag chains [Ni3O14] running parallel to [100]. Adjacent chains are connected through apices to P2O7 groups and to another [NiO6] or to a [KO6] octa­hedron. The resulting three-dimensional framework presents inter­secting tunnels running along the [010] and [001] directions in which the seven- and nine-coordinated potassium cations are located. The crystal structure of this new phosphate represents a new structural type.

Related literature

For the crystal structure of nickel diphosphate, see: Lukaszewicz (1967[Lukaszewicz, K. (1967). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 47-51.]); Pietraszko & Lukaszewicz (1968[Pietraszko, A. & Lukaszewicz, K. (1968). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 16, 183-187.]); Masse et al. (1979[Masse, R., Guitel, J. C. & Durif, A. (1979). Mater. Res. Bull. 14, 337-341.]). For the structures of sodium and potassium nickel diphosphate, see: El Maadi et al. (1995[El Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531-536.]); Erragh et al. (2000[Erragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (2000). J. Solid State Chem. 152, 323-331.]). For phosphates with mixed anions, see: Palkina & Maksimova (1980[Palkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130-1134.]); Nagornyi et al. (1996[Nagornyi, P. G., Kapshuk, A. A., Sobolev, A. N. & Golego, N. V. (1996). Kristallografiya, 41, 835-838.]); Sanz et al. (1999[Sanz, F., Parada, C., Rojo, J. M. & Ruiz-Valero, C. (1999). Chem. Mater. 11, 2673-2679.]). For bond-valence analysis, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • NaK5Ni5(P2O7)4

  • Mr = 1207.80

  • Triclinic, [P \overline 1]

  • a = 7.188 (4) Å

  • b = 9.282 (5) Å

  • c = 10.026 (5) Å

  • α = 109.31 (2)°

  • β = 90.019 (12)°

  • γ = 104.066 (13)°

  • V = 610.0 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 296 K

  • 0.20 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.511, Tmax = 0.638

  • 13411 measured reflections

  • 3608 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.03

  • 3608 reflections

  • 218 parameters

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The most studied condensed phosphates are the diphosphates formerly called pyrophosphates. Most of these phosphates are polymorphic. The stability of each allotropic variety depends on several factors such as size and the electron affinity of the ions and synthesis conditions, in particular temperature and pressure. Thus in the case of Ni2P2O7, we note the existence of four allotropic varieties: the form α-Ni2P2O7 stable at room temperature and the γ-Ni2P2O7 determined by Lukaszewicz (1967), the high temperature form β-Ni2P2O7 obtained by Pietraszko & Lukaszewicz (1968) at 853 K and the δ-Ni2P2O7 discovered by Masse et al. (1979). The addition of an alkali cation like Na or K in this system leads to new compounds with different structures. Indeed we find K2NiP2O7 investigated by El Maadi et al. (1995), Na7.39Ni4.24(P2O7)4 by Erragh et al. 2000) and three compounds with mixed anions: K2Ni4(PO4)2(P2O7); Na4Ni3(PO4)2(P2O7) and Na4Ni5(PO4)2(P2O7)2 respectively, developed by Palkina & Maksimova (1980); Nagornyi et al. (1996) and Sanz et al. (1999) but to our knowledge no pyrophosphate with a mixture of two alkaline and nickel. The present work describes the synthesis method and the crystal structure of NaK5Ni5(P2O7)4 diphosphate from the X-ray diffraction data on single-crystal.

The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra in the crystal structure of the title compound. Among the 25 atoms include in the asymmetric unit of this structure, only three atoms (Ni1, Ni3 and K1) are in a special positions (1 symmetry). Furthermore, the structure is characterized by a cationic disorder in one general position fully occupied equally by Na1 and Ni4 atoms. This mixed site that will be noted M1 is surrounded by five oxygen atoms forming a square based pyramid. The conformations of the two crystallographically independent groups (P2O7) P1—O4—P2 and P3—O14—P4 are eclipsed and staggered, respectively as indicated by the torsion angles O1–P1–P2–O5 = 3.5 (2) ° and O8–P3–P4–O12 = -24.6 (2) °. The distances P1–P2 = 2.902 Å, P3–P4 = 3.015 Å and angles P1–O4–P2 = 127.65 (11)°, P3—O14—P4 = 135.07 (13)° are within the limits generally observed in condensed phosphate crystal chemistry. All three nickel atoms Ni1, Ni2 and Ni3 are surrounded by a roughly octahedral arrangement of six oxygen atoms except that in the mixed site (M1O5). The potassium atoms K1, K2 and K3 are coordinated to six, seven and nine oxygen atoms, respectively.

The structure of NaK5Ni5(P2O7)4 consists of edge-sharing [Ni1O6] and [Ni2O6] octahedra forming an infinite zigzag chains [Ni3O14] running parallel to [100], as shown in Fig. 2. Adjacent chains are connected by P2O7 groups, M1O5 square-pyramid and [Ni3O6] or [K1O6] octahedra via vertices in the way to build three-dimensional network.

The resulting 3-D framework presents intersecting tunnels running along the [010] and [001] directions, where the K2 and K3 potassium cations are located (Fig.2). Probably, the structure of this phosphate represents a new structural type.

Related literature top

For the crystal structure of nickel diphosphate, see: Lukaszewicz (1967); Pietraszko & Lukaszewicz (1968); Masse et al. (1979). For the structures of sodium and potassium nickel diphosphate, see: El Maadi et al. (1995); Erragh et al. (2000). For phosphates with mixed anions, see: Palkina & Maksimova (1980); Nagornyi et al. (1996); Sanz et al. (1999). For bond-valence analysis, see: Brown & Altermatt (1985).

Experimental top

NaK5Ni5(P2O7)4 is obtained during the preparation of a mixture of triphosphate. Indeed, the powder of "NaK2NiP3O10" synthesized by wet process is introduced into a platinum crucible, and then gradually heated to a temperature above its melting point (1073 K) for 2 h, followed by slow cooling of the order of 10 °K per hour up to 673 °K. Then the furnace is shuts down and the cooling is continued until room temperature. Small colourless single crystals were isolated from the mixture of phases. The study of crystal structure by X-ray diffraction leads to the formula of the new phosphate: NaK5Ni5(P2O7)4.

Refinement top

The atomic displacement factors of O5 and O6 atoms are very large compared to other oxygen atoms because the O5 is linked to Ni4 and Na1 occupying the disordered site and O6 is related to K2 and K3 that are in the tunnels. This explains the large displacement of these atoms. The highest peak and the deepest hole in the final Fourier map are at 0.76 Å and 0.49 Å, respectively, from Na1 and K2. The refinement of the occupancy rates of the mixed site of Na1 and Ni4 led to 0.5 for Na and 0.5 for Ni. These values are in good agreement with the charge balance and the bond valence analysis which gives occupation numbers of 0.60 for Ni and 0.40 for Na (Brown & Altermatt, 1985). The not significant bonds and angles were removed from the CIF file.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of NaK5Ni5(P2O7)4 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x, -y, -z; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z; (iv) x + 1, y + 1, z; (v) x, y + 1, z; (vi) -x + 1, -y + 1, -z + 1; (vii) -x, -y, -z + 1; (viii) -x + 1, -y, -z + 1; (ix) x + 1, y, z; (x) x - 1, y, z; (xi) x - 1, y - 1, z; (xii) x, y - 1, z.
[Figure 2] Fig. 2. Projection views of the NaK5Ni5(P2O7)4 framework structure showing tunnels running along b and c directions where K2 and K3 atoms are located respectively.
Sodium pentapotassium pentanickel tetra(diphosphate) top
Crystal data top
NaK5Ni5(P2O7)4Z = 1
Mr = 1207.80F(000) = 590
Triclinic, P1Dx = 3.288 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.188 (4) ÅCell parameters from 3608 reflections
b = 9.282 (5) Åθ = 2.6–30.2°
c = 10.026 (5) ŵ = 5.31 mm1
α = 109.31 (2)°T = 296 K
β = 90.019 (12)°Block, colourless
γ = 104.066 (13)°0.20 × 0.14 × 0.11 mm
V = 610.0 (5) Å3
Data collection top
Bruker APEXII CCD detector
diffractometer
3608 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 30.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1010
Tmin = 0.511, Tmax = 0.638k = 1313
13411 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.034P)2 + 1.127P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.91 e Å3
3608 reflectionsΔρmin = 0.91 e Å3
218 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0078 (9)
Crystal data top
NaK5Ni5(P2O7)4γ = 104.066 (13)°
Mr = 1207.80V = 610.0 (5) Å3
Triclinic, P1Z = 1
a = 7.188 (4) ÅMo Kα radiation
b = 9.282 (5) ŵ = 5.31 mm1
c = 10.026 (5) ÅT = 296 K
α = 109.31 (2)°0.20 × 0.14 × 0.11 mm
β = 90.019 (12)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3608 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3195 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.638Rint = 0.033
13411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027218 parameters
wR(F2) = 0.0710 restraints
S = 1.03Δρmax = 0.91 e Å3
3608 reflectionsΔρmin = 0.91 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.00000.00000.00836 (10)
Ni20.36001 (4)0.04138 (3)0.12590 (3)0.01024 (8)
Ni30.50000.50000.00000.02272 (13)
Ni40.42559 (7)0.37578 (6)0.68239 (5)0.01395 (11)0.50
Na10.42559 (7)0.37578 (6)0.68239 (5)0.01395 (11)0.50
K10.50000.00000.50000.02299 (18)
K20.05087 (10)0.19327 (8)0.42045 (7)0.02536 (14)
K30.00287 (10)0.45372 (7)0.18072 (8)0.02541 (14)
P10.36193 (8)0.26003 (7)0.17071 (6)0.00759 (12)
P20.65917 (10)0.34427 (8)0.39912 (7)0.01475 (14)
P30.14668 (8)0.18481 (7)0.22059 (6)0.00879 (12)
P40.25079 (8)0.18870 (7)0.12603 (7)0.00936 (12)
O10.1486 (2)0.1946 (2)0.16422 (19)0.0129 (3)
O20.4605 (2)0.1478 (2)0.06750 (18)0.0110 (3)
O30.4162 (3)0.4235 (2)0.15797 (19)0.0134 (3)
O40.4368 (2)0.2883 (2)0.33014 (19)0.0118 (3)
O50.6436 (5)0.3267 (3)0.5429 (3)0.0456 (8)
O60.7578 (3)0.2302 (3)0.3004 (3)0.0410 (7)
O70.7412 (3)0.5116 (2)0.4030 (2)0.0239 (4)
O80.2634 (3)0.3502 (2)0.1363 (2)0.0172 (4)
O90.2049 (3)0.1394 (2)0.3710 (2)0.0174 (4)
O100.1531 (2)0.0619 (2)0.15276 (19)0.0120 (3)
O110.1762 (2)0.1410 (2)0.00776 (19)0.0107 (3)
O120.2715 (3)0.3547 (2)0.0742 (2)0.0167 (4)
O130.4217 (3)0.0687 (2)0.21951 (19)0.0143 (3)
O140.0753 (3)0.1883 (2)0.2327 (2)0.0164 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00652 (18)0.00716 (18)0.0118 (2)0.00142 (14)0.00205 (15)0.00396 (15)
Ni20.00772 (14)0.00786 (14)0.01396 (16)0.00273 (11)0.00143 (11)0.00166 (11)
Ni30.0308 (3)0.0183 (2)0.0120 (2)0.0114 (2)0.0028 (2)0.00858 (19)
Ni40.0144 (2)0.0095 (2)0.0161 (2)0.00049 (17)0.00043 (18)0.00461 (18)
Na10.0144 (2)0.0095 (2)0.0161 (2)0.00049 (17)0.00043 (18)0.00461 (18)
K10.0363 (5)0.0181 (4)0.0159 (4)0.0108 (3)0.0048 (3)0.0049 (3)
K20.0255 (3)0.0285 (3)0.0226 (3)0.0048 (3)0.0035 (2)0.0110 (3)
K30.0256 (3)0.0181 (3)0.0365 (4)0.0065 (2)0.0080 (3)0.0139 (3)
P10.0070 (2)0.0060 (2)0.0097 (3)0.00174 (19)0.0021 (2)0.0025 (2)
P20.0162 (3)0.0093 (3)0.0164 (3)0.0049 (2)0.0048 (2)0.0001 (2)
P30.0081 (3)0.0080 (3)0.0102 (3)0.0015 (2)0.0023 (2)0.0034 (2)
P40.0078 (3)0.0087 (3)0.0124 (3)0.0021 (2)0.0017 (2)0.0047 (2)
O10.0082 (8)0.0119 (8)0.0164 (8)0.0017 (6)0.0021 (6)0.0025 (7)
O20.0098 (8)0.0098 (7)0.0116 (8)0.0037 (6)0.0029 (6)0.0004 (6)
O30.0178 (9)0.0092 (8)0.0141 (8)0.0024 (7)0.0027 (7)0.0058 (7)
O40.0097 (8)0.0142 (8)0.0111 (8)0.0020 (6)0.0019 (6)0.0049 (7)
O50.088 (2)0.0238 (12)0.0236 (12)0.0141 (13)0.0258 (13)0.0071 (10)
O60.0198 (11)0.0277 (12)0.0533 (16)0.0167 (10)0.0176 (11)0.0223 (11)
O70.0176 (9)0.0138 (9)0.0312 (11)0.0018 (7)0.0042 (8)0.0001 (8)
O80.0208 (9)0.0105 (8)0.0165 (9)0.0004 (7)0.0026 (7)0.0024 (7)
O90.0195 (9)0.0202 (9)0.0126 (8)0.0070 (7)0.0047 (7)0.0043 (7)
O100.0106 (8)0.0115 (8)0.0174 (8)0.0050 (6)0.0044 (6)0.0081 (7)
O110.0085 (7)0.0118 (8)0.0140 (8)0.0033 (6)0.0013 (6)0.0066 (6)
O120.0211 (9)0.0093 (8)0.0218 (9)0.0061 (7)0.0042 (7)0.0065 (7)
O130.0108 (8)0.0177 (9)0.0135 (8)0.0005 (7)0.0001 (6)0.0062 (7)
O140.0102 (8)0.0264 (10)0.0195 (9)0.0071 (7)0.0051 (7)0.0150 (8)
Geometric parameters (Å, º) top
Ni1—O10i2.0403 (19)K3—O6x2.953 (3)
Ni1—O102.0403 (19)K3—O12i2.971 (3)
Ni1—O112.0487 (18)K3—O33.053 (3)
Ni1—O11i2.0487 (18)K3—O8v3.066 (2)
Ni1—O12.052 (2)K3—O14v3.098 (3)
Ni1—O1i2.052 (2)P1—O11.4986 (19)
Ni1—Ni22.9329 (14)P1—O21.5178 (18)
Ni2—O2ii1.9963 (19)P1—O31.5200 (19)
Ni2—O10i2.0171 (19)P1—O41.602 (2)
Ni2—O6ii2.024 (2)P2—O51.505 (3)
Ni2—O13ii2.0595 (19)P2—O61.509 (2)
Ni2—O22.120 (2)P2—O71.509 (2)
Ni2—O112.1504 (18)P2—O41.631 (2)
Ni2—Ni2ii2.9960 (14)P3—O81.514 (2)
Ni3—O31.9781 (19)P3—O91.515 (2)
Ni3—O3iii1.9781 (19)P3—O101.5178 (18)
Ni3—O8i2.070 (2)P3—O141.609 (2)
Ni3—O8iv2.070 (2)P4—O121.500 (2)
Ni3—O12ii2.342 (2)P4—O131.508 (2)
Ni3—O12v2.342 (2)P4—O111.5333 (19)
M1—O3vi2.079 (2)P4—O141.654 (2)
M1—O7vi2.112 (2)O2—Ni2ii1.9963 (19)
M1—O52.132 (4)O3—M1vi2.079 (2)
M1—O8vii2.208 (2)O6—Ni2ii2.024 (2)
M1—O9vii2.269 (2)O6—K2ix2.574 (3)
K1—O13viii2.696 (2)O6—K3ix2.953 (3)
K1—O132.696 (2)O7—M1vi2.112 (2)
K1—O5viii2.839 (3)O7—K2vi2.770 (2)
K1—O52.839 (3)O7—K3ix2.915 (2)
K1—O9ix2.842 (2)O8—Ni3xi2.070 (2)
K1—O9vii2.842 (2)O8—M1vii2.208 (2)
K2—O6x2.574 (3)O8—K3xii3.066 (2)
K2—O9vii2.609 (2)O9—M1vii2.269 (2)
K2—O12.667 (2)O9—K2vii2.609 (2)
K2—O7vi2.770 (2)O9—K1x2.842 (2)
K2—O42.938 (2)O10—Ni2i2.0171 (19)
K2—O103.011 (2)O11—K3i2.865 (2)
K2—O93.064 (3)O12—Ni3xii2.342 (2)
K3—O12v2.760 (2)O12—K3xii2.760 (2)
K3—O12.805 (2)O12—K3i2.971 (2)
K3—O11i2.865 (2)O13—Ni2ii2.0595 (19)
K3—O7x2.915 (3)O14—K3xii3.098 (3)
O10i—Ni1—O10180.00 (14)O9vii—K2—O489.43 (7)
O10i—Ni1—O1189.76 (7)O1—K2—O451.46 (5)
O10—Ni1—O1190.24 (7)O7vi—K2—O467.65 (6)
O10i—Ni1—O11i90.24 (7)O6x—K2—O1060.85 (7)
O10—Ni1—O11i89.76 (7)O9vii—K2—O10124.00 (7)
O11—Ni1—O11i180.00 (7)O1—K2—O1058.11 (6)
O10i—Ni1—O194.64 (8)O7vi—K2—O10158.76 (6)
O10—Ni1—O185.36 (8)O4—K2—O10101.33 (6)
O11—Ni1—O195.94 (8)O6x—K2—O984.11 (8)
O11i—Ni1—O184.06 (8)O9vii—K2—O981.83 (7)
O10i—Ni1—O1i85.36 (8)O1—K2—O9105.24 (6)
O10—Ni1—O1i94.64 (8)O7vi—K2—O9151.80 (7)
O11—Ni1—O1i84.06 (8)O4—K2—O9129.11 (6)
O11i—Ni1—O1i95.94 (8)O10—K2—O949.03 (5)
O1—Ni1—O1i180.00 (15)O12v—K3—O1106.14 (7)
O2ii—Ni2—O10i169.20 (7)O12v—K3—O11i117.27 (7)
O2ii—Ni2—O6ii93.83 (9)O1—K3—O11i57.90 (6)
O10i—Ni2—O6ii89.84 (9)O12v—K3—O7x134.29 (7)
O2ii—Ni2—O13ii89.76 (8)O1—K3—O7x112.03 (6)
O10i—Ni2—O13ii99.83 (8)O11i—K3—O7x104.10 (6)
O6ii—Ni2—O13ii97.60 (11)O12v—K3—O6x172.29 (6)
O2ii—Ni2—O286.65 (8)O1—K3—O6x66.64 (6)
O10i—Ni2—O288.70 (8)O11i—K3—O6x61.89 (7)
O6ii—Ni2—O2174.32 (10)O7x—K3—O6x50.52 (6)
O13ii—Ni2—O288.07 (8)O12v—K3—O12i91.74 (7)
O2ii—Ni2—O1182.20 (7)O1—K3—O12i106.98 (6)
O10i—Ni2—O1187.57 (7)O11i—K3—O12i51.26 (5)
O6ii—Ni2—O1191.53 (11)O7x—K3—O12i100.05 (8)
O13ii—Ni2—O11168.23 (7)O6x—K3—O12i93.03 (7)
O2—Ni2—O1182.93 (8)O12v—K3—O358.80 (6)
O3—Ni3—O3iii180.00 (9)O1—K3—O350.60 (5)
O3—Ni3—O8i93.37 (8)O11i—K3—O396.32 (6)
O3iii—Ni3—O8i86.63 (8)O7x—K3—O3137.10 (7)
O3—Ni3—O8iv86.63 (8)O6x—K3—O3113.49 (6)
O3iii—Ni3—O8iv93.37 (8)O12i—K3—O3121.90 (6)
O8i—Ni3—O8iv180.00 (17)O12v—K3—O8v83.94 (7)
O3—Ni3—O12ii97.37 (7)O1—K3—O8v161.23 (6)
O3iii—Ni3—O12ii82.63 (7)O11i—K3—O8v103.49 (6)
O8i—Ni3—O12ii100.17 (8)O7x—K3—O8v67.60 (7)
O8iv—Ni3—O12ii79.83 (8)O6x—K3—O8v103.75 (7)
O3—Ni3—O12v82.63 (7)O12i—K3—O8v56.06 (6)
O3iii—Ni3—O12v97.37 (7)O3—K3—O8v142.67 (6)
O8i—Ni3—O12v79.83 (8)O12v—K3—O14v50.49 (6)
O8iv—Ni3—O12v100.17 (8)O1—K3—O14v149.36 (6)
O12ii—Ni3—O12v180.0O11i—K3—O14v145.51 (6)
O3vi—M1—O7vi97.28 (9)O7x—K3—O14v84.43 (6)
O3vi—M1—O5100.21 (10)O6x—K3—O14v134.95 (6)
O7vi—M1—O5107.23 (9)O12i—K3—O14v94.58 (6)
O3vi—M1—O8vii80.71 (8)O3—K3—O14v99.55 (5)
O7vi—M1—O8vii100.81 (9)O8v—K3—O14v48.38 (6)
O5—M1—O8vii151.53 (8)O1—P1—O2113.34 (11)
O3vi—M1—O9vii146.47 (7)O1—P1—O3112.74 (10)
O7vi—M1—O9vii97.27 (9)O2—P1—O3111.86 (11)
O5—M1—O9vii104.03 (9)O1—P1—O4104.08 (10)
O8vii—M1—O9vii66.96 (7)O2—P1—O4109.57 (10)
O13viii—K1—O13180.0O3—P1—O4104.53 (10)
O13viii—K1—O5viii91.78 (7)O5—P2—O6112.93 (17)
O13—K1—O5viii88.22 (7)O5—P2—O7114.35 (14)
O13viii—K1—O588.22 (7)O6—P2—O7112.17 (15)
O13—K1—O591.78 (7)O5—P2—O4104.13 (15)
O5viii—K1—O5180.00 (14)O6—P2—O4104.89 (12)
O13viii—K1—O9ix104.71 (6)O7—P2—O4107.41 (11)
O13—K1—O9ix75.29 (6)O8—P3—O9109.31 (12)
O5viii—K1—O9ix75.29 (9)O8—P3—O10114.40 (11)
O5—K1—O9ix104.71 (9)O9—P3—O10112.48 (11)
O13viii—K1—O9vii75.29 (6)O8—P3—O14107.93 (11)
O13—K1—O9vii104.71 (6)O9—P3—O14105.88 (11)
O5viii—K1—O9vii104.71 (9)O10—P3—O14106.35 (10)
O5—K1—O9vii75.29 (9)O12—P4—O13114.34 (12)
O9ix—K1—O9vii180.0O12—P4—O11112.79 (11)
O6x—K2—O9vii149.78 (9)O13—P4—O11114.65 (11)
O6x—K2—O174.28 (9)O12—P4—O14105.83 (11)
O9vii—K2—O1135.37 (7)O13—P4—O14103.88 (11)
O6x—K2—O7vi107.73 (8)O11—P4—O14103.90 (10)
O9vii—K2—O7vi75.36 (8)P1—O4—P2127.65 (11)
O1—K2—O7vi102.63 (7)P3—O14—P4135.07 (13)
O6x—K2—O4119.96 (9)
O1—P1—P2—O53.52 (17)O8—P3—P4—O1224.60 (12)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) x+1, y, z; (x) x1, y, z; (xi) x1, y1, z; (xii) x, y1, z.

Experimental details

Crystal data
Chemical formulaNaK5Ni5(P2O7)4
Mr1207.80
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.188 (4), 9.282 (5), 10.026 (5)
α, β, γ (°)109.31 (2), 90.019 (12), 104.066 (13)
V3)610.0 (5)
Z1
Radiation typeMo Kα
µ (mm1)5.31
Crystal size (mm)0.20 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.511, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
13411, 3608, 3195
Rint0.033
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.03
No. of reflections3608
No. of parameters218
Δρmax, Δρmin (e Å3)0.91, 0.91

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Maadi, A., Boukhari, A. & Holt, E. M. (1995). J. Chem. Crystallogr. 25, 531–536.  CAS Google Scholar
First citationErragh, F., Boukhari, A., Abraham, F. & Elouadi, B. (2000). J. Solid State Chem. 152, 323–331.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLukaszewicz, K. (1967). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 47–51.  CAS Google Scholar
First citationMasse, R., Guitel, J. C. & Durif, A. (1979). Mater. Res. Bull. 14, 337–341.  CrossRef CAS Web of Science Google Scholar
First citationNagornyi, P. G., Kapshuk, A. A., Sobolev, A. N. & Golego, N. V. (1996). Kristallografiya, 41, 835–838.  CAS Google Scholar
First citationPalkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130–1134.  CAS Google Scholar
First citationPietraszko, A. & Lukaszewicz, K. (1968). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 16, 183–187.  CAS Google Scholar
First citationSanz, F., Parada, C., Rojo, J. M. & Ruiz-Valero, C. (1999). Chem. Mater. 11, 2673–2679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds