organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Chloro-5,6-di­phenyl-2,5-di­hydro-1,2,4-triazin-5-yl)-2-methyl­propane­nitrile

aDepartment of Chemistry, Siedlce University, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bInstitute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 42, POB 58, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 17 May 2012; accepted 21 May 2012; online 31 May 2012)

The title compound, C19H17ClN4, was obtained from the reaction of 3-chloro-5,6-diphenyl-1,2,4-triazine with isobutyronitrile in the presence of lithium diisopropyl­amide as an unexpected product of covalent addition of isobutyronitrile carbanion to the C-5 atom of the 1,2,4-triazine ring. The 2,5-dihydro-1,2,4-triazine ring is essentially planar (r.m.s. deviation = 0.0059 Å) and the 5- and 6-phenyl substituents are inclined to its mean plane with dihedral angles of 89.97 (4) and 55.52 (5)°, respectively. Intra­molecular C—H⋯N inter­actions occur. In the crystal, mol­ecules related by a c-glide plane are linked into zigzag chains along [001] by N—H⋯N hydrogen bonds.

Related literature

For background information, see: Hargaden & Guiry (2009[Hargaden, C. G. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.]); Konno et al. (1987[Konno, S., Sagi, M., Yoshida, N. & Yamanaka, H. (1987). Heterocycles, 26, 3111-3114.]); Rykowski et al. (2000[Rykowski, A., Wolińska, E. & Van der Plas, H. (2000). J. Heterocycl. Chem. 37, 879-833.]). For the synthesis, see: Coeffard et al. (2009[Coeffard, V., Muller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723-1734.]); Fujisawa et al. (1995[Fujisawa, T., Ichiyanagi, T. & Shimizu, M. (1995). Tetrahedron Lett. 36, 5031-5034.]). For a related structure, see: Ayato et al. (1981[Ayato, H., Tanaka, I., Yamane, T., Ashida, T., Sasaki, T., Minamoto, K. & Harada, K. (1981). Bull. Chem. Soc. Jpn, 54, 41-44.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN4

  • Mr = 336.82

  • Monoclinic, P 21 /c

  • a = 8.2422 (1) Å

  • b = 13.9124 (2) Å

  • c = 15.4685 (3) Å

  • β = 93.855 (1)°

  • V = 1769.74 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.96 mm−1

  • T = 293 K

  • 0.44 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 1.000

  • 20671 measured reflections

  • 3198 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.03

  • 3198 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C71—H711⋯N4 0.96 2.58 2.900 (2) 100
C72—H721⋯N4 0.96 2.48 2.847 (2) 103
N2—H2⋯N9i 0.90 (2) 2.06 (2) 2.9474 (19) 171 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds containing a chiral oxazoline ring have become the most useful ligand classes for asymmetric catalysis (Hargaden & Guiry, 2009). During our research course on synthesis and application of chiral auxiliaries, synthesis of ligands composed of chiral oxazoline linked with 1,2,4-triazine ring by carbon atom was undertaken. The two step synthetic strategy considered (a) nucleophilic substitution of chlorine atom in 3-chloro-5,6-diphenyl-1,2,4-triazine with isobutyronitrile and (b) formation of oxazoline ring by condensation of the nitrile group with chiral amino alcohol in the presence of ZnCl2 (Coeffard et al., 2009; Fujisawa et al., 1995). In the reaction of 3-chloro-5,6-diphenyl-1,2,4-triazine with isobutyronitrile in the presence of lithium diisopropylamide (LDA) the desired product of chlorine substitution was not formed. Instead of that the title 3-chloro-5-[(1-cyano-1-methyl)ethyl]-5,6-diphenyl-2,5-dihydro-1,2,4-triazine was isolated from the reaction mixture. This unexpected product is a result of covalent addition of isobutyronitrile carbanione to C-5 carbon atom of 1,2,4-triazine ring bearing phenyl substituent. The availability of highly electron-deficient 1,2,4-triazine ring to undergo covalent addition of carbanions at the unsubstituted C-5 carbon is well known (Konno et al., 1987; Rykowski et al., 2000). The result mentioned above is the first example of reaction in which the addition of carbon nucleophlie at C-5, bearing bulky phenyl group, is fully counterbalanced by the high π-electron deficiency of the 1,2,4-triazine ring.

The X-ray analysis of (I) undertook in order to confirm its molecular structure and to identification of the proper N2—H/N4—H tautomeric form revealed that this compound exists as N2—H tautomer in the crystalline state. The 2,5-dihydro-1,2,4-triazine ring disubstituted at 5 position is planar to within 0.0089 (13) Å and its geometry is very similar to that observed in related structure of 3-methylthio-2-methyl-5,6-diphenyl-2,5-dihydro-1,2,4-triazine (Ayato et al., 1981). The 5- and 6-phenyl substituents of the 1,2,4-triazine ring are inclined to its mean plane with the dihedral angle of 89.97 (4) and 55.52 (5)°, respectively. The torsion angles N4—C5—C7—C8 = 177.18 (11)°, N4—C5—C7—C71 = -65.69 (14)° and N4—C5—C7—C72 = 55.01 (14)° show that the nitrile and methyl groups of the isopropylcarbonitrile susbstituent adopt the trans, gauche and gauche conformation, respectively, in respect to 1,2,4-triazine ring. In the crystal structure, Fig. 2, the molecules related by a c glide plane are linked into chains along the [001] direction by N2—H2···N9 intermolecular hydrogen bond (Table 1).

Related literature top

For background information, see: Hargaden & Guiry (2009); Konno et al. (1987); Rykowski et al. (2000). For the synthesis, see: Coeffard et al. (2009); Fujisawa et al. (1995). For a related structure, see: Ayato et al. (1981).

Experimental top

An oven dried three-necked flask equipped with thermometer was washed with argon and charged with diisopropylamine (0.33 ml, 2.38 mmol) and THF (2 ml). The solution was cooled to -68 °C and butyllithium (1 ml, 2.5 mmol, 1 M solution in hexanes) was added trough the septum. The mixture was stirred for 0.5 h. Than, isobutyronitrile (155 mg, 2.25 mmol) was added. After 0.5 h while the carbanione was generated a solution of 3-chloro-5,6-diphenyl-1,2,4-triazine (200 mg, 0.75 mmol) in THF (2 ml) was added dropwise. The mixture was stirred at -68 °C for 1 h, and then wormed to room temperature during 2 h. The reaction was quenched with sat. NH4Cl and extracted with ether. The organic layer was dried with MgSO4. The solvent was evaporated and the resulting crude product was purified by column chromatography using hexanes/ethyl acetate (5:1) as eluent. The main product was recrystalized from ethanol/water to give 3-chloro-5-[(1-cyano-1-methyl)ethyl]-5,6-diphenyl-2,5-dihydro-1,2,4-triazine, (I), as a colourless crystals; yield: 135 mg, 54%.

Refinement top

All H atom were located by difference Fourier synthesis. The coordinates of the N-bound H atom were refined. H atoms bonded to C were treated as riding on their parent atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(N,C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the packing of the title compound. Dashed lines indicate N—H···N intermolecular hydrogen bond [symmetry code: (i) x, –y + 1/2, z–1/2].
2-(3-Chloro-5,6-diphenyl-2,5-dihydro-1,2,4-triazin-5-yl)-2-methylpropanenitrile top
Crystal data top
C19H17ClN4F(000) = 704
Mr = 336.82Dx = 1.264 Mg m3
Monoclinic, P21/cMelting point: 456 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 8.2422 (1) ÅCell parameters from 9905 reflections
b = 13.9124 (2) Åθ = 5.4–67.7°
c = 15.4685 (3) ŵ = 1.96 mm1
β = 93.855 (1)°T = 293 K
V = 1769.74 (5) Å3Prism, colourless
Z = 40.44 × 0.23 × 0.11 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 68.1°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.817, Tmax = 1.000k = 1216
20671 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3505P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3198 reflectionsΔρmax = 0.21 e Å3
221 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
C19H17ClN4V = 1769.74 (5) Å3
Mr = 336.82Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.2422 (1) ŵ = 1.96 mm1
b = 13.9124 (2) ÅT = 293 K
c = 15.4685 (3) Å0.44 × 0.23 × 0.11 mm
β = 93.855 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2957 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 1.000Rint = 0.037
20671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3198 reflectionsΔρmin = 0.28 e Å3
221 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3) δ: 1.50 (s, 3H, CH3), 1.53 (s, 3H), 6.95–6.97 (m, 2H), 7.21–7.25 (m, 2H), 7.34–7.47 (m,4H), 7.70–7.72 (m, 2H), 8.25 (s, 1H); 13C NMR (50 MHz, CDCl3) δ: 22.6, 25.5, 39.0, 70.4, 124.0, 127.9, 128.5, 128.6, 128.7, 129.7, 130.0, 135.4, 140.7, 140.8, 147.5; HR MS ESI calculated for C19H17N4NaCl: 359.10340, found: 359.10469.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl30.34703 (6)0.12753 (4)0.01120 (3)0.07817 (19)
N10.63312 (16)0.25063 (9)0.18802 (7)0.0529 (3)
N20.54094 (19)0.22497 (10)0.11422 (8)0.0651 (4)
H20.538 (3)0.2666 (17)0.0696 (16)0.098*
N40.44978 (15)0.07957 (9)0.16785 (7)0.0505 (3)
N90.5113 (2)0.12362 (10)0.48082 (9)0.0693 (4)
C30.45641 (18)0.14300 (11)0.11027 (9)0.0510 (3)
C50.54108 (15)0.09677 (9)0.25203 (7)0.0391 (3)
C60.63422 (15)0.19302 (9)0.25246 (8)0.0425 (3)
C70.40539 (16)0.10027 (10)0.31926 (9)0.0446 (3)
C80.47297 (19)0.11233 (10)0.40948 (9)0.0498 (3)
C510.66526 (15)0.01512 (9)0.26417 (8)0.0432 (3)
C520.77159 (19)0.00305 (13)0.19886 (11)0.0624 (4)
H520.75900.04040.14900.094*
C530.8958 (2)0.06387 (16)0.20727 (16)0.0840 (6)
H530.96590.07080.16300.126*
C540.9167 (2)0.11954 (14)0.27919 (19)0.0848 (7)
H541.00260.16290.28530.127*
C550.8094 (2)0.11095 (13)0.34268 (15)0.0773 (6)
H550.82050.15060.39110.116*
C560.6847 (2)0.04408 (11)0.33588 (10)0.0562 (4)
H560.61360.03900.37980.084*
C610.72769 (17)0.22915 (10)0.33162 (8)0.0489 (3)
C620.6891 (2)0.31924 (12)0.36333 (10)0.0610 (4)
H620.60810.35570.33420.091*
C630.7696 (3)0.35509 (16)0.43739 (13)0.0800 (6)
H630.74180.41520.45820.120*
C640.8905 (3)0.3025 (2)0.48049 (13)0.0919 (7)
H640.94350.32630.53100.138*
C650.9325 (2)0.21470 (19)0.44865 (13)0.0859 (6)
H651.01600.17970.47720.129*
C660.85223 (19)0.17737 (14)0.37446 (11)0.0648 (4)
H660.88190.11770.35350.097*
C710.2966 (2)0.18857 (13)0.29982 (13)0.0668 (4)
H7110.24000.18130.24390.100*
H7120.36270.24540.30020.100*
H7130.21920.19410.34330.100*
C720.29850 (19)0.00935 (12)0.31542 (11)0.0597 (4)
H7210.24960.00140.25780.090*
H7220.21480.01570.35530.090*
H7230.36440.04570.33080.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl30.0896 (3)0.0984 (4)0.0432 (2)0.0087 (2)0.0200 (2)0.01157 (19)
N10.0687 (7)0.0523 (7)0.0379 (6)0.0075 (6)0.0044 (5)0.0062 (5)
N20.0957 (10)0.0610 (8)0.0373 (6)0.0108 (7)0.0056 (6)0.0144 (6)
N40.0542 (6)0.0599 (7)0.0363 (6)0.0071 (5)0.0053 (5)0.0048 (5)
N90.1083 (11)0.0611 (8)0.0406 (8)0.0151 (7)0.0214 (7)0.0087 (6)
C30.0568 (8)0.0615 (8)0.0342 (7)0.0031 (6)0.0006 (6)0.0045 (6)
C50.0436 (6)0.0443 (7)0.0294 (6)0.0012 (5)0.0020 (5)0.0027 (5)
C60.0458 (7)0.0463 (7)0.0359 (6)0.0019 (5)0.0062 (5)0.0035 (5)
C70.0468 (7)0.0452 (7)0.0427 (7)0.0002 (5)0.0105 (5)0.0017 (5)
C80.0669 (9)0.0416 (7)0.0431 (8)0.0056 (6)0.0199 (6)0.0025 (5)
C510.0455 (7)0.0453 (7)0.0384 (6)0.0009 (5)0.0006 (5)0.0068 (5)
C520.0567 (8)0.0755 (10)0.0561 (9)0.0013 (7)0.0128 (7)0.0147 (8)
C530.0544 (9)0.0908 (14)0.1085 (17)0.0050 (9)0.0188 (10)0.0426 (13)
C540.0555 (10)0.0640 (11)0.132 (2)0.0144 (8)0.0152 (11)0.0275 (12)
C550.0779 (12)0.0562 (9)0.0933 (14)0.0143 (8)0.0274 (11)0.0015 (9)
C560.0652 (9)0.0516 (8)0.0507 (8)0.0089 (7)0.0041 (6)0.0021 (6)
C610.0508 (7)0.0578 (8)0.0384 (7)0.0150 (6)0.0063 (5)0.0044 (6)
C620.0713 (10)0.0604 (9)0.0523 (8)0.0177 (7)0.0117 (7)0.0040 (7)
C630.0877 (13)0.0883 (13)0.0657 (11)0.0331 (11)0.0168 (10)0.0239 (10)
C640.0823 (13)0.137 (2)0.0561 (10)0.0389 (14)0.0017 (9)0.0277 (12)
C650.0641 (10)0.1296 (18)0.0616 (11)0.0149 (11)0.0145 (8)0.0034 (12)
C660.0542 (8)0.0840 (11)0.0551 (9)0.0092 (8)0.0050 (7)0.0005 (8)
C710.0556 (9)0.0645 (10)0.0818 (11)0.0150 (7)0.0167 (8)0.0069 (8)
C720.0584 (8)0.0620 (9)0.0602 (9)0.0148 (7)0.0150 (7)0.0023 (7)
Geometric parameters (Å, º) top
Cl3—C31.7383 (14)C54—H540.9300
N1—C61.2787 (17)C55—C561.385 (2)
N1—N21.3752 (18)C55—H550.9300
N2—C31.336 (2)C56—H560.9300
N2—H20.90 (2)C61—C661.386 (2)
N4—C31.2577 (18)C61—C621.390 (2)
N4—C51.4790 (16)C62—C631.378 (2)
N9—C81.138 (2)C62—H620.9300
C5—C511.5321 (18)C63—C641.372 (3)
C5—C61.5433 (18)C63—H630.9300
C5—C71.5782 (17)C64—C651.371 (4)
C6—C611.4895 (18)C64—H640.9300
C7—C81.477 (2)C65—C661.387 (2)
C7—C711.539 (2)C65—H650.9300
C7—C721.5403 (19)C66—H660.9300
C51—C561.382 (2)C71—H7110.9600
C51—C521.3914 (19)C71—H7120.9600
C52—C531.383 (3)C71—H7130.9600
C52—H520.9300C72—H7210.9600
C53—C541.357 (3)C72—H7220.9600
C53—H530.9300C72—H7230.9600
C54—C551.370 (3)
C6—N1—N2117.32 (12)C54—C55—C56121.02 (19)
C3—N2—N1121.13 (12)C54—C55—H55119.5
C3—N2—H2121.8 (15)C56—C55—H55119.5
N1—N2—H2117.0 (15)C51—C56—C55120.44 (16)
C3—N4—C5117.79 (12)C51—C56—H56119.8
N4—C3—N2127.89 (14)C55—C56—H56119.8
N4—C3—Cl3119.52 (12)C66—C61—C62118.65 (15)
N2—C3—Cl3112.59 (10)C66—C61—C6122.90 (14)
N4—C5—C51106.50 (10)C62—C61—C6118.45 (14)
N4—C5—C6111.57 (10)C63—C62—C61120.73 (18)
C51—C5—C6108.35 (10)C63—C62—H62119.6
N4—C5—C7104.12 (10)C61—C62—H62119.6
C51—C5—C7116.06 (10)C64—C63—C62120.3 (2)
C6—C5—C7110.17 (10)C64—C63—H63119.9
N1—C6—C61113.92 (12)C62—C63—H63119.9
N1—C6—C5124.27 (12)C65—C64—C63119.56 (18)
C61—C6—C5121.74 (10)C65—C64—H64120.2
C8—C7—C71105.76 (12)C63—C64—H64120.2
C8—C7—C72107.95 (11)C64—C65—C66120.9 (2)
C71—C7—C72108.90 (12)C64—C65—H65119.6
C8—C7—C5112.78 (11)C66—C65—H65119.6
C71—C7—C5108.99 (11)C61—C66—C65119.87 (19)
C72—C7—C5112.22 (11)C61—C66—H66120.1
N9—C8—C7173.86 (17)C65—C66—H66120.1
C56—C51—C52117.77 (14)C7—C71—H711109.5
C56—C51—C5125.50 (12)C7—C71—H712109.5
C52—C51—C5116.66 (13)H711—C71—H712109.5
C53—C52—C51120.74 (18)C7—C71—H713109.5
C53—C52—H52119.6H711—C71—H713109.5
C51—C52—H52119.6H712—C71—H713109.5
C54—C53—C52120.91 (18)C7—C72—H721109.5
C54—C53—H53119.5C7—C72—H722109.5
C52—C53—H53119.5H721—C72—H722109.5
C53—C54—C55119.04 (16)C7—C72—H723109.5
C53—C54—H54120.5H721—C72—H723109.5
C55—C54—H54120.5H722—C72—H723109.5
C6—N1—N2—C30.1 (2)C6—C5—C51—C56112.84 (14)
C5—N4—C3—N22.1 (2)C7—C5—C51—C5611.66 (19)
C5—N4—C3—Cl3178.37 (10)N4—C5—C51—C5256.07 (15)
N1—N2—C3—N41.5 (3)C6—C5—C51—C5264.08 (15)
N1—N2—C3—Cl3178.95 (12)C7—C5—C51—C52171.42 (12)
C3—N4—C5—C51119.22 (14)C56—C51—C52—C532.2 (2)
C3—N4—C5—C61.18 (17)C5—C51—C52—C53175.00 (15)
C3—N4—C5—C7117.62 (13)C51—C52—C53—C540.2 (3)
N2—N1—C6—C61176.07 (12)C52—C53—C54—C552.2 (3)
N2—N1—C6—C50.8 (2)C53—C54—C55—C562.5 (3)
N4—C5—C6—N10.21 (18)C52—C51—C56—C551.8 (2)
C51—C5—C6—N1116.72 (14)C5—C51—C56—C55175.06 (14)
C7—C5—C6—N1115.34 (14)C54—C55—C56—C510.5 (3)
N4—C5—C6—C61176.45 (12)N1—C6—C61—C66125.41 (15)
C51—C5—C6—C6166.62 (14)C5—C6—C61—C6657.61 (18)
C7—C5—C6—C6161.32 (15)N1—C6—C61—C6253.96 (17)
N4—C5—C7—C8177.18 (11)C5—C6—C61—C62123.02 (14)
C51—C5—C7—C860.49 (15)C66—C61—C62—C632.0 (2)
C6—C5—C7—C863.07 (14)C6—C61—C62—C63178.61 (14)
N4—C5—C7—C7165.69 (14)C61—C62—C63—C640.7 (3)
C51—C5—C7—C71177.63 (12)C62—C63—C64—C651.0 (3)
C6—C5—C7—C7154.07 (14)C63—C64—C65—C661.3 (3)
N4—C5—C7—C7255.01 (14)C62—C61—C66—C651.7 (2)
C51—C5—C7—C7261.68 (15)C6—C61—C66—C65178.98 (15)
C6—C5—C7—C72174.76 (11)C64—C65—C66—C610.0 (3)
N4—C5—C51—C56127.01 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C71—H711···N40.962.582.900 (2)100
C72—H721···N40.962.482.847 (2)103
N2—H2···N9i0.90 (2)2.06 (2)2.9474 (19)171 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17ClN4
Mr336.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2422 (1), 13.9124 (2), 15.4685 (3)
β (°) 93.855 (1)
V3)1769.74 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.96
Crystal size (mm)0.44 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.817, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20671, 3198, 2957
Rint0.037
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.03
No. of reflections3198
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C71—H711···N40.962.582.900 (2)100
C72—H721···N40.962.482.847 (2)103
N2—H2···N9i0.90 (2)2.06 (2)2.9474 (19)171 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationAyato, H., Tanaka, I., Yamane, T., Ashida, T., Sasaki, T., Minamoto, K. & Harada, K. (1981). Bull. Chem. Soc. Jpn, 54, 41–44.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoeffard, V., Muller-Bunz, H. & Guiry, P. J. (2009). Org. Biomol. Chem. 7, 1723–1734.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujisawa, T., Ichiyanagi, T. & Shimizu, M. (1995). Tetrahedron Lett. 36, 5031–5034.  CrossRef CAS Google Scholar
First citationHargaden, C. G. & Guiry, P. J. (2009). Chem. Rev. 109, 2505–2550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKonno, S., Sagi, M., Yoshida, N. & Yamanaka, H. (1987). Heterocycles, 26, 3111–3114.  CAS Google Scholar
First citationRykowski, A., Wolińska, E. & Van der Plas, H. (2000). J. Heterocycl. Chem. 37, 879–833.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds