metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-glutarato-κ4O1:O5-bis­­{aqua­[5,6-di­phenyl-3-(pyridin-2-yl)-1,2,4-triazine-κ2N2,N3]copper(II)}

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 14 May 2012; accepted 19 May 2012; online 26 May 2012)

In the centrosymmetric dinuclear title complex, [Cu2(C5H6O4)2(C20H14N4)2(H2O)2], the Cu atom displays a distorted square-pyramidal coordination environment with the basal plane occupied by two 5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine N atoms and two O atoms from different glutarate dianions, while a water mol­ecule is located at the apical position. Of the two water H atoms, one is engaged in an intra­molecular O—H⋯O hydrogen bond, whereas the second is engaged in an inter­molecular O—H⋯O hydrogen bond. The intermolecular hydrogen bonds lead to the formation of a chain along [010].

Related literature

For the biological activity and applications of triazines, see: Garcia et al. (1995[Garcia, G., Solano, I., Sanchez, G. & Lopez, G. (1995). Polyhedron, 14, 1855-1863.]); Mashaly et al. (1999[Mashaly, M., Bayoumi, H. A. & Taha, A. (1999). J. Serb. Chem. Soc. 64, 621-635.]); Soudi et al. (2005[Soudi, A. A., Marandi, F., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1631-1637.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5H6O4)2(C20H14N4)2(H2O)2]

  • Mr = 1044.01

  • Triclinic, [P \overline 1]

  • a = 9.4297 (19) Å

  • b = 10.429 (2) Å

  • c = 12.471 (3) Å

  • α = 81.37 (3)°

  • β = 71.00 (3)°

  • γ = 79.83 (3)°

  • V = 1135.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 295 K

  • 0.21 × 0.13 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.854

  • 11269 measured reflections

  • 5148 independent reflections

  • 3478 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.107

  • S = 1.03

  • 5148 reflections

  • 324 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.973 (2)
Cu1—O4i 1.917 (2)
Cu1—O5 2.390 (3)
Cu1—N1 2.025 (2)
Cu1—N4 2.033 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.84 1.94 2.744 (3) 161
O5—H5B⋯O1ii 0.82 2.25 3.045 (3) 162
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous compounds containing 1,2,4-triazine moieties are well known in natural materials and show interesting biological, pharmacological and medicinal properties (Garcia et al., 1995). In particularly, the ligand 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (PDPT) exhibits interesting properties such as blood platelet aggregation inhibition, antiviral and anticancer (leukemia and ovarian) and anti-HIV activity (Mashaly et al., 1999; Soudi et al., 2005). The title complex, (I), was recently prepared and its crystal structure is reported here.

The title compound crystal structure is composed of centrosymmetric dinuclear [Cu2(H2O)2(PDPT)2(C5H6O4)2] complex molecule (Fig. 1). The dinuclear complex molecules are centered at the crystallographic 1e positions. Each Cu atom is coordinated to two N atoms of the chelating PDPT ligand and three O atoms of one H2O molecule and two bis-monodentate glutarato ligands to form a slightly distorted square-pyramidal coordination with H2O molecule located at the apical position (d(Cu-N) = 2.024 (2), 2.033 (2) Å, the basal d(Cu-O) = 1.917 (2), 1.973 (2) Å, the axial d(Cu-O) = 2.390 (3) Å). Through the glutarato ligands, the square-pyramidally coordinated Cu atoms are linked to form a centrosymmetric dinuclear complex. As expected, the Cu atom is shifted toward the apical water O atom by 0.209 (1) Å from the least-squares plane defined by the four equatorial coordinating atoms. The triazine ring adopts a slight twist conformation. The dihedral angle between the two phenyl rings is 61.0 (1)°.

As shown in the Fig. 2, within the crystal structure, the water molecule O5 forms a strong intramolecular hydrogen bond to the uncoordinated carboxyl O3#1 (#1 = -x+1, -y+1, -z) with d(O···O) = 2.744 (3) Å and O5-H5A···O3#1 = 161°. Moreover, it forms an intermolecular hydrogen bond to the coordinated carboxyl O1#2 (#2 = -x+1, -y, -z) atoms (d(O···O) = 3.045 (3) Å and O5-H5B···O1#2 = 162°) to connect the dinuclear complexes along the [010] direction.

Related literature top

For the biological activity and applications of triazines, see: Garcia et al. (1995); Mashaly et al. (1999); Soudi et al. (2005).

Experimental top

Addition of 2.0 mL (1.0 M) NaOH to a stirred aqueous of 0.172 g (1.0 mmol) CuCl2.2H2O in 5.0 mL H2O yield a blue precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions in supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.132 g (1.0 mmol) glutaric acid in 20 mL EtOH/H2O (v:v = 1: 1). To the resulting suspension was added 0.310 g (1.0 mmol) 3-(2-pyridyl)-5,6-diphenyl-1,2,4- triazine (PDPT). The mixture was further stirred for approximately 15 min and the insoluble solid was filtered off. The filtrate (pH = 6.3) was allowed to stand at room temperature. Slow evaporation for two weeks afforded a small amount of brown crystals (yield 62% based on the initial CuCl2.2H2O input).

Refinement top

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O were located in difference Fourier maps and placed at fixed positions with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound (40% thermal ellipsoids) showing the atom-labeling scheme. [Symmetry Code: (i) 1-x, 1-y, -z)]
[Figure 2] Fig. 2. One dimensional chain connected through hydrogen bonds along [010].
Di-µ-glutarato-κ4O1:O5- bis{aqua[5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine- κ2N2,N3]copper(II)} top
Crystal data top
[Cu2(C5H6O4)2(C20H14N4)2(H2O)2]Z = 1
Mr = 1044.01F(000) = 538
Triclinic, P1Dx = 1.526 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4297 (19) ÅCell parameters from 8151 reflections
b = 10.429 (2) Åθ = 3.3–27.5°
c = 12.471 (3) ŵ = 1.01 mm1
α = 81.37 (3)°T = 295 K
β = 71.00 (3)°Block, brown
γ = 79.83 (3)°0.21 × 0.13 × 0.11 mm
V = 1135.7 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5148 independent reflections
Radiation source: fine-focus sealed tube3478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.732, Tmax = 0.854k = 1313
11269 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.453P]
where P = (Fo2 + 2Fc2)/3
5148 reflections(Δ/σ)max < 0.001
324 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C5H6O4)2(C20H14N4)2(H2O)2]γ = 79.83 (3)°
Mr = 1044.01V = 1135.7 (4) Å3
Triclinic, P1Z = 1
a = 9.4297 (19) ÅMo Kα radiation
b = 10.429 (2) ŵ = 1.01 mm1
c = 12.471 (3) ÅT = 295 K
α = 81.37 (3)°0.21 × 0.13 × 0.11 mm
β = 71.00 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5148 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3478 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.854Rint = 0.046
11269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
5148 reflectionsΔρmin = 0.36 e Å3
324 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2s˘F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26103 (4)0.21246 (4)0.03910 (3)0.03895 (13)
N10.1594 (3)0.0660 (2)0.1459 (2)0.0330 (6)
N20.0584 (3)0.0381 (2)0.2006 (2)0.0330 (5)
N30.2040 (3)0.0002 (2)0.2326 (2)0.0344 (6)
N40.0601 (3)0.2406 (2)0.0055 (2)0.0343 (6)
C10.0116 (4)0.3395 (3)0.0620 (3)0.0426 (8)
H1A0.07520.40150.10050.051*
C20.1298 (4)0.3518 (3)0.0763 (3)0.0455 (8)
H2A0.16170.42250.12200.055*
C30.2222 (4)0.2590 (3)0.0225 (3)0.0454 (8)
H3A0.31620.26430.03330.054*
C40.1745 (3)0.1563 (3)0.0488 (3)0.0382 (7)
H4A0.23550.09220.08660.046*
C50.0341 (3)0.1529 (3)0.0614 (2)0.0310 (6)
C60.2356 (4)0.2275 (3)0.3326 (3)0.0444 (8)
H6A0.28920.14880.31280.053*
C70.3058 (4)0.3385 (3)0.3674 (3)0.0526 (9)
H7A0.40700.33430.37230.063*
C80.2255 (4)0.4556 (3)0.3950 (3)0.0569 (10)
H8A0.27290.53050.41880.068*
C90.0753 (4)0.4623 (3)0.3875 (3)0.0515 (9)
H9A0.02110.54220.40420.062*
C100.0055 (4)0.3516 (3)0.3553 (3)0.0418 (7)
H10A0.09500.35630.35270.050*
C110.0842 (3)0.2325 (3)0.3268 (2)0.0333 (6)
C120.0555 (3)0.1686 (3)0.5118 (2)0.0361 (7)
H12A0.04220.17440.51280.043*
C130.0940 (4)0.2000 (3)0.6113 (3)0.0417 (7)
H13A0.02310.22860.67830.050*
C140.2369 (4)0.1892 (3)0.6114 (3)0.0481 (8)
H14A0.26270.20960.67850.058*
C150.3421 (4)0.1479 (4)0.5119 (3)0.0546 (9)
H15A0.43870.14010.51220.066*
C160.3054 (4)0.1181 (3)0.4117 (3)0.0454 (8)
H16A0.37760.09120.34490.055*
C170.1608 (3)0.1282 (3)0.4101 (2)0.0316 (6)
C180.0238 (3)0.0544 (3)0.1407 (2)0.0297 (6)
C190.0076 (3)0.1168 (3)0.2792 (2)0.0311 (6)
C200.1183 (3)0.0840 (3)0.3047 (2)0.0306 (6)
O10.4086 (2)0.2035 (2)0.1224 (2)0.0458 (6)
O20.2028 (3)0.3259 (2)0.2159 (2)0.0537 (6)
O30.4585 (3)0.7023 (2)0.1841 (2)0.0575 (7)
O40.6779 (3)0.6339 (2)0.0591 (2)0.0519 (6)
O50.4157 (3)0.0709 (2)0.1009 (2)0.0601 (7)
H5A0.473 (4)0.128 (3)0.128 (4)0.090*
H5B0.467 (4)0.000 (2)0.093 (4)0.090*
C210.3332 (4)0.2717 (3)0.2053 (3)0.0422 (8)
C220.4083 (4)0.2896 (3)0.2916 (3)0.0541 (10)
H22A0.50540.23420.27740.065*
H22B0.34560.26320.36770.065*
C230.4318 (4)0.4324 (4)0.2839 (3)0.0515 (9)
H23A0.33530.48820.29470.062*
H23B0.47180.44350.34390.062*
C240.5395 (4)0.4723 (3)0.1702 (3)0.0547 (9)
H24A0.50870.44280.11210.066*
H24B0.63890.42500.16680.066*
C250.5562 (4)0.6169 (3)0.1380 (3)0.0383 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0377 (2)0.0393 (2)0.0407 (2)0.01605 (15)0.01249 (17)0.00743 (16)
N10.0349 (13)0.0321 (12)0.0342 (13)0.0096 (10)0.0136 (11)0.0028 (11)
N20.0334 (13)0.0313 (12)0.0362 (13)0.0074 (10)0.0131 (11)0.0003 (11)
N30.0330 (13)0.0361 (13)0.0357 (13)0.0087 (10)0.0127 (11)0.0014 (11)
N40.0376 (14)0.0326 (13)0.0325 (12)0.0060 (10)0.0113 (11)0.0001 (11)
C10.052 (2)0.0377 (16)0.0359 (16)0.0070 (14)0.0128 (15)0.0029 (14)
C20.051 (2)0.0442 (18)0.0381 (17)0.0055 (15)0.0174 (16)0.0014 (15)
C30.0375 (18)0.053 (2)0.0462 (19)0.0056 (15)0.0189 (15)0.0073 (16)
C40.0360 (17)0.0423 (17)0.0371 (16)0.0046 (13)0.0120 (14)0.0061 (14)
C50.0332 (15)0.0309 (14)0.0284 (14)0.0045 (11)0.0086 (12)0.0028 (12)
C60.0412 (18)0.0360 (16)0.055 (2)0.0099 (13)0.0131 (16)0.0014 (15)
C70.046 (2)0.0472 (19)0.067 (2)0.0210 (15)0.0135 (18)0.0054 (18)
C80.073 (3)0.0388 (18)0.062 (2)0.0278 (17)0.017 (2)0.0009 (17)
C90.073 (3)0.0304 (16)0.058 (2)0.0110 (16)0.0304 (19)0.0029 (16)
C100.0498 (19)0.0331 (16)0.0473 (18)0.0065 (13)0.0217 (15)0.0026 (14)
C110.0386 (16)0.0293 (14)0.0331 (15)0.0109 (12)0.0100 (13)0.0013 (12)
C120.0342 (16)0.0336 (15)0.0413 (16)0.0096 (12)0.0101 (13)0.0041 (13)
C130.053 (2)0.0388 (17)0.0305 (15)0.0071 (14)0.0076 (14)0.0052 (13)
C140.051 (2)0.059 (2)0.0343 (17)0.0001 (16)0.0182 (16)0.0040 (16)
C150.0378 (19)0.080 (3)0.050 (2)0.0037 (17)0.0206 (16)0.0063 (19)
C160.0348 (17)0.062 (2)0.0388 (17)0.0088 (15)0.0104 (14)0.0010 (16)
C170.0300 (15)0.0293 (14)0.0350 (15)0.0025 (11)0.0108 (12)0.0015 (12)
C180.0308 (15)0.0294 (14)0.0315 (14)0.0084 (11)0.0103 (12)0.0041 (12)
C190.0286 (14)0.0293 (14)0.0329 (15)0.0028 (11)0.0065 (12)0.0041 (12)
C200.0297 (15)0.0280 (14)0.0338 (15)0.0038 (11)0.0100 (12)0.0020 (12)
O10.0388 (13)0.0461 (13)0.0538 (14)0.0164 (10)0.0141 (11)0.0035 (11)
O20.0437 (14)0.0599 (15)0.0596 (15)0.0101 (11)0.0165 (12)0.0073 (12)
O30.0535 (15)0.0505 (14)0.0608 (16)0.0128 (12)0.0060 (13)0.0016 (13)
O40.0501 (14)0.0419 (13)0.0554 (14)0.0158 (10)0.0077 (12)0.0120 (11)
O50.0492 (15)0.0468 (14)0.0747 (18)0.0111 (11)0.0043 (14)0.0046 (14)
C210.0413 (19)0.0382 (17)0.0478 (19)0.0208 (14)0.0125 (16)0.0093 (16)
C220.067 (2)0.053 (2)0.053 (2)0.0325 (18)0.0311 (19)0.0170 (18)
C230.058 (2)0.060 (2)0.0416 (18)0.0298 (17)0.0155 (17)0.0042 (17)
C240.059 (2)0.048 (2)0.052 (2)0.0224 (17)0.0028 (18)0.0015 (17)
C250.0393 (18)0.0438 (18)0.0355 (16)0.0180 (14)0.0130 (15)0.0026 (14)
Geometric parameters (Å, º) top
Cu1—O11.973 (2)C11—C191.463 (4)
Cu1—O4i1.917 (2)C12—C131.381 (4)
Cu1—O52.390 (3)C12—C171.392 (4)
Cu1—N12.025 (2)C12—H12A0.9300
Cu1—N42.033 (2)C13—C141.373 (5)
N1—C181.328 (3)C13—H13A0.9300
N1—N31.340 (3)C14—C151.377 (5)
N2—C181.326 (3)C14—H14A0.9300
N2—C191.338 (3)C15—C161.380 (4)
N3—C201.328 (3)C15—H15A0.9300
N4—C51.343 (3)C16—C171.392 (4)
N4—C11.344 (3)C16—H16A0.9300
C1—C21.384 (4)C17—C201.483 (4)
C1—H1A0.9300C19—C201.432 (4)
C2—C31.367 (5)O1—C211.282 (4)
C2—H2A0.9300O2—C211.233 (4)
C3—C41.395 (4)O3—C251.221 (4)
C3—H3A0.9300O4—C251.265 (4)
C4—C51.377 (4)O4—Cu1i1.917 (2)
C4—H4A0.9300O5—H5A0.837 (18)
C5—C181.477 (4)O5—H5B0.822 (18)
C6—C71.378 (4)C21—C221.516 (5)
C6—C111.397 (4)C22—C231.528 (5)
C6—H6A0.9300C22—H22A0.9700
C7—C81.379 (5)C22—H22B0.9700
C7—H7A0.9300C23—C241.500 (4)
C8—C91.378 (5)C23—H23A0.9700
C8—H8A0.9300C23—H23B0.9700
C9—C101.373 (4)C24—C251.524 (4)
C9—H9A0.9300C24—H24A0.9700
C10—C111.391 (4)C24—H24B0.9700
C10—H10A0.9300
O1—Cu1—O596.54 (10)C14—C13—C12120.0 (3)
O1—Cu1—N192.09 (9)C14—C13—H13A120.0
O1—Cu1—N4160.23 (10)C12—C13—H13A120.0
O4i—Cu1—O195.02 (10)C13—C14—C15119.9 (3)
O4i—Cu1—O592.28 (10)C13—C14—H14A120.1
O4i—Cu1—N1170.00 (10)C15—C14—H14A120.1
O4i—Cu1—N491.32 (10)C14—C15—C16120.6 (3)
N1—Cu1—O593.89 (10)C14—C15—H15A119.7
N1—Cu1—N479.71 (9)C16—C15—H15A119.7
N4—Cu1—O5101.91 (10)C15—C16—C17120.3 (3)
C18—N1—N3118.5 (2)C15—C16—H16A119.8
C18—N1—Cu1115.24 (17)C17—C16—H16A119.8
N3—N1—Cu1124.94 (18)C12—C17—C16118.2 (3)
C18—N2—C19117.5 (2)C12—C17—C20121.7 (3)
C20—N3—N1119.3 (2)C16—C17—C20119.8 (3)
C5—N4—C1118.0 (3)N2—C18—N1124.4 (2)
C5—N4—Cu1115.18 (18)N2—C18—C5120.0 (2)
C1—N4—Cu1126.7 (2)N1—C18—C5115.6 (2)
N4—C1—C2122.1 (3)N2—C19—C20117.8 (2)
N4—C1—H1A118.9N2—C19—C11115.4 (3)
C2—C1—H1A118.9C20—C19—C11126.7 (2)
C3—C2—C1119.2 (3)N3—C20—C19119.5 (2)
C3—C2—H2A120.4N3—C20—C17114.0 (2)
C1—C2—H2A120.4C19—C20—C17126.3 (2)
C2—C3—C4119.5 (3)C21—O1—Cu1102.07 (19)
C2—C3—H3A120.3C25—O4—Cu1i130.7 (2)
C4—C3—H3A120.3Cu1—O5—H5A89 (3)
C5—C4—C3117.8 (3)Cu1—O5—H5B130 (3)
C5—C4—H4A121.1H5A—O5—H5B109 (3)
C3—C4—H4A121.1O2—C21—O1122.3 (3)
N4—C5—C4123.2 (3)O2—C21—C22118.8 (3)
N4—C5—C18114.2 (2)O1—C21—C22118.9 (3)
C4—C5—C18122.6 (3)C21—C22—C23110.7 (3)
C7—C6—C11120.4 (3)C21—C22—H22A109.5
C7—C6—H6A119.8C23—C22—H22A109.5
C11—C6—H6A119.8C21—C22—H22B109.5
C6—C7—C8119.8 (3)C23—C22—H22B109.5
C6—C7—H7A120.1H22A—C22—H22B108.1
C8—C7—H7A120.1C24—C23—C22110.6 (3)
C9—C8—C7120.4 (3)C24—C23—H23A109.5
C9—C8—H8A119.8C22—C23—H23A109.5
C7—C8—H8A119.8C24—C23—H23B109.5
C10—C9—C8120.2 (3)C22—C23—H23B109.5
C10—C9—H9A119.9H23A—C23—H23B108.1
C8—C9—H9A119.9C23—C24—C25118.4 (3)
C9—C10—C11120.3 (3)C23—C24—H24A107.7
C9—C10—H10A119.8C25—C24—H24A107.7
C11—C10—H10A119.8C23—C24—H24B107.7
C10—C11—C6118.8 (3)C25—C24—H24B107.7
C10—C11—C19121.3 (3)H24A—C24—H24B107.1
C6—C11—C19119.5 (3)O3—C25—O4126.5 (3)
C13—C12—C17121.0 (3)O3—C25—C24121.5 (3)
C13—C12—H12A119.5O4—C25—C24111.9 (3)
C17—C12—H12A119.5
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.841.942.744 (3)161
O5—H5B···O1ii0.822.253.045 (3)162
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C5H6O4)2(C20H14N4)2(H2O)2]
Mr1044.01
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.4297 (19), 10.429 (2), 12.471 (3)
α, β, γ (°)81.37 (3), 71.00 (3), 79.83 (3)
V3)1135.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.21 × 0.13 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.732, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
11269, 5148, 3478
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 1.03
No. of reflections5148
No. of parameters324
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.973 (2)Cu1—N12.025 (2)
Cu1—O4i1.917 (2)Cu1—N42.033 (2)
Cu1—O52.390 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.841.942.744 (3)161
O5—H5B···O1ii0.822.253.045 (3)162
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The project was sponsored by the K. C. Wong Magna Fund in Ningbo University.

References

First citationGarcia, G., Solano, I., Sanchez, G. & Lopez, G. (1995). Polyhedron, 14, 1855–1863.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMashaly, M., Bayoumi, H. A. & Taha, A. (1999). J. Serb. Chem. Soc. 64, 621–635.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoudi, A. A., Marandi, F., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1631–1637.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds