organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­sulfonyl-4-(tri­fluoro­meth­yl)benzoic acid

aEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 7 May 2012; accepted 17 May 2012; online 23 May 2012)

In the title mol­ecule, C9H7F3O4S, the S and the methyl C atoms of the methyl­sulfonyl group deviate from the benzene ring plane by 0.185 (2) and −1.394 (3) Å, respectively. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains along [201]. Weak C—H⋯O inter­actions further link these chains into layers parallel to the ac plane.

Related literature

For details of the synthesis, see: Cain et al. (1998[Cain, P. A., Cramp, S. M., Lambert, C., Wallis, D. I., Yarwood, T. D., Little, G. M., Morris, J., Musil, T., Pettit, S. N. & Smith, P. H. G. (1998). US Patent No. 5804532.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7F3O4S

  • Mr = 268.21

  • Monoclinic, P 21 /c

  • a = 5.0804 (10) Å

  • b = 17.345 (4) Å

  • c = 11.576 (2) Å

  • β = 95.41 (3)°

  • V = 1015.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.39 × 0.32 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.926

  • 9132 measured reflections

  • 2250 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.11

  • 2250 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 (1) 1.92 (1) 2.725 (3) 169 (4)
C9—H9B⋯O3ii 0.96 2.35 3.208 (3) 148
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is a intermediate in the synthesis of sulfonylurea herbicides developed and produced by E. I. du Pont de Nemours and Company. Herein, we report its crystal structure.

In (I) (Fig. 1), the S and the methyl C atoms of the methylsulfonyl group deviate from the benzene ring plane at 0.185 (2) and -1.394 (3) Å, respectively. Intermoleculear O—H···O hydrogen bonds (Table 1) link the molecules into chains along [201] (Fig. 2), and weak C—H···O interactions (Table 1) link further these chains into layers parallel to ac plane.

Related literature top

For details of the synthesis, see: Cain et al. (1998).

Experimental top

The title compound was prepared by the reaction of 2-(methylsulphenyl)-4-trifluoromethylbenzoic acid and hydrogen peroxide in acetic acid at 10 ° (Cain et al., 1998). A colourless crystal suitable for single-crystal X-ray diffraction was obtained by the recrystallization from dichloromethane.

Refinement top

C-bound H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 – 0.96 Å , and with Uiso(H) = 1.2 – 1.5 Ueq(C). O-bound H atoms were located in a differece Fourier map and were refined with restraint as O—H = 0.82 (1) Å, and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) chains.
2-Methylsulfonyl-4-(trifluoromethyl)benzoic acid top
Crystal data top
C9H7F3O4SF(000) = 544
Mr = 268.21Dx = 1.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8167 reflections
a = 5.0804 (10) Åθ = 3.0–27.5°
b = 17.345 (4) ŵ = 0.36 mm1
c = 11.576 (2) ÅT = 293 K
β = 95.41 (3)°Block, colorless
V = 1015.6 (4) Å30.39 × 0.32 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2250 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scanθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.871, Tmax = 0.926k = 2222
9132 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.7827P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C9H7F3O4SV = 1015.6 (4) Å3
Mr = 268.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0804 (10) ŵ = 0.36 mm1
b = 17.345 (4) ÅT = 293 K
c = 11.576 (2) Å0.39 × 0.32 × 0.22 mm
β = 95.41 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1879 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.926Rint = 0.029
9132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.39 e Å3
2250 reflectionsΔρmin = 0.38 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2822 (5)0.85011 (13)0.09229 (19)0.0319 (5)
C20.4291 (5)0.80387 (12)0.17524 (19)0.0284 (5)
C30.6265 (5)0.83602 (13)0.25122 (19)0.0304 (5)
H30.72420.80510.30510.037*
C40.6780 (5)0.91494 (13)0.2467 (2)0.0337 (5)
C50.5314 (5)0.96140 (14)0.1677 (2)0.0392 (6)
H50.56361.01410.16580.047*
C60.3360 (5)0.92880 (14)0.0911 (2)0.0396 (6)
H60.23860.96020.03780.048*
C70.0778 (5)0.81875 (14)0.0022 (2)0.0353 (5)
C80.8793 (5)0.94984 (14)0.3342 (2)0.0389 (6)
C90.4951 (5)0.65356 (15)0.0879 (2)0.0436 (6)
H9A0.47150.59920.09840.065*
H9B0.68030.66490.08890.065*
H9C0.40620.66910.01470.065*
F11.0869 (4)0.90478 (10)0.35927 (19)0.0655 (5)
F20.7743 (4)0.96498 (13)0.43239 (16)0.0743 (6)
F30.9734 (4)1.01622 (10)0.29917 (18)0.0648 (5)
O10.0598 (4)0.75293 (11)0.02770 (17)0.0511 (5)
O20.0822 (4)0.87346 (13)0.0433 (2)0.0594 (6)
H20.187 (6)0.853 (2)0.092 (3)0.089*
O30.0826 (3)0.69334 (11)0.19817 (16)0.0409 (4)
O40.5177 (4)0.68310 (10)0.30716 (16)0.0420 (4)
S10.36264 (11)0.70384 (3)0.20026 (5)0.02965 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (12)0.0354 (12)0.0275 (10)0.0014 (9)0.0052 (9)0.0003 (9)
C20.0292 (11)0.0281 (10)0.0270 (10)0.0019 (8)0.0027 (9)0.0010 (8)
C30.0292 (11)0.0307 (11)0.0298 (10)0.0012 (9)0.0056 (9)0.0011 (9)
C40.0343 (13)0.0323 (11)0.0340 (11)0.0041 (9)0.0002 (10)0.0039 (9)
C50.0465 (15)0.0295 (11)0.0402 (13)0.0049 (10)0.0025 (11)0.0017 (9)
C60.0461 (15)0.0348 (12)0.0358 (12)0.0008 (10)0.0079 (11)0.0054 (10)
C70.0363 (13)0.0409 (13)0.0264 (11)0.0014 (10)0.0080 (10)0.0021 (9)
C80.0381 (14)0.0344 (12)0.0426 (13)0.0063 (10)0.0053 (11)0.0041 (10)
C90.0411 (14)0.0387 (13)0.0500 (15)0.0002 (11)0.0014 (12)0.0120 (11)
F10.0520 (11)0.0479 (10)0.0892 (14)0.0019 (8)0.0329 (10)0.0072 (9)
F20.0700 (14)0.1067 (17)0.0459 (10)0.0298 (12)0.0039 (9)0.0328 (10)
F30.0673 (12)0.0446 (9)0.0773 (12)0.0257 (8)0.0208 (10)0.0066 (9)
O10.0628 (14)0.0392 (10)0.0453 (10)0.0044 (9)0.0255 (10)0.0005 (8)
O20.0596 (14)0.0481 (12)0.0622 (13)0.0101 (10)0.0377 (11)0.0121 (10)
O30.0279 (9)0.0490 (10)0.0441 (10)0.0075 (7)0.0047 (8)0.0036 (8)
O40.0404 (10)0.0411 (10)0.0410 (10)0.0038 (7)0.0135 (8)0.0091 (7)
S10.0264 (3)0.0294 (3)0.0313 (3)0.0036 (2)0.0070 (2)0.0017 (2)
Geometric parameters (Å, º) top
C1—C61.392 (3)C7—O11.194 (3)
C1—C21.410 (3)C7—O21.326 (3)
C1—C71.502 (3)C8—F11.322 (3)
C2—C31.387 (3)C8—F31.325 (3)
C2—S11.796 (2)C8—F21.326 (3)
C3—C41.396 (3)C9—S11.753 (3)
C3—H30.9300C9—H9A0.9600
C4—C51.383 (3)C9—H9B0.9600
C4—C81.498 (3)C9—H9C0.9600
C5—C61.387 (4)O2—H20.816 (10)
C5—H50.9300O3—S11.4325 (18)
C6—H60.9300O4—S11.4484 (18)
C6—C1—C2118.2 (2)O2—C7—C1112.0 (2)
C6—C1—C7118.1 (2)F1—C8—F3106.1 (2)
C2—C1—C7123.6 (2)F1—C8—F2107.8 (2)
C3—C2—C1120.5 (2)F3—C8—F2106.0 (2)
C3—C2—S1114.94 (17)F1—C8—C4112.9 (2)
C1—C2—S1124.32 (17)F3—C8—C4112.8 (2)
C2—C3—C4119.8 (2)F2—C8—C4110.8 (2)
C2—C3—H3120.1S1—C9—H9A109.5
C4—C3—H3120.1S1—C9—H9B109.5
C5—C4—C3120.3 (2)H9A—C9—H9B109.5
C5—C4—C8120.2 (2)S1—C9—H9C109.5
C3—C4—C8119.3 (2)H9A—C9—H9C109.5
C4—C5—C6119.6 (2)H9B—C9—H9C109.5
C4—C5—H5120.2C7—O2—H2107 (3)
C6—C5—H5120.2O3—S1—O4116.25 (11)
C5—C6—C1121.5 (2)O3—S1—C9112.01 (13)
C5—C6—H6119.3O4—S1—C9107.14 (13)
C1—C6—H6119.3O3—S1—C2108.76 (11)
O1—C7—O2122.8 (2)O4—S1—C2106.40 (11)
O1—C7—C1125.2 (2)C9—S1—C2105.64 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.82 (1)1.92 (1)2.725 (3)169 (4)
C9—H9B···O3ii0.962.353.208 (3)148
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H7F3O4S
Mr268.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.0804 (10), 17.345 (4), 11.576 (2)
β (°) 95.41 (3)
V3)1015.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.39 × 0.32 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.871, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
9132, 2250, 1879
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.11
No. of reflections2250
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.816 (10)1.920 (13)2.725 (3)169 (4)
C9—H9B···O3ii0.962.353.208 (3)148.3
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Project of Innovation Service Platform of Heilongjiang Province (grant No. PG09J001) and Heilongjiang University for support.

References

First citationCain, P. A., Cramp, S. M., Lambert, C., Wallis, D. I., Yarwood, T. D., Little, G. M., Morris, J., Musil, T., Pettit, S. N. & Smith, P. H. G. (1998). US Patent No. 5804532.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds