organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-N′-phenyl­benzohydrazide

aDepartamento de Química, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 9 May 2012; accepted 16 May 2012; online 23 May 2012)

In the title compound, C13H13N3O, the NNCO unit forms dihedral angles of 35.8 (1) and 84.0 (1)° with the benzene and phenyl rings, respectively. The dihedral angles between the aromatic rings is 61.2 (1)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by weak N—H⋯O hydrogen bonds into C(4) chains parallel to the c axis. Neighbouring chains are linked by weak N—H⋯N hydrogen bonds, forming R44(20) rings, and resulting in the formation of a two-dimensional network lying parallel to (010). The packing also features ππ stacking inter­actions between phenyl rings [centroid–centroid distance = 3.803 (2) Å].

Related literature

For the pharmacological activity of quinazolinones, see: Kamal et al. (2010[Kamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010). Bioorg. Med. Chem. 18, 526-542.]) and of benzotriazepinones, see: Filippakopoulos et al. (2012[Filippakopoulos, P., Picaud, S., Fedorov, O., Keller, M., Wrobel, M., Morgenstern, O., Bracher, F. & Stefan Knapp, S. (2012). Bioorg. Med. Chem. 20, 1878-1886.]); Spencer et al. (2008[Spencer, J., Gaffen, J., Griffin, E., Harper, E. A., Linney, I. D., McDonald, I. M., Roberts, S. P., Shaxted, M. E., Adatia, T. & Bashall, A. (2008). Bioorg. Med. Chem. 16, 2974-2983.]). For the synthesis of the starting material 1H-benzo[d][1,3]oxazine-2,4-dione, see: Iwakura et al. (1976[Iwakura, Y., Uno, K. & Kang, S. (1976). J. Org. Chem. 31, 142-146.]); Leiby & Heindel (1976[Leiby, R. W. & Heindel, N. D. (1976). J. Org. Chem. 41, 2736-2739.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O

  • Mr = 227.26

  • Monoclinic, P 21 /c

  • a = 6.1190 (12) Å

  • b = 19.921 (4) Å

  • c = 9.6490 (19) Å

  • β = 94.08 (3)°

  • V = 1173.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.21 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 17096 measured reflections

  • 2923 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.163

  • S = 1.09

  • 2923 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.07 2.903 (2) 162
N3—H3A⋯O1 0.86 (3) 2.21 (3) 2.845 (2) 131 (2)
N2—H2⋯N3ii 0.86 2.54 3.126 (3) 126
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York; Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 2-amino-N'-phenylbenzohydrazide 2 is a key intermediate to obtain quinazolinones and benzotriazepines derivatives. The quinazolinone nucleous and its derivatives have been extensively studied because of their wide range of pharmacological activities, including antiviral, antibacterial, antifungal, antimalarial, anticancer, antihypertensive, diuretic, anticonvulsant and anti-inflammatory (Kamal et al., 2010). On the other hand, the benzotriazepinones have been described as efficient enzymatic inhibitors (Filippakopoulos et al., 2012; Spencer et al., 2008). We report herein on the synthesis and crystal structure of the title compound, a member of this important family of compounds. In the title molecule, Fig. 1, the NNCO moiety form a dihedral angle of 35.8 (1)° and 84.0 (1)° with benzene and phenyl rings respectively. The dihedral angles between the aromatic rings is 61.2 (1)°. In the crystal the molecules are packed via ππ stacking interaction [centroid–centroid distance 3.803 (2) Å] and linked by N1—H1···O1(x, -y + 3/2, z + 1/2) weak hydrogen bond to form a C(4) chain running parallel to the c axis, which are linked to neighboring chains by N2—H3···N3(x - 1, y, z) weak hydrogen bond to form R44(20) centrosymmetric rings (Bernstein et al., 1995). One intramolecular N—H···O hydrogen bond is observed too, Fig.2, Table1.

Related literature top

For the pharmacological activity of quinazolinones, see: Kamal et al. (2010) and of benzotriazepinones, see: Filippakopoulos et al. (2012); Spencer et al. (2008). For the synthesis of the starting material 1H-benzo[d][1,3]oxazine-2,4-dione, see: Iwakura et al. (1976); Leiby & Heindel (1976). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The synthesis of the 2-amino-N'-phenylbenzohydrazide 2 was done starting of isatoic anhydride (1H-benzo[d][1,3]oxazine-2,4-dione) (Leiby & Heindel 1976; Iwakura et al., 1976), which was treated with phenyl hydrazine in DMF at reflux by 2 h to give an 82% yield. The product was crystallized in ethyl acetate with melting point 227–228 °C. UV λ(MeOH) 310, 280 and 225 nm, λ(MeONa) 340, 265 and 225 nm. IR cm-1, (Nujol), 3300 (NH), 1670 (carbonyl).

Refinement top

The H-atoms could be located in difference Fourier maps. H3A and H3B atoms parameters were freely refined. The remaining H atoms, were positioned geometrically and treated using a riding model with N—H = 0.86 Å, C—H = 0.93 with Uiso(H) = k × Ueq(N,C), where k = 1.2 for both atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound, showing the formation of the N—H··· O hydrogen bonded chain and the centrosymmetric R44 (20) rings [see Table 1 for details; the H-atoms not involved in hydrogen-bonding have been omitted for clarity]
2-Amino-N'-phenylbenzohydrazide top
Crystal data top
C13H13N3OF(000) = 480
Mr = 227.26Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2923 reflections
a = 6.1190 (12) Åθ = 3.9–28.6°
b = 19.921 (4) ŵ = 0.09 mm1
c = 9.6490 (19) ÅT = 293 K
β = 94.08 (3)°Block, colourless
V = 1173.2 (4) Å30.40 × 0.21 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 28.6°, θmin = 3.9°
ϕ and ω scans with κ offsetsh = 08
17096 measured reflectionsk = 026
2923 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.7268P]
where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C13H13N3OV = 1173.2 (4) Å3
Mr = 227.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1190 (12) ŵ = 0.09 mm1
b = 19.921 (4) ÅT = 293 K
c = 9.6490 (19) Å0.40 × 0.21 × 0.10 mm
β = 94.08 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2330 reflections with I > 2σ(I)
17096 measured reflectionsRint = 0.092
2923 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.53 e Å3
2923 reflectionsΔρmin = 0.49 e Å3
162 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6118 (2)0.71063 (8)0.36635 (13)0.0430 (4)
N10.5506 (3)0.73222 (8)0.58950 (15)0.0377 (4)
H10.59430.75270.66480.045*
N20.3725 (3)0.68841 (9)0.59083 (17)0.0407 (4)
H20.24010.70210.57360.049*
N31.0637 (3)0.73656 (12)0.3383 (2)0.0499 (5)
H3A0.956 (5)0.7108 (13)0.312 (3)0.059 (8)*
H3B1.161 (5)0.7445 (14)0.273 (3)0.073 (8)*
C10.6555 (3)0.74322 (9)0.47424 (17)0.0313 (4)
C20.8220 (3)0.79772 (9)0.48509 (17)0.0323 (4)
C30.7862 (3)0.85526 (10)0.5633 (2)0.0421 (5)
H30.65850.85870.60950.051*
C40.9359 (4)0.90690 (12)0.5732 (3)0.0560 (6)
H40.90950.94500.62530.067*
C51.1263 (4)0.90142 (13)0.5046 (3)0.0575 (6)
H51.22910.93590.51150.069*
C61.1644 (3)0.84588 (12)0.4269 (2)0.0483 (5)
H61.29360.84310.38200.058*
C71.0137 (3)0.79316 (10)0.41334 (18)0.0364 (4)
C80.4207 (3)0.62058 (11)0.62176 (19)0.0387 (4)
C90.6191 (4)0.59962 (12)0.6849 (2)0.0484 (5)
H90.73200.63040.70300.058*
C100.6494 (5)0.53310 (14)0.7208 (3)0.0668 (7)
H100.78260.51950.76420.080*
C110.4861 (6)0.48666 (14)0.6935 (3)0.0756 (9)
H110.50890.44170.71650.091*
C120.2896 (6)0.50745 (15)0.6322 (3)0.0744 (9)
H120.17800.47630.61410.089*
C130.2535 (4)0.57384 (14)0.5967 (2)0.0574 (6)
H130.11810.58730.55620.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (8)0.0618 (9)0.0262 (6)0.0055 (7)0.0065 (5)0.0045 (6)
N10.0373 (8)0.0497 (10)0.0269 (7)0.0088 (7)0.0078 (6)0.0030 (6)
N20.0271 (8)0.0565 (11)0.0392 (9)0.0040 (7)0.0075 (6)0.0005 (7)
N30.0307 (9)0.0768 (14)0.0433 (10)0.0021 (9)0.0102 (8)0.0160 (9)
C10.0273 (8)0.0423 (10)0.0244 (8)0.0062 (7)0.0036 (6)0.0025 (7)
C20.0314 (9)0.0411 (10)0.0247 (8)0.0037 (7)0.0042 (6)0.0069 (7)
C30.0428 (11)0.0431 (11)0.0416 (11)0.0052 (9)0.0110 (8)0.0008 (8)
C40.0652 (15)0.0420 (12)0.0619 (14)0.0052 (11)0.0122 (12)0.0036 (10)
C50.0571 (14)0.0535 (14)0.0623 (15)0.0169 (11)0.0069 (11)0.0088 (11)
C60.0358 (10)0.0681 (15)0.0418 (11)0.0061 (10)0.0080 (8)0.0098 (10)
C70.0312 (9)0.0518 (11)0.0264 (8)0.0050 (8)0.0029 (7)0.0054 (7)
C80.0369 (10)0.0527 (12)0.0277 (9)0.0090 (9)0.0110 (7)0.0053 (8)
C90.0466 (12)0.0556 (13)0.0429 (11)0.0047 (10)0.0032 (9)0.0023 (9)
C100.0792 (18)0.0638 (17)0.0579 (15)0.0090 (14)0.0075 (13)0.0107 (12)
C110.115 (3)0.0522 (16)0.0625 (17)0.0101 (17)0.0263 (17)0.0061 (12)
C120.094 (2)0.0721 (19)0.0589 (16)0.0427 (17)0.0213 (15)0.0099 (13)
C130.0503 (13)0.0728 (17)0.0496 (13)0.0242 (12)0.0069 (10)0.0072 (11)
Geometric parameters (Å, º) top
O1—C11.240 (2)C5—C61.366 (4)
N1—C11.341 (2)C5—H50.9300
N1—N21.397 (2)C6—C71.397 (3)
N1—H10.8600C6—H60.9300
N2—C81.411 (3)C8—C91.384 (3)
N2—H20.8600C8—C131.392 (3)
N3—C71.386 (3)C9—C101.379 (4)
N3—H3A0.86 (3)C9—H90.9300
N3—H3B0.91 (3)C10—C111.374 (4)
C1—C21.487 (3)C10—H100.9300
C2—C31.398 (3)C11—C121.366 (5)
C2—C71.407 (2)C11—H110.9300
C3—C41.376 (3)C12—C131.380 (4)
C3—H30.9300C12—H120.9300
C4—C51.385 (4)C13—H130.9300
C4—H40.9300
C1—N1—N2121.98 (15)C5—C6—C7121.5 (2)
C1—N1—H1119.0C5—C6—H6119.2
N2—N1—H1119.0C7—C6—H6119.2
N1—N2—C8116.67 (15)N3—C7—C6119.45 (18)
N1—N2—H2121.7N3—C7—C2122.17 (19)
C8—N2—H2121.7C6—C7—C2118.23 (18)
C7—N3—H3A116.4 (18)C9—C8—C13119.1 (2)
C7—N3—H3B113.5 (18)C9—C8—N2123.09 (18)
H3A—N3—H3B115 (3)C13—C8—N2117.7 (2)
O1—C1—N1121.54 (17)C10—C9—C8119.9 (2)
O1—C1—C2123.18 (16)C10—C9—H9120.0
N1—C1—C2115.26 (15)C8—C9—H9120.0
C3—C2—C7119.10 (18)C11—C10—C9121.1 (3)
C3—C2—C1120.27 (16)C11—C10—H10119.5
C7—C2—C1120.60 (17)C9—C10—H10119.5
C4—C3—C2121.46 (19)C12—C11—C10119.0 (3)
C4—C3—H3119.3C12—C11—H11120.5
C2—C3—H3119.3C10—C11—H11120.5
C3—C4—C5119.1 (2)C11—C12—C13121.2 (3)
C3—C4—H4120.5C11—C12—H12119.4
C5—C4—H4120.5C13—C12—H12119.4
C6—C5—C4120.6 (2)C12—C13—C8119.7 (3)
C6—C5—H5119.7C12—C13—H13120.2
C4—C5—H5119.7C8—C13—H13120.2
C1—N1—N2—C889.2 (2)C3—C2—C7—N3177.46 (18)
N2—N1—C1—O16.4 (3)C1—C2—C7—N34.6 (3)
N2—N1—C1—C2172.28 (16)C3—C2—C7—C61.9 (3)
O1—C1—C2—C3142.55 (19)C1—C2—C7—C6179.85 (16)
N1—C1—C2—C336.1 (2)N1—N2—C8—C917.7 (3)
O1—C1—C2—C735.3 (3)N1—N2—C8—C13167.37 (17)
N1—C1—C2—C7146.01 (17)C13—C8—C9—C100.6 (3)
C7—C2—C3—C41.0 (3)N2—C8—C9—C10175.5 (2)
C1—C2—C3—C4178.95 (19)C8—C9—C10—C110.8 (4)
C2—C3—C4—C50.3 (3)C9—C10—C11—C121.3 (4)
C3—C4—C5—C60.7 (4)C10—C11—C12—C130.4 (4)
C4—C5—C6—C70.3 (4)C11—C12—C13—C80.9 (4)
C5—C6—C7—N3177.3 (2)C9—C8—C13—C121.4 (3)
C5—C6—C7—C21.6 (3)N2—C8—C13—C12176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.072.903 (2)162
N3—H3A···O10.86 (3)2.21 (3)2.845 (2)131 (2)
N2—H2···N3ii0.862.543.126 (3)126
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H13N3O
Mr227.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1190 (12), 19.921 (4), 9.6490 (19)
β (°) 94.08 (3)
V3)1173.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.21 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17096, 2923, 2330
Rint0.092
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.163, 1.09
No. of reflections2923
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.49

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.072.903 (2)162
N3—H3A···O10.86 (3)2.21 (3)2.845 (2)131 (2)
N2—H2···N3ii0.862.543.126 (3)126
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

We are grateful to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilippakopoulos, P., Picaud, S., Fedorov, O., Keller, M., Wrobel, M., Morgenstern, O., Bracher, F. & Stefan Knapp, S. (2012). Bioorg. Med. Chem. 20, 1878–1886.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIwakura, Y., Uno, K. & Kang, S. (1976). J. Org. Chem. 31, 142–146.  CrossRef Web of Science Google Scholar
First citationKamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010). Bioorg. Med. Chem. 18, 526–542.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLeiby, R. W. & Heindel, N. D. (1976). J. Org. Chem. 41, 2736–2739.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, J., Gaffen, J., Griffin, E., Harper, E. A., Linney, I. D., McDonald, I. M., Roberts, S. P., Shaxted, M. E., Adatia, T. & Bashall, A. (2008). Bioorg. Med. Chem. 16, 2974–2983.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds