metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)lead(II)]-di-μ-bromido]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 April 2012; accepted 30 April 2012; online 5 May 2012)

In the title compound, [PbBr2(C14H12N2)]n, the PbII atom lies on a twofold rotation axis. The N-heterocycle-chelated PbII atom exists in a distorted octa­hedral geometry owing to two long Pb⋯Br inter­actions [2.9562 (5) and 3.2594 (5) Å]. These result in a zigzag chain running along the c axis. The lone pair is stereochemically inactive.

Related literature

For the lead(II) bromide–1,10-phenanthroline homolog, see: Bowmaker et al. (1996[Bowmaker, G. A., Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B. W. & White, A. H. (1996). Aust. J. Chem. 49, 1089-1097.]).

[Scheme 1]

Experimental

Crystal data
  • [PbBr2(C14H12N2)]

  • Mr = 575.27

  • Monoclinic, C 2/c

  • a = 18.3852 (13) Å

  • b = 11.8312 (5) Å

  • c = 7.4609 (5) Å

  • β = 112.346 (8)°

  • V = 1501.02 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 16.55 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.190, Tmax = 0.492

  • 4947 measured reflections

  • 1734 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.058

  • S = 1.01

  • 1734 reflections

  • 88 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.45 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The N-heterocycle chelated PbII atom in PbBr2(C14H12N2) exists in a slightly distorted octahedral geometry with Pb···Br distances of 2.9562 (5)Å and 3.2594 (5)Å. The result are zigzag chains running along the c-axis of the monoclinic unit cell. The Pb centre lies on a twofold rotation axis. The lack of stereochemical activity can be attributed to crowding from the methyl substituents of the N-heterocycle (Bowmaker et al., 1996).

Related literature top

For the lead(II) bromide–1,10-phenanthroline homolog, see: Bowmaker et al. (1996).

Experimental top

Lead(II) bromide (0.37 g, 1 mmol) and 2,9-dimethyl-1,10-phenanthroline (1/5, 1 mmol) were loaded in a convection tube; the tube was filled with methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The final difference Fourier map had a peak at 0.82 Å and a hole at 1.01 Å from Pb1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of PbBr2(C14H12N2) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius; symmetry-related atoms are not labeled. Adjacent molecules are linked by a weak Pb···Br bond, which is denoted as a dashed line.
catena-Poly[[(2,9-dimethyl-1,10-phenanthroline- κ2N,N')lead(II)]-di-µ-bromido] top
Crystal data top
[PbBr2(C14H12N2)]F(000) = 1048
Mr = 575.27Dx = 2.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2739 reflections
a = 18.3852 (13) Åθ = 2.4–27.5°
b = 11.8312 (5) ŵ = 16.55 mm1
c = 7.4609 (5) ÅT = 100 K
β = 112.346 (8)°Prism, colorless
V = 1501.02 (16) Å30.15 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1734 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1620 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 2223
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1511
Tmin = 0.190, Tmax = 0.492l = 89
4947 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
1734 reflections(Δ/σ)max = 0.001
88 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.45 e Å3
Crystal data top
[PbBr2(C14H12N2)]V = 1501.02 (16) Å3
Mr = 575.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.3852 (13) ŵ = 16.55 mm1
b = 11.8312 (5) ÅT = 100 K
c = 7.4609 (5) Å0.15 × 0.15 × 0.05 mm
β = 112.346 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1734 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1620 reflections with I > 2σ(I)
Tmin = 0.190, Tmax = 0.492Rint = 0.032
4947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.01Δρmax = 1.43 e Å3
1734 reflectionsΔρmin = 1.45 e Å3
88 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.50000.399831 (16)0.25000.01318 (9)
Br10.40287 (3)0.38883 (3)0.48715 (6)0.01909 (12)
N10.5735 (2)0.2162 (3)0.3998 (5)0.0138 (7)
C10.6822 (3)0.3265 (4)0.6184 (6)0.0261 (11)
H1A0.67680.37650.50920.039*
H1B0.73810.31510.69720.039*
H1C0.65630.36100.69800.039*
C20.6450 (3)0.2162 (4)0.5439 (6)0.0183 (9)
C30.6839 (3)0.1139 (4)0.6216 (7)0.0241 (11)
H30.73450.11520.72300.029*
C40.6485 (3)0.0134 (4)0.5503 (6)0.0250 (11)
H40.67430.05540.60300.030*
C50.5748 (3)0.0111 (3)0.4008 (6)0.0206 (10)
C60.5374 (3)0.1159 (3)0.3270 (6)0.0141 (9)
C70.5352 (4)0.0932 (3)0.3218 (7)0.0257 (12)
H70.55980.16310.37300.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01465 (15)0.01085 (12)0.01436 (13)0.0000.00588 (10)0.000
Br10.0217 (3)0.0169 (2)0.0212 (2)0.00258 (17)0.0109 (2)0.00127 (15)
N10.014 (2)0.0143 (16)0.0136 (16)0.0002 (15)0.0052 (15)0.0005 (13)
C10.016 (3)0.035 (3)0.021 (2)0.004 (2)0.001 (2)0.0017 (19)
C20.016 (3)0.026 (2)0.0156 (19)0.0006 (19)0.0089 (19)0.0041 (17)
C30.014 (3)0.034 (3)0.023 (2)0.009 (2)0.005 (2)0.0105 (18)
C40.032 (3)0.024 (2)0.024 (2)0.013 (2)0.017 (2)0.0115 (19)
C50.028 (3)0.017 (2)0.024 (2)0.0061 (19)0.018 (2)0.0055 (17)
C60.020 (3)0.0131 (19)0.0137 (19)0.0009 (16)0.011 (2)0.0008 (14)
C70.045 (4)0.011 (2)0.032 (3)0.0033 (19)0.028 (3)0.0029 (16)
Geometric parameters (Å, º) top
Pb1—N1i2.578 (3)C2—C31.413 (6)
Pb1—N12.578 (3)C3—C41.362 (7)
Pb1—Br1i2.9562 (5)C3—H30.9500
Pb1—Br12.9562 (5)C4—C51.390 (7)
Pb1—Br1ii3.2594 (5)C4—H40.9500
N1—C21.345 (6)C5—C61.423 (5)
N1—C61.368 (5)C5—C71.440 (6)
C1—C21.481 (6)C6—C6i1.417 (9)
C1—H1A0.9800C7—C7i1.330 (12)
C1—H1B0.9800C7—H70.9500
C1—H1C0.9800
N1i—Pb1—N165.15 (16)N1—C2—C3121.1 (4)
N1i—Pb1—Br1i92.27 (7)N1—C2—C1118.1 (4)
N1—Pb1—Br1i83.46 (7)C3—C2—C1120.8 (4)
N1i—Pb1—Br183.46 (7)C4—C3—C2119.6 (5)
N1—Pb1—Br192.27 (7)C4—C3—H3120.2
Br1i—Pb1—Br1174.955 (16)C2—C3—H3120.2
N1i—Pb1—Br1ii169.82 (7)C3—C4—C5120.4 (4)
N1—Pb1—Br1ii107.98 (8)C3—C4—H4119.8
Br1i—Pb1—Br1ii94.383 (13)C5—C4—H4119.8
Br1—Pb1—Br1ii89.490 (13)C4—C5—C6118.3 (4)
C2—N1—C6119.7 (4)C4—C5—C7122.1 (4)
C2—N1—Pb1122.6 (3)C6—C5—C7119.6 (5)
C6—N1—Pb1117.6 (3)N1—C6—C6i119.8 (2)
C2—C1—H1A109.5N1—C6—C5120.8 (4)
C2—C1—H1B109.5C6i—C6—C5119.4 (3)
H1A—C1—H1B109.5C7i—C7—C5121.0 (3)
C2—C1—H1C109.5C7i—C7—H7119.5
H1A—C1—H1C109.5C5—C7—H7119.5
H1B—C1—H1C109.5
N1i—Pb1—N1—C2179.5 (4)C2—C3—C4—C50.5 (7)
Br1i—Pb1—N1—C283.9 (3)C3—C4—C5—C60.8 (7)
Br1—Pb1—N1—C298.8 (3)C3—C4—C5—C7179.8 (4)
Br1ii—Pb1—N1—C28.6 (3)C2—N1—C6—C6i179.0 (4)
N1i—Pb1—N1—C60.2 (2)Pb1—N1—C6—C6i0.7 (6)
Br1i—Pb1—N1—C695.8 (3)C2—N1—C6—C50.5 (6)
Br1—Pb1—N1—C681.5 (3)Pb1—N1—C6—C5179.2 (3)
Br1ii—Pb1—N1—C6171.7 (3)C4—C5—C6—N10.8 (6)
C6—N1—C2—C30.2 (6)C7—C5—C6—N1179.8 (4)
Pb1—N1—C2—C3179.5 (3)C4—C5—C6—C6i179.2 (5)
C6—N1—C2—C1179.8 (4)C7—C5—C6—C6i1.7 (7)
Pb1—N1—C2—C10.1 (5)C4—C5—C7—C7i179.7 (5)
N1—C2—C3—C40.3 (7)C6—C5—C7—C7i1.3 (8)
C1—C2—C3—C4179.8 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[PbBr2(C14H12N2)]
Mr575.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.3852 (13), 11.8312 (5), 7.4609 (5)
β (°) 112.346 (8)
V3)1501.02 (16)
Z4
Radiation typeMo Kα
µ (mm1)16.55
Crystal size (mm)0.15 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.190, 0.492
No. of measured, independent and
observed [I > 2σ(I)] reflections
4947, 1734, 1620
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.01
No. of reflections1734
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.45

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBowmaker, G. A., Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B. W. & White, A. H. (1996). Aust. J. Chem. 49, 1089–1097.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds