organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(butan-1-aminium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 16 April 2012; accepted 26 April 2012; online 2 May 2012)

In the title compound, 2C4H12N+·C10H6O6S22−, the anion lies on an inversion center, so the asymmetric unit contains half an anion and one cation which are linked by a strong N—H⋯O hydrogen bond. The crystal structure comprises discrete ions, which are linked into centrosymmetric R44(12) loops by N—H⋯O inter­actions.

Related literature

For related structures, see: Jin (2011a[Jin, Y. (2011a). Acta Cryst. E67, m1686.],b[Jin, Y. (2011b). Acta Cryst. E67, o3048.], 2012[Jin, Y. (2012). Acta Cryst. E68, o90.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N+·C10H6O6S22−

  • Mr = 434.56

  • Monoclinic, P 21 /c

  • a = 8.1532 (16) Å

  • b = 9.2582 (19) Å

  • c = 14.108 (5) Å

  • β = 108.02 (3)°

  • V = 1012.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 10171 measured reflections

  • 2316 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.14

  • 2316 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.89 1.95 2.840 (2) 177
N1—H1C⋯O2i 0.89 1.97 2.857 (2) 177
N1—H1B⋯O3ii 0.89 2.05 2.911 (2) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As an extension of the research about naphthalene-1,5-disulfonate salts (Jin, 2011a; Jin, 2011b; Jin, 2012), I report here the synthesis and the crystal structure of the title complex, 2C4H12N+C10H6S2O62-. In the title compound 2 C4H12N+ . C10H6S2O62 , the anion lies on inversion center, so the asymmetric unit contains one-half anion and one cation which are linked by one strong N—H···O hydrogen bond interaction, Fig 1. The crystal structure comprises discrete ions which are linked into centrosymmetric R44(12) dimers by simple N—H···O interactions, (Bernstein, et al., 1995), Fig 2, Table1.

Related literature top

For related structures, see: Jin (2011a,b, 2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2C4H12N+•C10H6S2O62- was synthetized from a mixture of CH3(CH2)3NH2 (146.28 mg, 2.00 mmol), C10H8O6S2 (288.28 mg, 1.00 mmol), and distilled water (10 ml), which was stirred a few minutes at room temperature, giving a clear transparent solution. After evaporation for a few days, block colorless crystals suitable for X-ray diffraction were obtained in about 88% yield and filtered and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H =0.93 to 0.97 Å and N—H = 0.89 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the labelling of the non-H atoms. Displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (a) 1-x, 2-y, 2-z]
[Figure 2] Fig. 2. Part of the crystal structure of (I) , showing discrete ions which are linked into centrosymmetric R44(12) dimers.[Symmetry codes : (i) x, 3/2-y, -1/2+z; (ii) -x, 1/2+y, 3/2-z; (iii) -x,2-y,1-z]
Bis(butan-1-aminium) naphthalene-1,5-disulfonate top
Crystal data top
2C4H12N+·C10H6O6S22F(000) = 464
Mr = 434.56Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 8.1532 (16) Åθ = 6.2–55.3°
b = 9.2582 (19) ŵ = 0.30 mm1
c = 14.108 (5) ÅT = 293 K
β = 108.02 (3)°Block, colourless
V = 1012.7 (5) Å30.3 × 0.3 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2316 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 1212
10171 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.4216P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
2C4H12N+·C10H6O6S22V = 1012.7 (5) Å3
Mr = 434.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1532 (16) ŵ = 0.30 mm1
b = 9.2582 (19) ÅT = 293 K
c = 14.108 (5) Å0.3 × 0.3 × 0.2 mm
β = 108.02 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2316 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2039 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.034
10171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
2316 reflectionsΔρmin = 0.43 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2319 (2)1.0297 (2)0.69402 (14)0.0364 (4)
H1D0.22611.09390.74730.044*
H1E0.22351.08800.63560.044*
C20.4015 (2)0.95077 (19)0.72490 (13)0.0332 (4)
H2A0.40620.88660.67140.040*
H2B0.40850.89190.78290.040*
C30.5553 (3)1.0519 (2)0.74938 (15)0.0405 (5)
H3A0.54391.11570.69320.049*
H3B0.55531.11120.80610.049*
C40.7256 (3)0.9722 (3)0.77313 (17)0.0524 (6)
H4A0.72860.91680.71610.079*
H4B0.73760.90870.82860.079*
H4C0.81861.04060.78960.079*
C50.2728 (2)1.06642 (17)0.97032 (12)0.0253 (3)
H50.16171.02940.95550.030*
C60.41452 (18)0.97062 (16)0.98793 (11)0.0198 (3)
C70.39614 (19)0.81664 (16)0.98343 (11)0.0204 (3)
C80.5368 (2)0.72878 (17)1.00271 (12)0.0259 (3)
H80.52280.62901.00090.031*
C90.2973 (2)1.21166 (18)0.97477 (13)0.0286 (4)
H90.20251.27270.96270.034*
N10.0850 (2)0.92591 (16)0.67115 (11)0.0338 (3)
H1A0.08400.88150.72690.041*
H1B0.01360.97350.64550.041*
H1C0.09710.86080.62740.041*
O10.09524 (16)0.78595 (15)0.85199 (9)0.0380 (3)
O20.11042 (16)0.77995 (14)1.02545 (9)0.0343 (3)
O30.21663 (16)0.57911 (13)0.95327 (10)0.0353 (3)
S10.18812 (5)0.73440 (4)0.95082 (3)0.02387 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (11)0.0273 (9)0.0380 (10)0.0057 (8)0.0123 (8)0.0024 (7)
C20.0409 (10)0.0277 (9)0.0313 (9)0.0033 (7)0.0118 (8)0.0002 (7)
C30.0491 (12)0.0362 (10)0.0351 (10)0.0046 (9)0.0113 (9)0.0010 (8)
C40.0407 (12)0.0699 (16)0.0470 (12)0.0053 (11)0.0139 (10)0.0027 (11)
C50.0186 (7)0.0255 (8)0.0320 (8)0.0005 (6)0.0078 (6)0.0015 (6)
C60.0197 (7)0.0203 (7)0.0206 (7)0.0011 (6)0.0081 (6)0.0008 (5)
C70.0212 (7)0.0202 (7)0.0204 (7)0.0037 (6)0.0073 (6)0.0008 (6)
C80.0282 (8)0.0166 (7)0.0333 (8)0.0006 (6)0.0101 (7)0.0011 (6)
C90.0225 (8)0.0235 (8)0.0400 (9)0.0052 (6)0.0100 (7)0.0025 (7)
N10.0363 (8)0.0338 (8)0.0320 (8)0.0092 (6)0.0116 (6)0.0033 (6)
O10.0318 (7)0.0443 (8)0.0306 (7)0.0089 (6)0.0010 (5)0.0079 (5)
O20.0315 (6)0.0355 (7)0.0417 (7)0.0059 (5)0.0198 (6)0.0001 (5)
O30.0332 (7)0.0219 (6)0.0481 (8)0.0085 (5)0.0084 (6)0.0019 (5)
S10.0220 (2)0.0218 (2)0.0267 (2)0.00585 (14)0.00604 (15)0.00118 (15)
Geometric parameters (Å, º) top
C1—N11.491 (2)C5—H50.9300
C1—C21.505 (3)C6—C71.433 (2)
C1—H1D0.9700C6—C6i1.436 (3)
C1—H1E0.9700C7—C81.363 (2)
C2—C31.517 (3)C7—S11.7847 (15)
C2—H2A0.9700C8—C9i1.403 (2)
C2—H2B0.9700C8—H80.9300
C3—C41.516 (3)C9—C8i1.403 (2)
C3—H3A0.9700C9—H90.9300
C3—H3B0.9700N1—H1A0.8900
C4—H4A0.9600N1—H1B0.8900
C4—H4B0.9600N1—H1C0.8900
C4—H4C0.9600O1—S11.4464 (14)
C5—C91.358 (2)O2—S11.4493 (13)
C5—C61.416 (2)O3—S11.4550 (13)
N1—C1—C2110.73 (15)C6—C5—H5119.6
N1—C1—H1D109.5C5—C6—C7123.16 (14)
C2—C1—H1D109.5C5—C6—C6i118.93 (17)
N1—C1—H1E109.5C7—C6—C6i117.91 (17)
C2—C1—H1E109.5C8—C7—C6120.99 (14)
H1D—C1—H1E108.1C8—C7—S1118.08 (12)
C1—C2—C3112.76 (16)C6—C7—S1120.93 (11)
C1—C2—H2A109.0C7—C8—C9i120.22 (15)
C3—C2—H2A109.0C7—C8—H8119.9
C1—C2—H2B109.0C9i—C8—H8119.9
C3—C2—H2B109.0C5—C9—C8i121.16 (15)
H2A—C2—H2B107.8C5—C9—H9119.4
C4—C3—C2112.72 (18)C8i—C9—H9119.4
C4—C3—H3A109.0C1—N1—H1A109.5
C2—C3—H3A109.0C1—N1—H1B109.5
C4—C3—H3B109.0H1A—N1—H1B109.5
C2—C3—H3B109.0C1—N1—H1C109.5
H3A—C3—H3B107.8H1A—N1—H1C109.5
C3—C4—H4A109.5H1B—N1—H1C109.5
C3—C4—H4B109.5O1—S1—O2112.83 (9)
H4A—C4—H4B109.5O1—S1—O3112.40 (8)
C3—C4—H4C109.5O2—S1—O3111.89 (8)
H4A—C4—H4C109.5O1—S1—C7106.27 (8)
H4B—C4—H4C109.5O2—S1—C7106.42 (8)
C9—C5—C6120.77 (15)O3—S1—C7106.46 (7)
C9—C5—H5119.6
N1—C1—C2—C3179.79 (15)S1—C7—C8—C9i177.76 (13)
C1—C2—C3—C4175.79 (16)C6—C5—C9—C8i0.3 (3)
C9—C5—C6—C7179.48 (15)C8—C7—S1—O1119.32 (13)
C9—C5—C6—C6i0.9 (3)C6—C7—S1—O159.88 (14)
C5—C6—C7—C8178.83 (15)C8—C7—S1—O2120.19 (13)
C6i—C6—C7—C80.8 (3)C6—C7—S1—O260.61 (14)
C5—C6—C7—S12.0 (2)C8—C7—S1—O30.70 (15)
C6i—C6—C7—S1178.37 (13)C6—C7—S1—O3179.90 (12)
C6—C7—C8—C9i1.4 (2)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.891.952.840 (2)177
N1—H1C···O2ii0.891.972.857 (2)177
N1—H1B···O3iii0.892.052.911 (2)162
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C4H12N+·C10H6O6S22
Mr434.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1532 (16), 9.2582 (19), 14.108 (5)
β (°) 108.02 (3)
V3)1012.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10171, 2316, 2039
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.14
No. of reflections2316
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.43

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.891.952.840 (2)176.9
N1—H1C···O2i0.891.972.857 (2)176.6
N1—H1B···O3ii0.892.052.911 (2)161.8
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The author thanks Ordered Matter Science Research Center, Southeast University for its excellent experimental conditions and its generous financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationJin, Y. (2011a). Acta Cryst. E67, m1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Y. (2011b). Acta Cryst. E67, o3048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Y. (2012). Acta Cryst. E68, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds