metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′){N-[(2-oxidonaphthalen-1-yl-κO)methyl­­idene]-L-valinato-κO}copper(II) trihydrate

aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: bicaifeng301@163.com

(Received 9 May 2012; accepted 18 May 2012; online 26 May 2012)

In the title complex, [Cu(C16H15NO3)(C10H8N2)]·3H2O, the CuII atom is five coordinated by O,N,O′-donor atoms of the Schiff base ligand and by two N atoms of the 2,2′-bipyridine ligand in a distorted square-pyramidal geometry. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (011) by O—H⋯O hydrogen bonds.

Related literature

For general background to Schiff base ligands in coordination chemistry, see: Garnovski et al. (1993[Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). For the properties of Schiff base complexes, see: Kano et al. (2003[Kano, S., Nakano, H., Kojima, M., Baba, N. & Nakajima, K. (2003). Inorg. Chim. Acta, 349, 6-16.]); Mukherjee et al. (2009[Mukherjee, P., Drew, M. G., Tangoulis, V., Estrader, M., Diaz, C. & Ghosh, A. (2009). Inorg. Chem. Commun. 12, 929-932.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H15NO3)(C10H8N2)]·3H2O

  • Mr = 543.06

  • Triclinic, [P \overline 1]

  • a = 9.295 (1) Å

  • b = 9.7861 (11) Å

  • c = 14.3819 (15) Å

  • α = 79.971 (1)°

  • β = 74.718 (1)°

  • γ = 85.745 (2)°

  • V = 1242.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 298 K

  • 0.46 × 0.43 × 0.42 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.697

  • 6423 measured reflections

  • 4306 independent reflections

  • 3246 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.04

  • 4306 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.85 1.99 2.823 (3) 168
O4—H4B⋯O3 0.85 2.00 2.847 (3) 172
O5—H5A⋯O2ii 0.85 2.07 2.870 (3) 158
O5—H5B⋯O6iii 0.85 2.04 2.852 (4) 160
O6—H6A⋯O4iv 0.85 2.10 2.900 (4) 156
O6—H6B⋯O5v 0.85 1.97 2.814 (4) 174
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands represent one of the most widely utilized classes of ligands in coordination chemistry (Garnovski et al., 1993), and their metal complexes have been studied for many years (Yamada, 1999). These complexes have been used in the fields of magnetism, catalysis and enzymatic reactions (Kano et al., 2003; Mukherjee et al., 2009). In this paper, we report the synthesis and crystal structure of a copper complex with Schiff base and 2,2'-bipyridine ligand.

The molecular structure of the title complex is shown in Fig. 1. The Cu atom is in a distorted square-pyramidal coordination geometry, defined by one N and two O atoms from the Schiff base ligand and two N atoms from a 2,2'-bipyridine ligand. The basal plane is formed by the atoms O1, O3, N1 and N3, their mean deviation from this plane is 0.0891 Å, and the Cu atom just out of this plane by 0.252 Å. The axial position of the pyramid is occupied by atom N2. In the crystal, molecules are linked into two-dimensional network by intermolecular O—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to Schiff base ligands in coordination chemistry, see: Garnovski et al. (1993); Yamada (1999). For the properties of Schiff base complexes, see: Kano et al. (2003); Mukherjee et al. (2009).

Experimental top

2-Hydroxy-1-Naphthaldehyde (0.172 g, 1 mmol) was added to a methanol solution (60 ml) containing L-Valine (0.117 g, 1 mmol) and potassium hydroxide (0.056 g, 1 mmol). The mixture was stirred at 333 K for 3 h, then an aqueous solution (6 ml) of cupric acetate monohydrate (0.199 g, 1 mmol) was added dropwise and stirred for 2 h. A methanol solution (6 ml) of 2,2'-Bipyridine (0.156 g, 1 mmol) was then added dropwise and the mixture stirred for 2 h. The resulting green solution was allowed to evaporate slowly at room temperature for two weeks, yielding green block crystals.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with the following constraints: C—H = 0.93 Å, Uiso(H) =1.2Ueq(C) for Csp2, C—H = 0.98 Å, Uiso(H) =1.2Ueq(C) for CH, C—H = 0.96 Å, Uiso(H) =1.5Ueq(C) for CH3, O—H = 0.85 Å, Uiso(H) =1.2Ueq(O) for OH.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Two dimensional network of the title complex.
(2,2'-Bipyridine-κ2N,N'){N-[(2-oxidonaphthalen-1-yl- κO)methylidene]-L-valinato-κO}copper(II) trihydrate top
Crystal data top
[Cu(C16H15NO3)(C10H8N2)]·3H2OZ = 2
Mr = 543.06F(000) = 566
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.295 (1) ÅCell parameters from 2185 reflections
b = 9.7861 (11) Åθ = 2.8–23.9°
c = 14.3819 (15) ŵ = 0.93 mm1
α = 79.971 (1)°T = 298 K
β = 74.718 (1)°Block, green
γ = 85.745 (2)°0.46 × 0.43 × 0.42 mm
V = 1242.1 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4306 independent reflections
Radiation source: fine-focus sealed tube3246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1110
Tmin = 0.675, Tmax = 0.697k = 1111
6423 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.5836P]
where P = (Fo2 + 2Fc2)/3
4306 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C16H15NO3)(C10H8N2)]·3H2Oγ = 85.745 (2)°
Mr = 543.06V = 1242.1 (2) Å3
Triclinic, P1Z = 2
a = 9.295 (1) ÅMo Kα radiation
b = 9.7861 (11) ŵ = 0.93 mm1
c = 14.3819 (15) ÅT = 298 K
α = 79.971 (1)°0.46 × 0.43 × 0.42 mm
β = 74.718 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4306 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3246 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.697Rint = 0.022
6423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
4306 reflectionsΔρmin = 0.27 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54013 (4)0.29935 (4)0.23335 (3)0.03351 (14)
N10.6348 (2)0.2715 (2)0.34020 (17)0.0276 (5)
N20.3955 (3)0.4995 (3)0.22238 (19)0.0396 (6)
N30.4708 (3)0.3005 (3)0.11297 (17)0.0324 (6)
O10.7456 (2)0.3182 (2)0.15227 (14)0.0398 (5)
O20.9811 (2)0.2916 (3)0.15860 (16)0.0507 (6)
O30.3595 (2)0.2123 (2)0.31584 (14)0.0400 (5)
O40.1797 (3)0.0875 (3)0.22315 (18)0.0628 (7)
H4A0.12220.15580.21010.075*
H4B0.23970.11890.24930.075*
O51.0190 (3)0.2087 (3)0.97155 (18)0.0662 (7)
H5A0.99550.25261.01970.079*
H5B0.94190.16480.97460.079*
O60.8146 (3)1.0165 (3)0.95467 (19)0.0689 (8)
H6A0.80961.01140.89720.083*
H6B0.87070.95090.97370.083*
C10.8461 (3)0.2996 (3)0.1986 (2)0.0346 (7)
C20.7965 (3)0.2931 (3)0.3090 (2)0.0316 (7)
H20.84730.21350.33960.038*
C30.8416 (4)0.4271 (3)0.3358 (2)0.0452 (8)
H30.95020.43180.31070.054*
C40.7762 (4)0.5558 (4)0.2846 (3)0.0714 (13)
H4C0.66930.55280.30370.107*
H4D0.81090.55930.21520.107*
H4E0.80710.63690.30240.107*
C50.8084 (5)0.4242 (5)0.4448 (3)0.0878 (15)
H5C0.85710.49940.45770.132*
H5D0.84450.33760.47470.132*
H5E0.70270.43360.47120.132*
C60.5780 (3)0.2084 (3)0.4268 (2)0.0298 (7)
H60.64350.18030.46600.036*
C70.4246 (3)0.1769 (3)0.4694 (2)0.0284 (7)
C80.3236 (3)0.1816 (3)0.4110 (2)0.0333 (7)
C90.1733 (3)0.1428 (4)0.4575 (2)0.0451 (8)
H90.10620.14360.41960.054*
C100.1265 (4)0.1050 (3)0.5553 (3)0.0464 (9)
H100.02710.08280.58310.056*
C110.2239 (4)0.0982 (3)0.6167 (2)0.0371 (7)
C120.3742 (3)0.1334 (3)0.5741 (2)0.0317 (7)
C130.4680 (4)0.1241 (3)0.6382 (2)0.0412 (8)
H130.56750.14730.61310.049*
C140.4150 (4)0.0817 (4)0.7363 (2)0.0506 (9)
H140.48000.07500.77630.061*
C150.2672 (4)0.0484 (4)0.7777 (2)0.0521 (9)
H150.23290.02080.84470.062*
C160.1735 (4)0.0567 (3)0.7188 (2)0.0450 (8)
H160.07400.03470.74620.054*
C170.3553 (4)0.5916 (4)0.2821 (3)0.0521 (9)
H170.40920.59280.32800.062*
C180.2377 (4)0.6866 (4)0.2804 (3)0.0604 (10)
H180.21460.75160.32260.072*
C190.1567 (4)0.6813 (4)0.2144 (3)0.0577 (10)
H190.07620.74280.21160.069*
C200.1939 (4)0.5860 (4)0.1527 (3)0.0503 (9)
H200.13880.58150.10800.060*
C210.3148 (3)0.4960 (3)0.1574 (2)0.0365 (7)
C220.3657 (3)0.3928 (3)0.0911 (2)0.0329 (7)
C230.3139 (4)0.3911 (4)0.0096 (2)0.0457 (9)
H230.24170.45600.00530.055*
C240.3696 (4)0.2929 (4)0.0490 (2)0.0492 (9)
H240.33300.28900.10270.059*
C250.4792 (4)0.2009 (4)0.0281 (2)0.0461 (9)
H250.52010.13500.06790.055*
C260.5271 (3)0.2084 (3)0.0532 (2)0.0386 (8)
H260.60210.14650.06750.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0338 (2)0.0408 (2)0.0286 (2)0.00009 (16)0.01315 (16)0.00514 (16)
N10.0273 (13)0.0314 (14)0.0270 (13)0.0036 (10)0.0095 (11)0.0070 (11)
N20.0389 (15)0.0396 (16)0.0432 (16)0.0040 (12)0.0146 (13)0.0104 (13)
N30.0348 (14)0.0367 (15)0.0273 (13)0.0032 (12)0.0116 (11)0.0028 (11)
O10.0360 (12)0.0569 (14)0.0283 (11)0.0049 (10)0.0110 (10)0.0056 (10)
O20.0308 (13)0.0765 (18)0.0449 (14)0.0010 (11)0.0045 (11)0.0184 (12)
O30.0334 (12)0.0581 (15)0.0311 (12)0.0085 (10)0.0141 (10)0.0015 (10)
O40.0614 (17)0.0731 (18)0.0638 (17)0.0118 (13)0.0305 (14)0.0114 (14)
O50.0723 (18)0.079 (2)0.0531 (16)0.0036 (15)0.0199 (14)0.0236 (14)
O60.0751 (19)0.0676 (18)0.0730 (19)0.0152 (14)0.0312 (16)0.0233 (15)
C10.0339 (18)0.0337 (18)0.0380 (18)0.0014 (14)0.0105 (15)0.0083 (14)
C20.0298 (16)0.0342 (17)0.0333 (17)0.0019 (13)0.0124 (13)0.0066 (13)
C30.041 (2)0.050 (2)0.049 (2)0.0096 (16)0.0097 (16)0.0181 (17)
C40.067 (3)0.039 (2)0.117 (4)0.0012 (19)0.031 (3)0.024 (2)
C50.112 (4)0.103 (4)0.061 (3)0.043 (3)0.017 (3)0.040 (3)
C60.0339 (17)0.0314 (17)0.0285 (17)0.0009 (13)0.0148 (13)0.0069 (13)
C70.0320 (16)0.0266 (16)0.0288 (16)0.0015 (13)0.0089 (13)0.0084 (13)
C80.0318 (17)0.0348 (18)0.0341 (18)0.0002 (13)0.0092 (14)0.0070 (14)
C90.0353 (19)0.060 (2)0.042 (2)0.0069 (16)0.0125 (16)0.0076 (17)
C100.0338 (19)0.051 (2)0.052 (2)0.0061 (16)0.0030 (16)0.0127 (17)
C110.046 (2)0.0258 (17)0.0362 (18)0.0024 (14)0.0023 (15)0.0086 (14)
C120.0421 (18)0.0222 (15)0.0311 (17)0.0022 (13)0.0063 (14)0.0087 (13)
C130.047 (2)0.045 (2)0.0328 (18)0.0051 (16)0.0095 (15)0.0100 (15)
C140.070 (3)0.053 (2)0.0316 (19)0.0014 (19)0.0160 (18)0.0113 (16)
C150.075 (3)0.045 (2)0.0284 (18)0.0003 (19)0.0009 (19)0.0079 (16)
C160.052 (2)0.0311 (18)0.043 (2)0.0018 (16)0.0054 (17)0.0090 (15)
C170.053 (2)0.057 (2)0.052 (2)0.0083 (19)0.0185 (18)0.0188 (19)
C180.059 (2)0.058 (3)0.067 (3)0.014 (2)0.015 (2)0.026 (2)
C190.043 (2)0.049 (2)0.079 (3)0.0135 (18)0.015 (2)0.010 (2)
C200.042 (2)0.049 (2)0.062 (2)0.0049 (17)0.0207 (18)0.0040 (19)
C210.0326 (17)0.0347 (18)0.0406 (19)0.0053 (14)0.0126 (15)0.0053 (14)
C220.0287 (16)0.0386 (18)0.0300 (16)0.0066 (14)0.0084 (13)0.0023 (14)
C230.041 (2)0.054 (2)0.045 (2)0.0048 (17)0.0246 (17)0.0061 (18)
C240.056 (2)0.063 (2)0.0331 (19)0.0151 (19)0.0196 (17)0.0029 (18)
C250.052 (2)0.057 (2)0.0329 (18)0.0079 (18)0.0125 (16)0.0113 (16)
C260.0428 (19)0.0415 (19)0.0350 (18)0.0014 (15)0.0154 (15)0.0076 (15)
Geometric parameters (Å, º) top
Cu1—N11.934 (2)C7—C81.409 (4)
Cu1—O31.939 (2)C7—C121.450 (4)
Cu1—O11.961 (2)C8—C91.429 (4)
Cu1—N31.999 (2)C9—C101.351 (5)
Cu1—N22.298 (3)C9—H90.9300
N1—C61.283 (3)C10—C111.413 (4)
N1—C21.471 (3)C10—H100.9300
N2—C171.319 (4)C11—C121.411 (4)
N2—C211.349 (4)C11—C161.414 (4)
N3—C261.337 (4)C12—C131.415 (4)
N3—C221.342 (4)C13—C141.365 (4)
O1—C11.270 (3)C13—H130.9300
O2—C11.238 (3)C14—C151.384 (5)
O3—C81.306 (3)C14—H140.9300
O4—H4A0.8500C15—C161.354 (5)
O4—H4B0.8500C15—H150.9300
O5—H5A0.8499C16—H160.9300
O5—H5B0.8500C17—C181.383 (5)
O6—H6A0.8499C17—H170.9300
O6—H6B0.8499C18—C191.368 (5)
C1—C21.523 (4)C18—H180.9300
C2—C31.545 (4)C19—C201.362 (5)
C2—H20.9800C19—H190.9300
C3—C51.511 (5)C20—C211.385 (4)
C3—C41.516 (5)C20—H200.9300
C3—H30.9800C21—C221.477 (4)
C4—H4C0.9600C22—C231.382 (4)
C4—H4D0.9600C23—C241.371 (5)
C4—H4E0.9600C23—H230.9300
C5—H5C0.9600C24—C251.368 (5)
C5—H5D0.9600C24—H240.9300
C5—H5E0.9600C25—C261.371 (4)
C6—C71.430 (4)C25—H250.9300
C6—H60.9300C26—H260.9300
N1—Cu1—O392.02 (9)O3—C8—C7124.4 (3)
N1—Cu1—O183.66 (9)O3—C8—C9117.1 (3)
O3—Cu1—O1159.67 (9)C7—C8—C9118.4 (3)
N1—Cu1—N3168.99 (10)C10—C9—C8121.5 (3)
O3—Cu1—N391.75 (9)C10—C9—H9119.2
O1—Cu1—N389.24 (9)C8—C9—H9119.2
N1—Cu1—N2114.65 (10)C9—C10—C11122.0 (3)
O3—Cu1—N285.89 (9)C9—C10—H10119.0
O1—Cu1—N2113.99 (9)C11—C10—H10119.0
N3—Cu1—N275.94 (10)C12—C11—C10118.6 (3)
C6—N1—C2118.8 (2)C12—C11—C16120.1 (3)
C6—N1—Cu1125.5 (2)C10—C11—C16121.3 (3)
C2—N1—Cu1113.63 (17)C11—C12—C13116.7 (3)
C17—N2—C21117.9 (3)C11—C12—C7119.7 (3)
C17—N2—Cu1130.5 (2)C13—C12—C7123.6 (3)
C21—N2—Cu1109.3 (2)C14—C13—C12121.2 (3)
C26—N3—C22118.7 (3)C14—C13—H13119.4
C26—N3—Cu1120.6 (2)C12—C13—H13119.4
C22—N3—Cu1120.6 (2)C13—C14—C15121.8 (3)
C1—O1—Cu1115.39 (19)C13—C14—H14119.1
C8—O3—Cu1126.99 (18)C15—C14—H14119.1
H4A—O4—H4B105.7C16—C15—C14118.9 (3)
H5A—O5—H5B105.8C16—C15—H15120.6
H6A—O6—H6B109.9C14—C15—H15120.6
O2—C1—O1123.5 (3)C15—C16—C11121.4 (3)
O2—C1—C2118.9 (3)C15—C16—H16119.3
O1—C1—C2117.5 (3)C11—C16—H16119.3
N1—C2—C1107.9 (2)N2—C17—C18123.9 (3)
N1—C2—C3113.4 (2)N2—C17—H17118.1
C1—C2—C3109.2 (2)C18—C17—H17118.1
N1—C2—H2108.7C19—C18—C17117.5 (4)
C1—C2—H2108.7C19—C18—H18121.2
C3—C2—H2108.7C17—C18—H18121.2
C5—C3—C4112.4 (3)C20—C19—C18120.0 (3)
C5—C3—C2112.8 (3)C20—C19—H19120.0
C4—C3—C2111.7 (3)C18—C19—H19120.0
C5—C3—H3106.5C19—C20—C21119.1 (3)
C4—C3—H3106.5C19—C20—H20120.4
C2—C3—H3106.5C21—C20—H20120.4
C3—C4—H4C109.5N2—C21—C20121.5 (3)
C3—C4—H4D109.5N2—C21—C22115.9 (3)
H4C—C4—H4D109.5C20—C21—C22122.6 (3)
C3—C4—H4E109.5N3—C22—C23120.8 (3)
H4C—C4—H4E109.5N3—C22—C21115.6 (3)
H4D—C4—H4E109.5C23—C22—C21123.5 (3)
C3—C5—H5C109.5C24—C23—C22119.5 (3)
C3—C5—H5D109.5C24—C23—H23120.2
H5C—C5—H5D109.5C22—C23—H23120.2
C3—C5—H5E109.5C25—C24—C23119.7 (3)
H5C—C5—H5E109.5C25—C24—H24120.1
H5D—C5—H5E109.5C23—C24—H24120.1
N1—C6—C7126.7 (3)C24—C25—C26118.1 (3)
N1—C6—H6116.6C24—C25—H25120.9
C7—C6—H6116.6C26—C25—H25120.9
C8—C7—C6121.1 (3)N3—C26—C25123.0 (3)
C8—C7—C12119.7 (3)N3—C26—H26118.5
C6—C7—C12119.2 (3)C25—C26—H26118.5
O3—Cu1—N1—C62.9 (2)Cu1—O3—C8—C9168.2 (2)
O1—Cu1—N1—C6157.1 (2)C6—C7—C8—O30.9 (5)
N3—Cu1—N1—C6107.0 (5)C12—C7—C8—O3176.3 (3)
N2—Cu1—N1—C689.3 (2)C6—C7—C8—C9177.2 (3)
O3—Cu1—N1—C2166.36 (19)C12—C7—C8—C90.1 (4)
O1—Cu1—N1—C26.28 (18)O3—C8—C9—C10177.9 (3)
N3—Cu1—N1—C256.4 (6)C7—C8—C9—C101.4 (5)
N2—Cu1—N1—C2107.24 (19)C8—C9—C10—C111.7 (5)
N1—Cu1—N2—C177.2 (3)C9—C10—C11—C120.6 (5)
O3—Cu1—N2—C1783.1 (3)C9—C10—C11—C16179.2 (3)
O1—Cu1—N2—C17101.3 (3)C10—C11—C12—C13179.5 (3)
N3—Cu1—N2—C17175.9 (3)C16—C11—C12—C130.3 (4)
N1—Cu1—N2—C21169.10 (19)C10—C11—C12—C70.7 (4)
O3—Cu1—N2—C2178.8 (2)C16—C11—C12—C7179.5 (3)
O1—Cu1—N2—C2196.8 (2)C8—C7—C12—C110.9 (4)
N3—Cu1—N2—C2114.08 (19)C6—C7—C12—C11178.2 (3)
N1—Cu1—N3—C266.4 (7)C8—C7—C12—C13179.3 (3)
O3—Cu1—N3—C26103.6 (2)C6—C7—C12—C132.0 (4)
O1—Cu1—N3—C2656.1 (2)C11—C12—C13—C140.6 (4)
N2—Cu1—N3—C26171.1 (2)C7—C12—C13—C14179.6 (3)
N1—Cu1—N3—C22174.3 (4)C12—C13—C14—C151.2 (5)
O3—Cu1—N3—C2275.7 (2)C13—C14—C15—C160.8 (5)
O1—Cu1—N3—C22124.6 (2)C14—C15—C16—C110.1 (5)
N2—Cu1—N3—C229.6 (2)C12—C11—C16—C150.6 (5)
N1—Cu1—O1—C12.9 (2)C10—C11—C16—C15179.1 (3)
O3—Cu1—O1—C175.7 (3)C21—N2—C17—C181.6 (5)
N3—Cu1—O1—C1168.7 (2)Cu1—N2—C17—C18162.2 (3)
N2—Cu1—O1—C1117.1 (2)N2—C17—C18—C191.8 (6)
N1—Cu1—O3—C812.5 (2)C17—C18—C19—C200.7 (6)
O1—Cu1—O3—C889.6 (3)C18—C19—C20—C210.5 (6)
N3—Cu1—O3—C8177.8 (2)C17—N2—C21—C200.3 (5)
N2—Cu1—O3—C8102.1 (2)Cu1—N2—C21—C20164.7 (3)
Cu1—O1—C1—O2171.2 (2)C17—N2—C21—C22179.0 (3)
Cu1—O1—C1—C211.4 (3)Cu1—N2—C21—C2216.6 (3)
C6—N1—C2—C1152.0 (3)C19—C20—C21—N20.7 (5)
Cu1—N1—C2—C112.6 (3)C19—C20—C21—C22177.9 (3)
C6—N1—C2—C386.9 (3)C26—N3—C22—C231.5 (4)
Cu1—N1—C2—C3108.5 (2)Cu1—N3—C22—C23177.8 (2)
O2—C1—C2—N1166.8 (3)C26—N3—C22—C21176.8 (3)
O1—C1—C2—N115.7 (4)Cu1—N3—C22—C213.8 (3)
O2—C1—C2—C369.5 (3)N2—C21—C22—N310.1 (4)
O1—C1—C2—C3108.0 (3)C20—C21—C22—N3171.2 (3)
N1—C2—C3—C564.6 (4)N2—C21—C22—C23168.1 (3)
C1—C2—C3—C5175.1 (3)C20—C21—C22—C2310.6 (5)
N1—C2—C3—C463.2 (4)N3—C22—C23—C240.6 (5)
C1—C2—C3—C457.2 (4)C21—C22—C23—C24178.7 (3)
C2—N1—C6—C7179.3 (3)C22—C23—C24—C252.1 (5)
Cu1—N1—C6—C716.7 (4)C23—C24—C25—C261.6 (5)
N1—C6—C7—C816.5 (5)C22—N3—C26—C252.1 (5)
N1—C6—C7—C12166.3 (3)Cu1—N3—C26—C25177.3 (2)
Cu1—O3—C8—C715.5 (4)C24—C25—C26—N30.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.992.823 (3)168
O4—H4B···O30.852.002.847 (3)172
O5—H5A···O2ii0.852.072.870 (3)158
O5—H5B···O6iii0.852.042.852 (4)160
O6—H6A···O4iv0.852.102.900 (4)156
O6—H6B···O5v0.851.972.814 (4)174
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C16H15NO3)(C10H8N2)]·3H2O
Mr543.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.295 (1), 9.7861 (11), 14.3819 (15)
α, β, γ (°)79.971 (1), 74.718 (1), 85.745 (2)
V3)1242.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.46 × 0.43 × 0.42
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.675, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
6423, 4306, 3246
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.04
No. of reflections4306
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.992.823 (3)167.6
O4—H4B···O30.852.002.847 (3)172.3
O5—H5A···O2ii0.852.072.870 (3)157.5
O5—H5B···O6iii0.852.042.852 (4)159.5
O6—H6A···O4iv0.852.102.900 (4)155.8
O6—H6B···O5v0.851.972.814 (4)173.8
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+2.
 

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant No. 21071134) and the National Natural Science Foundation of China (grant No. 20971115).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationKano, S., Nakano, H., Kojima, M., Baba, N. & Nakajima, K. (2003). Inorg. Chim. Acta, 349, 6–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P., Drew, M. G., Tangoulis, V., Estrader, M., Diaz, C. & Ghosh, A. (2009). Inorg. Chem. Commun. 12, 929–932.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds