organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Bis(1H-benzimidazol-2-yl)pyridine butyric acid monosolvate dihydrate

Songzhu Lin,* Ruokun Jia and Aimin He

Northeast Dianli University, Jilin 132012, People's Republic of China Correspondence e-mail: songzhulin@hotmail.com

Received 2 May 2012; accepted 15 May 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.144; data-to-parameter ratio = 12.5.

In the title compound, $C_{19}H_{13}N_5 \cdot C_4H_8O_2 \cdot 2H_2O$, the molecular skeleton of the 2.6-bis(benzimidazol-2-yl)pyridine (bbip) molecule is essentially planar (r.m.s. deviation = 0.023 Å). An extensive three-dimensional network of intermolecular $N-H\cdots O$, $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds consolidates the crystal packing, which also exhibits $\pi - \pi$ interactions between the five- and six-membered rings from neighbouring bbip molecules.

Related literature

For background to supramolecular interactions, see: Dale et al. (2004); Braga et al. (2005); Ring et al. (2006). For related structures, see: Freire et al. (2003); Xiao et al. (2010).

Experimental

Crystal data

 $C_{19}H_{13}N_5 \cdot C_4H_8O_2 \cdot 2H_2O_1$ $M_r = 435.48$ Triclinic, $P\overline{1}$ a = 9.3950 (19) Åb = 9.5611 (19) Å c = 13.805 (3) Å $\alpha = 103.27 (2)^{\circ}$ $\beta = 99.91 \ (3)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.982, T_{\max} = 0.987$ 8683 measured reflections

 $\gamma = 104.76 \ (3)^{\circ}$ V = 1131.5 (4) Å³ Z = 2Mo Ka radiation $\mu = 0.09 \text{ mm}^-$ T = 295 K $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

3981 independent reflections 3195 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$ 3 standard reflections every 100 reflections intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.144$	independent and constrained
S = 1.10	refinement
3981 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
318 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
6 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H2\cdots O2W$	0.90 (2)	2.12 (1)	3.006 (2)	166 (2)
$N5-H1\cdots O2W$	0.86(2)	2.234 (19)	3.083 (2)	169.1 (17)
$O1W - H2W1 \cdots N4$	0.83(2)	1.96 (1)	2.7901 (19)	178 (3)
$O2W - H2W2 \cdots O1W^{i}$	0.82(2)	2.04 (1)	2.852 (2)	168 (3)
$O2W - H1W2 \cdot \cdot \cdot O1W^{ii}$	0.81(2)	2.06 (1)	2.856 (2)	168 (3)
$O1W - H1W1 \cdots O1^{iii}$	0.82(2)	2.00(1)	2.795 (2)	166 (3)
$O2-H3\cdots N2$	0.85 (2)	1.89 (1)	2.712 (2)	164 (2)

Symmetry codes: (i) -x, -y + 2, -z; (ii) x + 1, y, z; (iii) -x - 1, -y + 1, -z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software: data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 51003010), the Natural Science Foundation of Jilin Province (grant No. 201115178) and the Science and Technology Development Project of Jilin Province (grant No. SKLSSM201132).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5296).

References

- Braga, D., Brammer, L. & Champness, N. R. (2005). CrystEngComm, 7, 1-19. Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328-335
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freire, E., Baggio, S., Muñoz, J. C. & Baggio, R. (2003). Acta Cryst. C59, o259-0262
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Ring, D. J., Blake, A. J., Champness, N. R. & Wilson, C. (2006). CrystEngComm, 8, 29-32.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xiao, H., Wang, G. & Jian, F. (2010). Acta Cryst. C66, 0446-0448.

supporting information

Acta Cryst. (2012). E68, o1820 [doi:10.1107/S1600536812021915]

2,6-Bis(1*H*-benzimidazol-2-yl)pyridine butyric acid monosolvate dihydrate

Songzhu Lin, Ruokun Jia and Aimin He

S1. Comment

Crystal engineering of extended frameworks can readily be achieved using a variety of supramolecular interactions (Braga *et al.*, 2005; Ring *et al.*, 2006). However, the prediction of the solid state packing of simple organic cocrystals still remains an ongoing challenge (Dale *et al.*, 2004). The supramolecular interactions, such as hydrogen bonding and π - π stacking interactions, can create network materials with infinite 1-D, 2-D or 3-D structural motifs. The supramolecular structures with 2,6-bis(benzimidazol-2-yl)pyridine have been reported in recent year (Freire *et al.*, 2003; Xiao *et al.*, 2010). As a continuation of those works, we report the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Freire *et al.*, 2003; Xiao *et al.*, 2010). The aromatic C—C and C—N bond lengths in both the benzimidazole and pyridine rings are within the usual range. All C and N atoms in the 2,6-bis(benzimidazol-2-yl)pyridine molecule are almost coplanr with the largest deviation of 0.060 Å for C4.

In the crystal, the N—H···O, N—H···O and O—H···O hydrogen bonds (Table 1) consolidate the packing, which exhibits π - π interactions with the following center-to-center distances - Cg1···Cg1=3.625 (2) Å and Cg2···Cg3=3.775 (2) Å, where Cg1, Cg2 and Cg3 are centroids of N4/C13/N5/C19/C14, C14—C19 and N3/C8—C12, respectively.

S2. Experimental

2,6-Bis(benzimidazol-2-yl)pyridine (0.062 g, 0.20 mmol) and butyric acid (0.018 g, 0.20 mmol) were dissolved in 30 ml solution mixed with ethanol and water by 2:1(V/V), then heated to refluxed for 6 h and cooled to the room temperature. Single crystals suitable for X-ray measurements were obtained by recrystallization at room temperature.

S3. Refinement

N- and O-bound H atoms were found in a difference Fourier map, and isotropically refined with the restraints (O—H = 0.82 (2), 0.85 (2) Å; N—H = 0.88 (2) Å). C-bound H atoms were fixed geometrically (C—H = 0.93–0.97 Å), and refined as riding, with U_{iso} (H) =1.2–1.5 U_{eq} (C).

Figure 1

View of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

2,6-Bis(1*H*-benzimidazol-2-yl)pyridine butyric acid monosolvate dihydrate

Crystal data	
$\begin{array}{l} C_{19}H_{13}N_5 \cdot C_4H_8O_2 \cdot 2H_2O \\ M_r = 435.48 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 9.3950 \ (19) \text{ Å} \\ b = 9.5611 \ (19) \text{ Å} \\ c = 13.805 \ (3) \text{ Å} \\ a = 103.27 \ (2)^{\circ} \\ \beta = 99.91 \ (3)^{\circ} \\ \gamma = 104.76 \ (3)^{\circ} \\ V = 1131.5 \ (4) \text{ Å}^3 \end{array}$	Z = 2 F(000) = 460 $D_x = 1.278 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.20 \times 0.18 \times 0.15 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.982, T_{max} = 0.987$ 8683 measured reflections	3981 independent reflections 3195 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 10$ $l = -16 \rightarrow 16$ 3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent
$wR(F^2) = 0.144$	and constrained refinement
S = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.0925P)^2 + 0.059P]$
3981 reflections	where $P = (F_o^2 + 2F_c^2)/3$
318 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
6 restraints	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.25 \ m e \ { m \AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.007 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.12979 (14)	0.51453 (15)	-0.18153 (10)	0.0466 (3)	
N2	-0.05854 (14)	0.30191 (14)	-0.26517 (10)	0.0482 (3)	
N3	-0.04327 (13)	0.62903 (14)	-0.06414 (9)	0.0407 (3)	
N4	-0.10826 (15)	0.91520 (15)	0.12949 (10)	0.0473 (3)	
N5	0.10055 (14)	0.91107 (14)	0.07405 (10)	0.0423 (3)	
C1	0.06996 (18)	0.29713 (18)	-0.30066 (12)	0.0491 (4)	
C2	0.0931 (2)	0.1845 (2)	-0.37465 (15)	0.0685 (5)	
H2B	0.0151	0.0957	-0.4100	0.082*	
C3	0.2354 (2)	0.2091 (2)	-0.39367 (18)	0.0796 (6)	
H3B	0.2528	0.1363	-0.4437	0.095*	
C4	0.3535 (2)	0.3401 (3)	-0.33982 (19)	0.0801 (7)	
H4B	0.4485	0.3517	-0.3538	0.096*	
C5	0.3335 (2)	0.4530 (2)	-0.26625 (15)	0.0652 (5)	
H5B	0.4126	0.5406	-0.2303	0.078*	
C6	0.18948 (18)	0.42972 (18)	-0.24846 (12)	0.0479 (4)	
C7	-0.01687 (16)	0.43359 (16)	-0.19367 (11)	0.0424 (4)	
C8	-0.11129 (17)	0.49146 (16)	-0.13058 (11)	0.0422 (4)	
C9	-0.25971 (18)	0.40738 (18)	-0.13928 (13)	0.0526 (4)	
H9A	-0.3028	0.3116	-0.1857	0.063*	
C10	-0.34091 (19)	0.46967 (19)	-0.07748 (14)	0.0575 (5)	
H10A	-0.4405	0.4162	-0.0816	0.069*	
C11	-0.27421 (18)	0.61135 (18)	-0.00955 (13)	0.0511 (4)	
H11A	-0.3277	0.6555	0.0326	0.061*	

C12	-0.12534 (16)	0.68670 (16)	-0.00542 (11)	0.0408 (4)
C13	-0.04638 (16)	0.83768 (16)	0.06640 (11)	0.0409 (3)
C14	0.00703 (18)	1.04751 (17)	0.18249 (11)	0.0464 (4)
C15	0.0069 (2)	1.1702 (2)	0.25982 (14)	0.0621 (5)
H15A	-0.0794	1.1716	0.2839	0.075*
C16	0.1385 (2)	1.2887 (2)	0.29928 (15)	0.0689 (5)
H16A	0.1412	1.3716	0.3511	0.083*
C17	0.2687 (2)	1.2877 (2)	0.26338 (14)	0.0633 (5)
H17A	0.3556	1.3705	0.2918	0.076*
C18	0.27226 (19)	1.16824 (18)	0.18751 (13)	0.0536 (4)
H18A	0.3589	1.1682	0.1636	0.064*
C19	0.13926 (17)	1.04728 (17)	0.14830 (11)	0.0438 (4)
01	-0.44196 (15)	0.06635 (14)	-0.27630 (11)	0.0743 (4)
O2	-0.28356 (15)	0.04486 (15)	-0.37563 (10)	0.0657 (4)
C20	-0.7674 (3)	-0.3547 (3)	-0.4697 (2)	0.1110 (10)
H20A	-0.8595	-0.3850	-0.4481	0.167*
H20B	-0.7183	-0.4317	-0.4725	0.167*
H20C	-0.7909	-0.3404	-0.5366	0.167*
C21	-0.6624 (2)	-0.2079 (2)	-0.39388 (18)	0.0824 (7)
H21A	-0.7139	-0.1315	-0.3902	0.099*
H21B	-0.6411	-0.2228	-0.3263	0.099*
C22	-0.5148 (2)	-0.1512 (2)	-0.42169 (14)	0.0611 (5)
H22A	-0.4618	-0.2261	-0.4227	0.073*
H22B	-0.5366	-0.1408	-0.4905	0.073*
C23	-0.41213 (18)	-0.00337 (18)	-0.35032 (13)	0.0500 (4)
O1W	-0.40511 (15)	0.92334 (16)	0.11934 (11)	0.0647 (4)
O2W	0.32779 (16)	0.81969 (16)	-0.04472 (12)	0.0690 (4)
H2	0.1745 (19)	0.6070 (13)	-0.1365 (11)	0.057 (5)*
H1	0.156 (2)	0.873 (2)	0.0390 (14)	0.056 (5)*
H2W1	-0.3168 (14)	0.920 (3)	0.1236 (19)	0.100 (8)*
H2W2	0.350 (3)	0.885 (2)	-0.0747 (19)	0.116 (10)*
H1W2	0.407 (2)	0.839 (3)	-0.0027 (17)	0.129 (12)*
H1W1	-0.435 (3)	0.928 (3)	0.1717 (13)	0.106 (9)*
H3	-0.228 (2)	0.1309 (16)	-0.3376 (16)	0.096 (8)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0350 (7)	0.0439 (7)	0.0510 (7)	0.0049 (5)	0.0084 (6)	0.0045 (6)
N2	0.0399 (7)	0.0449 (7)	0.0514 (7)	0.0072 (6)	0.0116 (6)	0.0037 (6)
N3	0.0329 (6)	0.0430 (7)	0.0420 (6)	0.0082 (5)	0.0075 (5)	0.0094 (5)
N4	0.0398 (7)	0.0497 (7)	0.0466 (7)	0.0087 (6)	0.0125 (6)	0.0070 (6)
N5	0.0336 (7)	0.0437 (7)	0.0456 (7)	0.0076 (5)	0.0109 (5)	0.0089 (6)
C1	0.0409 (9)	0.0491 (9)	0.0513 (9)	0.0088 (7)	0.0121 (7)	0.0078 (7)
C2	0.0587 (11)	0.0579 (11)	0.0726 (12)	0.0080 (9)	0.0231 (9)	-0.0063 (9)
C3	0.0684 (13)	0.0722 (13)	0.0897 (14)	0.0193 (10)	0.0379 (11)	-0.0039 (11)
C4	0.0530 (12)	0.0789 (13)	0.1034 (16)	0.0164 (10)	0.0377 (11)	0.0069 (12)
C5	0.0414 (9)	0.0656 (11)	0.0781 (12)	0.0069 (8)	0.0204 (9)	0.0071 (10)

C6	0.0401 (8)	0.0490 (8)	0.0510 (9)	0.0116 (7)	0.0120 (7)	0.0094 (7)
C7	0.0351 (8)	0.0431 (8)	0.0445 (8)	0.0082 (6)	0.0065 (6)	0.0106 (6)
C8	0.0364 (8)	0.0405 (7)	0.0456 (8)	0.0082 (6)	0.0073 (6)	0.0104 (6)
C9	0.0399 (9)	0.0417 (8)	0.0638 (10)	0.0011 (7)	0.0123 (8)	0.0048 (7)
C10	0.0368 (8)	0.0498 (9)	0.0759 (12)	-0.0013 (7)	0.0209 (8)	0.0102 (8)
C11	0.0403 (9)	0.0485 (9)	0.0615 (10)	0.0072 (7)	0.0215 (7)	0.0104 (7)
C12	0.0337 (8)	0.0426 (8)	0.0441 (8)	0.0075 (6)	0.0092 (6)	0.0138 (6)
C13	0.0340 (8)	0.0431 (8)	0.0415 (8)	0.0064 (6)	0.0079 (6)	0.0114 (6)
C14	0.0438 (9)	0.0447 (8)	0.0432 (8)	0.0073 (7)	0.0080 (7)	0.0076 (7)
C15	0.0603 (11)	0.0585 (10)	0.0579 (10)	0.0134 (9)	0.0179 (8)	0.0011 (8)
C16	0.0769 (14)	0.0522 (10)	0.0569 (10)	0.0108 (9)	0.0056 (9)	-0.0058 (8)
C17	0.0569 (11)	0.0499 (9)	0.0618 (11)	-0.0010 (8)	-0.0030 (9)	0.0077 (8)
C18	0.0413 (9)	0.0513 (9)	0.0569 (10)	0.0023 (7)	0.0027 (7)	0.0138 (8)
C19	0.0387 (8)	0.0453 (8)	0.0416 (8)	0.0073 (6)	0.0041 (6)	0.0118 (7)
01	0.0559 (8)	0.0539 (7)	0.0927 (10)	0.0011 (6)	0.0302 (7)	-0.0089 (7)
O2	0.0543 (8)	0.0667 (8)	0.0587 (7)	0.0007 (6)	0.0171 (6)	0.0021 (6)
C20	0.103 (2)	0.0735 (15)	0.1010 (18)	-0.0274 (14)	-0.0127 (15)	0.0078 (13)
C21	0.0645 (13)	0.0620 (12)	0.0910 (15)	-0.0090 (10)	0.0110 (11)	0.0033 (11)
C22	0.0641 (12)	0.0533 (9)	0.0529 (9)	0.0096 (9)	0.0011 (8)	0.0096 (8)
C23	0.0453 (9)	0.0477 (9)	0.0533 (9)	0.0119 (7)	0.0087 (7)	0.0123 (7)
O1W	0.0420 (7)	0.0799 (9)	0.0668 (8)	0.0146 (6)	0.0135 (6)	0.0150 (7)
O2W	0.0487 (8)	0.0607 (8)	0.0793 (9)	-0.0024 (6)	0.0019 (7)	0.0172 (7)

Geometric parameters (Å, °)

N1—C7	1.358 (2)	C11—H11A	0.9300
N1C6	1.375 (2)	C12—C13	1.470 (2)
N1—H2	0.90 (2)	C14—C15	1.393 (2)
N2—C7	1.3259 (19)	C14—C19	1.403 (2)
N2C1	1.386 (2)	C15—C16	1.371 (3)
N3—C12	1.3350 (19)	C15—H15A	0.9300
N3—C8	1.3401 (19)	C16—C17	1.398 (3)
N4—C13	1.3203 (19)	C16—H16A	0.9300
N4—C14	1.383 (2)	C17—C18	1.373 (3)
N5—C13	1.3533 (19)	C17—H17A	0.9300
N5-C19	1.377 (2)	C18—C19	1.391 (2)
N5—H1	0.86 (2)	C18—H18A	0.9300
C1—C2	1.393 (2)	O1—C23	1.203 (2)
C1—C6	1.401 (2)	O2—C23	1.315 (2)
C2—C3	1.379 (3)	O2—H3	0.85 (2)
C2—H2B	0.9300	C20—C21	1.518 (3)
C3—C4	1.391 (3)	C20—H20A	0.9600
С3—Н3В	0.9300	C20—H20B	0.9600
C4—C5	1.378 (3)	C20—H20C	0.9600
C4—H4B	0.9300	C21—C22	1.504 (3)
C5—C6	1.388 (2)	C21—H21A	0.9700
С5—Н5В	0.9300	C21—H21B	0.9700
С7—С8	1.465 (2)	C22—C23	1.496 (2)

C8—C9	1.390 (2)	C22—H22A	0.9700
C9—C10	1.374 (2)	C22—H22B	0.9700
С9—Н9А	0.9300	O1W—H2W1	0.83 (2)
C10—C11	1.374 (2)	O1W—H1W1	0.82 (2)
C10—H10A	0.9300	O2W—H2W2	0.82 (2)
C11—C12	1.385 (2)	O2W—H1W2	0.81 (2)
C7—N1—C6	107.54 (13)	N4—C13—N5	113.13 (13)
C7—N1—H2	123.1 (12)	N4—C13—C12	124.76 (13)
C6—N1—H2	129.3 (12)	N5—C13—C12	122.12 (13)
C7—N2—C1	104.86 (13)	N4—C14—C15	129.84 (16)
C12—N3—C8	117.15 (13)	N4—C14—C19	110.09 (13)
C13—N4—C14	104.64 (13)	C15—C14—C19	120.07 (16)
C13—N5—C19	107.30 (13)	C16—C15—C14	117.73 (18)
C13—N5—H1	123.4 (13)	C16—C15—H15A	121.1
C19—N5—H1	129.3 (13)	C14—C15—H15A	121.1
N2—C1—C2	130.11 (16)	C15—C16—C17	121.52 (17)
N2—C1—C6	109.96 (14)	C15—C16—H16A	119.2
C2—C1—C6	119.92 (16)	C17—C16—H16A	119.2
C3—C2—C1	117.73 (18)	C18—C17—C16	122.03 (17)
С3—С2—Н2В	121.1	C18—C17—H17A	119.0
C1—C2—H2B	121.1	C16—C17—H17A	119.0
C2—C3—C4	121.61 (18)	C17—C18—C19	116.43 (17)
С2—С3—Н3В	119.2	C17—C18—H18A	121.8
С4—С3—Н3В	119.2	C19—C18—H18A	121.8
C5—C4—C3	121.71 (18)	N5—C19—C18	132.95 (15)
C5—C4—H4B	119.1	N5-C19-C14	104.84 (14)
C3—C4—H4B	119.1	C18—C19—C14	122.20 (15)
C4—C5—C6	116.72 (18)	С23—О2—Н3	113.9 (17)
C4—C5—H5B	121.6	C21—C20—H20A	109.5
С6—С5—Н5В	121.6	C21—C20—H20B	109.5
N1—C6—C5	132.63 (16)	H20A—C20—H20B	109.5
N1—C6—C1	105.07 (14)	C21—C20—H20C	109.5
C5—C6—C1	122.27 (16)	H20A-C20-H20C	109.5
N2—C7—N1	112.57 (13)	H20B-C20-H20C	109.5
N2—C7—C8	126.42 (14)	C22—C21—C20	113.3 (2)
N1—C7—C8	121.00 (13)	C22—C21—H21A	108.9
N3—C8—C9	123.26 (14)	C20—C21—H21A	108.9
N3—C8—C7	115.06 (13)	C22—C21—H21B	108.9
C9—C8—C7	121.67 (14)	C20—C21—H21B	108.9
C10—C9—C8	118.15 (15)	H21A—C21—H21B	107.7
С10—С9—Н9А	120.9	C23—C22—C21	114.24 (16)
С8—С9—Н9А	120.9	C23—C22—H22A	108.7
C9—C10—C11	119.67 (15)	C21—C22—H22A	108.7
C9—C10—H10A	120.2	C23—C22—H22B	108.7
C11-C10-H10A	120.2	C21—C22—H22B	108.7
C10-C11-C12	118.33 (15)	H22A—C22—H22B	107.6
C10—C11—H11A	120.8	O1—C23—O2	122.25 (16)

C12—C11—H11A	120.8	O1—C23—C22	124.19 (16)
N3—C12—C11	123.43 (14)	O2—C23—C22	113.56 (15)
N3—C12—C13	115.37 (13)	H2W1—O1W—H1W1	117 (3)
C11—C12—C13	121.19 (14)	H2W2—O2W—H1W2	102 (3)
C7—N2—C1—C2	178.8 (2)	C8—N3—C12—C13	179.95 (13)
C7—N2—C1—C6	-0.07 (19)	C10-C11-C12-N3	0.1 (3)
N2—C1—C2—C3	-178.9 (2)	C10-C11-C12-C13	-179.18 (15)
C6-C1-C2-C3	-0.1 (3)	C14—N4—C13—N5	-0.62 (17)
C1—C2—C3—C4	1.3 (4)	C14—N4—C13—C12	179.13 (14)
C2—C3—C4—C5	-1.3 (4)	C19—N5—C13—N4	0.37 (18)
C3—C4—C5—C6	0.0 (4)	C19—N5—C13—C12	-179.38 (13)
C7—N1—C6—C5	-177.18 (19)	N3-C12-C13-N4	178.66 (14)
C7—N1—C6—C1	0.76 (18)	C11—C12—C13—N4	-2.0 (2)
C4—C5—C6—N1	178.9 (2)	N3-C12-C13-N5	-1.6 (2)
C4—C5—C6—C1	1.2 (3)	C11—C12—C13—N5	177.75 (14)
N2-C1-C6-N1	-0.43 (19)	C13—N4—C14—C15	-178.98 (18)
C2-C1-C6-N1	-179.43 (17)	C13—N4—C14—C19	0.63 (17)
N2—C1—C6—C5	177.78 (16)	N4-C14-C15-C16	-179.71 (17)
C2-C1-C6-C5	-1.2 (3)	C19—C14—C15—C16	0.7 (3)
C1—N2—C7—N1	0.58 (18)	C14—C15—C16—C17	0.2 (3)
C1—N2—C7—C8	-178.33 (15)	C15—C16—C17—C18	-0.4 (3)
C6—N1—C7—N2	-0.87 (19)	C16—C17—C18—C19	-0.3 (3)
C6—N1—C7—C8	178.11 (14)	C13—N5—C19—C18	-179.13 (17)
C12—N3—C8—C9	-1.1 (2)	C13—N5—C19—C14	0.05 (17)
C12—N3—C8—C7	179.62 (13)	C17—C18—C19—N5	-179.70 (17)
N2—C7—C8—N3	-179.30 (14)	C17—C18—C19—C14	1.2 (2)
N1—C7—C8—N3	1.9 (2)	N4—C14—C19—N5	-0.42 (17)
N2—C7—C8—C9	1.4 (3)	C15-C14-C19-N5	179.24 (15)
N1—C7—C8—C9	-177.42 (15)	N4—C14—C19—C18	178.87 (14)
N3—C8—C9—C10	0.9 (3)	C15-C14-C19-C18	-1.5 (3)
C7—C8—C9—C10	-179.91 (15)	C20—C21—C22—C23	177.6 (2)
C8—C9—C10—C11	-0.1 (3)	C21—C22—C23—O1	0.2 (3)
C9—C10—C11—C12	-0.4 (3)	C21—C22—C23—O2	-179.94 (17)
C8—N3—C12—C11	0.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H2···O2W	0.90 (2)	2.12 (1)	3.006 (2)	166 (2)
N5—H1···O2 <i>W</i>	0.86 (2)	2.234 (19)	3.083 (2)	169.1 (17)
O1 <i>W</i> —H2 <i>W</i> 1…N4	0.83 (2)	1.96 (1)	2.7901 (19)	178 (3)
$O2W - H2W2 \cdots O1W^{i}$	0.82 (2)	2.04 (1)	2.852 (2)	168 (3)
$O2W - H1W2 \cdots O1W^{ii}$	0.81 (2)	2.06(1)	2.856 (2)	168 (3)
O1 <i>W</i> —H1 <i>W</i> 1…O1 ⁱⁱⁱ	0.82 (2)	2.00(1)	2.795 (2)	166 (3)
O2—H3…N2	0.85 (2)	1.89(1)	2.712 (2)	164 (2)

Symmetry codes: (i) -x, -y+2, -z; (ii) x+1, y, z; (iii) -x-1, -y+1, -z.