

 $\gamma = 92.145 \ (2)^{\circ}$ V = 1192.2 (3) Å³

Mo $K\alpha$ radiation

 $0.34 \times 0.29 \times 0.24$ mm

11582 measured reflections

4178 independent reflections

3995 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 4.29 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.031$

refinement

 $\Delta \rho_{\rm max} = 1.10 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.35 \text{ e } \text{\AA}^{-3}$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridobis(methanol- κ O)[*cis*-(\pm)-2,4,5-tris(pyridin-2-yl)-2-imidazoline- $\kappa^3 N^2, N^3, N^4$]ytterbium(III) chloride

Alberto Baez-Castro,^a Herbert Höpfl,^b Miguel Parra-Hake,^c Adriana Cruz-Enriquez^a and Jose J. Campos-Gaxiola^a*

^aFacultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, Mexico, ^bCentro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, Mexico, and ^cCentro de Graduados del Instituto Tecnologico de Tijuana, Blvd. Industrial S/N, Col. Otay, CP 22500, Tijuana, BC, Mexico

Correspondence e-mail: gaxiolajose@yahoo.com.mx

Received 7 May 2012; accepted 15 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; R factor = 0.035; wR factor = 0.091; data-to-parameter ratio = 14.3.

In the crystal structure of the title complex, $[YbCl_2(C_{18}H_{15}N_5)(CH_3OH)_2]Cl$, the pseudo-pentagonal-bipyramidal coordination geometry of the Yb^{III} cation is composed of three N atoms from one *cis*-(\pm)-2,4,5-tris(pyridin-2-yl)imidazoline (HL) ligand, two O atoms from two methanol molecules and two Cl⁻ anions. Chains are formed along [010] through N-H···Cl, O-H···Cl and O-H···N hydrogen bonds.

Related literature

For background to the synthesis of HL, see: Later *et al.* (1998); Fernandes *et al.* (2007). For metal complexes with HL, see: Parra-Hake *et al.* (2000); Campos-Gaxiola *et al.* (2007, 2008, 2010). For related Yb (III) complexes, see: Li *et al.* (2007); Xu *et al.* (2009); Stojanovic *et al.* (2010); Okawara *et al.* (2012). For potential applications of polypyridyl chelating ligands in magnetic, electronic and luminescent devices, see: Freidzon *et al.* (2011); Maynard *et al.* (2009); Thomas *et al.* (2012).

Experimental

Crystal data

$$\begin{split} & [\text{YbCl}_2(\text{C}_{18}\text{H}_{15}\text{N}_5)(\text{CH}_4\text{O})_2]\text{Cl} \\ & M_r = 644.82 \\ & \text{Triclinic, } P\overline{1} \\ & a = 9.2401 \ (13) \text{ Å} \\ & b = 9.8390 \ (14) \text{ Å} \\ & c = 13.3765 \ (19) \text{ Å} \\ & \alpha = 99.978 \ (2)^{\circ} \\ & \beta = 94.616 \ (2)^{\circ} \end{split}$$

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.32, T_{\rm max} = 0.43$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.091$ S = 1.084178 reflections 292 parameters 3 restraints

Table 1

Selected bond lengths (Å).

Yb1-Cl1	2.5220 (19)	Yb1-N4	2.556 (6)
Yb1-Cl2	2.5834 (18)	Yb1-O1	2.289 (5)
Yb1-N1	2.268 (5)	Yb1-O2	2.287 (5)
Yb1-N3	2.579 (5)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H10' \cdots N5^{i}$ $02 - H20' \cdots Cl3^{i}$ $N2 - H2' \cdots Cl3$	0.84 0.84 0.86	1.86 2.19 2.25	2.681 (3) 2.956 (3) 3.096 (3)	164 152 167

Symmetry code: (i) x, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus-NT* (Bruker 2001); data reduction: *SAINT-Plus-NT*; program(s) used to solve structure: *SHELXTL-NT* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL-NT*; molecular graphics: *SHELXTL-NT*; software used to prepare material for publication: *publCIF* (Westrip, 2010).

metal-organic compounds

This work was supported financially by the Secretaria de Educacion Publica (PROMEP-UAS, PTC-033) and the Universidad Autonoma de Sinaloa (PROFAPI 2011/033). AB-C thanks the Consejo Nacional de Ciencia *y* Tecnologia (CONACYT) for support in the form of a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2554).

References

Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2007). J. Mex. Chem. Soc. 51, 27–32.
- Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2008). *Inorg. Chim. Acta*, **361**, 248–254.
- Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2010). Inorg. Chim. Acta, 363, 1179–1185.
- Fernandes, C., Horn, A. Jr, Howie, A. R., Schripsema, J., Skakle, J. M. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274–283.

- Freidzon, A. Y., Scherbinin, A. V., Bagaturyants, A. A. & Alfimov, M. V. (2011). J. Phys. Chem. A, 115, 4565–4573.
- Later, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). *Tetrahedron Lett.* 39, 4785–4788.
- Li, X. L., Dai, F. R., Zhang, L. Y., Zhu, Y. M., Peng, Q. & Chen, Z. N. (2007). Organometallics, **26**, 4483–4490.
- Maynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). *Inorg. Chem.* **48**, 6425–6453.
- Okawara, T., Feng, J., Abe, M. & Hisaeda, Y. (2012). Acta Cryst. E68, m29-m30.
- Parra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). *Inorg. Chem.* 39, 5400–5403.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933–939.
- Thomas, R. B., Smith, P. A., Jaleel, A., Vogel, P., Crawford, C., Assefa, Z. & Sykora, R. E. (2012). *Inorg. Chem.* 51, 3399–3408.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, H. B., Zhang, L. Y., Chen, X. M., Li, X. L. & Chen, Z. N. (2009). Cryst. Growth Des. 9, 569–576.

supporting information

Acta Cryst. (2012). E68, m815-m816 [doi:10.1107/S1600536812022052]

Dichloridobis(methanol- κO)[*cis*-(\pm)-2,4,5-tris(pyridin-2-yl)-2-imidazoline- $\kappa^3 N^2$, N^3 , N^4]ytterbium(III) chloride

Alberto Baez-Castro, Herbert Höpfl, Miguel Parra-Hake, Adriana Cruz-Enriquez and Jose J. Campos-Gaxiola

S1. Comment

The synthesis and characterization of lanthanide complexes supported by polypiridyl chelating ligands has attracted continuous interest, due to the potential application of these compounds in magnetic, electronic and luminescent devices (Maynard *et al.*, 2009; Freidzon *et al.*, 2011; Thomas *et al.*, 2012). A handful of transition metal complexes based on the HL ligand have been prepared (Parra-Hake *et al.* Campos-Gaxiola *et al.*, 2007, 2008 and 2010), but to date there are no reports on complexes containing rare earth elements. Herein, we report on the structure of a mononuclear Yb^{III} complex (Scheme 1), which was synthesized by reaction of YbCl₃·6H₂O with *cis*-(\pm)-2,4,5-tri(2-pyridyl)imidazoline at room temperature in methanol.

In the title complex, the central Yb^{III} ion is seven-coordinated by three nitrogen atoms from one tridentate chelate ligand, two oxygen atoms from two methanol molecules and two Cl⁻ anions [Yb—N, 2.268 (5)–2.579 (5) Å; Yb—O 2.287 (4)–2.289 (4) Å; Yb—Cl 2.5219 (18)–2.5834 (17) Å (Table 1)] and displays a pseudo-pentagonal-bipyramidal geometry (Fig. 1). In the crystal structure the complex molecules are linked through N—H…Cl, O—H…Cl and O—H…N hydrogen bonds to form linear supramolecular chains along [010] (Table 2, Fig 2).

S2. Experimental

A mixture of *cis*-(\pm)-2,4,5-tri(2-pyridyl)imidazoline (HL) (0.05 g, 0.166 mmol) and YbCl₃·6H₂O (0.063 g, 0.166 mmol) dissolved in methanol (3 ml) was stirred for 2 h at room temperature to give a colorless solution. The product was crystallized at room temperature by gas phase diffusion of diethyl ether into the reaction mixture, providing colorless crystals which were dried under vacuo. Yield: 71%. IR (KBr): 3320, 3060, 3155, 2894, 1631, 1592, 1471, 1437, 1338, 1280, 1260, 1162, 1007 and 691 cm⁻¹. TGA Calcd for 2CH₃OH: 9.94. Found: 8.76% (30–200 °C).

S3. Refinement

C—H atoms were positioned geometrically and constrained using the riding-model approximation [C—H_{aryl} = 0.93 Å, $U_{iso}(H_{aryl}) = 1.2 U_{eq}(C)$]. The coordinates of the O—H and N—H hydrogen atoms were refined with distances restraints: O —H = 0.840±0.001 Å, N—H = 0.860±0.001 Å and [$U_{iso}(H) = 1.5 U_{eq}(O,N)$].

Figure 1

Perspective view of the molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Figure 2

Perspective view of a fragment of the linear supramolecular chain along [010] with the N—H…Cl, O—H…Cl and O—H…N hydrogen bonds shown as dashed lines.

Dichloridobis(methanol- κO)[cis-(±)-2,4,5-tris(pyridin-2-yl)-2- imidazoline- $\kappa^3 N^2$, N^3 , N^4]ytterbium(III) chloride

Z = 2

F(000) = 630

 $\theta = 2.2 - 28.3^{\circ}$

 $\mu = 4.29 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.031$

 $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

 $D_{\rm x} = 1.796 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Rectangular prism, colorless

11582 measured reflections 4178 independent reflections 3995 reflections with $I > 2\sigma(I)$

 $0.34 \times 0.29 \times 0.24$ mm

 $\theta_{\rm max} = 25.0^\circ, \, \theta_{\rm min} = 1.6^\circ$

Cell parameters from 7905 reflections

Crystal data

[YbCl₂(C₁₈H₁₅N₅)(CH₄O)₂]Cl $M_r = 644.82$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.2401 (13) Å b = 9.8390 (14) Å c = 13.3765 (19) Å $a = 99.978 (2)^{\circ}$ $\beta = 94.616 (2)^{\circ}$ $\gamma = 92.145 (2)^{\circ}$ $V = 1192.2 (3) \text{ Å}^{3}$

Data collection

Bruker APEX CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3 pixels mm ⁻¹
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.32, \ T_{\max} = 0.43$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
4178 reflections	and constrained refinement
292 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 3.5218P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 1.10 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -1.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Yb1	0.21176 (3)	0.30381 (2)	0.204195 (19)	0.02770 (10)
Cl1	0.3560 (2)	0.3299 (2)	0.37530 (14)	0.0560 (5)

C12	0.05316 (18)	0.26855 (19)	0.03273 (13)	0.0444 (4)
C13	0.57461 (18)	0.96378 (19)	0.21144 (15)	0.0486 (4)
N1	0.2212 (5)	0.5280 (5)	0.1839 (4)	0.0333 (12)
N2	0.3278 (6)	0.7350 (5)	0.1816 (5)	0.0383 (13)
H2′	0.400 (5)	0.794 (6)	0.199 (6)	0.057*
N3	0.4539 (6)	0.3892 (5)	0.1471 (4)	0.0381 (13)
N4	0.0248 (6)	0.4541 (6)	0.2944 (4)	0.0406 (13)
N5	0.1688 (7)	0.9593 (6)	0.3636 (4)	0.0458 (14)
01	0.0623 (5)	0.1401 (5)	0.2518 (4)	0.0382 (10)
H10′	0.099 (8)	0.097 (7)	0.296 (4)	0.057*
02	0.3170 (5)	0.1033 (5)	0.1423 (4)	0.0411 (11)
H20'	0.380 (6)	0.076 (8)	0.182 (5)	0.062*
C1	0.3387(7)	0.5981 (6)	0.102(5) 0.1703(5)	0.002 0.0343(14)
C2	0.1917(7)	0.7706 (6)	0.2265(5)	0.0339(14)
е <u>2</u> Н2	0.1415	0.8351	0.1894	0.041*
C3	0.1082 (6)	0.6265 (6)	0.1001	0.0331(14)
ез нз	0.0496	0.6223	0.1364	0.040*
C4	0.0490 0.4686 (7)	0.5258 (6)	0.1447 (5)	0.040 0.0343(14)
C5	0.4000(7) 0.5934(7)	0.5230(0) 0.5880(7)	0.1447(5) 0.1193(5)	0.0394(15)
е5 H5	0.5954 (7)	0.6827	0.1198	0.047*
C6	0.0000 0.7078 (7)	0.5061 (8)	0.0931 (5)	0.047 0.0443 (17)
С 0 Н6	0.7925	0.5443	0.0739	0.053*
C7	0.6944 (8)	0.3602 (8)	0.0757	0.0400 (18)
U7	0.0944 (8)	0.3092 (8)	0.0901 (0)	0.050*
117 C8	0.7709 0.5684 (7)	0.3130 (8)	0.0795	0.039 0.0476(18)
C8 19	0.5610	0.3130 (8)	0.1255 (0)	0.057*
C0	0.3019	0.2190 0.5825 (7)	0.1238	0.037° 0.0362 (14)
C3	-0.0033(7)	0.3823(7)	0.2750(5) 0.2153(6)	0.0302(14)
U10	-0.0930(8)	0.0038(7)	0.3133 (0)	0.0473(10) 0.057*
C11	-0.1872(0)	0.7539	0.2338 0.2785 (7)	0.057°
	-0.1872 (9)	0.0178 (8)	0.3783(7)	0.001(2)
ПП С12	-0.2392 -0.1710(10)	0.0727 0.4802 (0)	0.4038	0.075°
U12	-0.1719 (10)	0.4893 (9)	0.4010(7)	0.000 (2)
П12 С12	-0.2520	0.4330	0.4444 0.2574(6)	0.079°
U12	-0.0043 (9)	0.4108 (8)	0.3374 (0)	0.037 (2)
H13	-0.0555	0.3230	0.3/30	0.068^{+}
C14	0.2201(7)	0.8352(7)	0.3373(3)	0.0300(14)
C15	0.2982 (9)	0.7722 (8)	0.4064 (6)	0.0537 (19)
HI5	0.3318	0.6847	0.3863	0.064*
	0.3266 (10)	0.8398 (10)	0.5062 (6)	0.068 (2)
H16	0.3800	0.7994	0.5541	0.082*
C17	0.2734 (11)	0.9683 (10)	0.5321 (6)	0.072(3)
HI/	0.2910	1.01/3	0.5982	0.08/*
	0.1945 (12)	1.0233 (9)	0.4596 (6)	0.0/2(3)
HI8	0.1571	1.1096	0.4783	0.087*
C19	-0.0775 (8)	0.0814 (9)	0.2119 (7)	0.064 (2)
HI9A	-0.1374	0.1524	0.1938	0.096*
HI9B	-0.1211	0.0390	0.2625	0.096*
H19C	-0.0684	0.0128	0.1526	0.096*

supporting information

C20	0.2876 (9)	0.0171 (8)	0.0451 (6)	0.060 (2)	
H20A	0.1852	-0.0063	0.0328	0.090*	
H20B	0.3396	-0.0658	0.0437	0.090*	
H20C	0.3183	0.0654	-0.0067	0.090*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Yb1	0.02727 (15)	0.02462 (15)	0.03167 (16)	0.00041 (10)	0.00363 (10)	0.00598 (10)
C11	0.0528 (11)	0.0726 (13)	0.0401 (10)	0.0067 (9)	-0.0046 (8)	0.0065 (9)
Cl2	0.0398 (9)	0.0511 (10)	0.0430 (9)	-0.0013 (7)	-0.0055 (7)	0.0154 (8)
C13	0.0381 (9)	0.0455 (10)	0.0607 (11)	-0.0070 (7)	-0.0054 (8)	0.0111 (8)
N1	0.030 (3)	0.027 (3)	0.044 (3)	0.002 (2)	0.006 (2)	0.006 (2)
N2	0.038 (3)	0.026 (3)	0.053 (3)	-0.003 (2)	0.007 (3)	0.013 (3)
N3	0.036 (3)	0.034 (3)	0.046 (3)	-0.001 (2)	0.007 (2)	0.010 (2)
N4	0.042 (3)	0.039 (3)	0.042 (3)	0.006 (3)	0.010 (3)	0.007 (3)
N5	0.065 (4)	0.033 (3)	0.037 (3)	0.006 (3)	-0.006 (3)	0.003 (2)
01	0.035 (2)	0.036 (3)	0.045 (3)	0.0003 (19)	0.000(2)	0.016 (2)
O2	0.041 (3)	0.035 (3)	0.043 (3)	0.005 (2)	-0.002 (2)	-0.004 (2)
C1	0.040 (4)	0.032 (3)	0.033 (3)	-0.002 (3)	0.004 (3)	0.009 (3)
C2	0.039 (3)	0.029 (3)	0.035 (3)	0.006 (3)	0.000 (3)	0.009 (3)
C3	0.030 (3)	0.031 (3)	0.038 (3)	0.001 (3)	0.000 (3)	0.006 (3)
C4	0.035 (3)	0.033 (3)	0.035 (3)	-0.001 (3)	0.004 (3)	0.006 (3)
C5	0.036 (4)	0.042 (4)	0.039 (4)	-0.007(3)	0.003 (3)	0.007 (3)
C6	0.027 (3)	0.057 (5)	0.048 (4)	-0.007 (3)	0.002 (3)	0.009 (3)
C7	0.037 (4)	0.058 (5)	0.055 (5)	0.011 (3)	0.010 (3)	0.014 (4)
C8	0.041 (4)	0.039 (4)	0.067 (5)	0.010 (3)	0.016 (3)	0.014 (4)
C9	0.030 (3)	0.035 (4)	0.041 (4)	0.002 (3)	0.001 (3)	-0.001 (3)
C10	0.043 (4)	0.038 (4)	0.059 (5)	0.005 (3)	0.012 (3)	-0.003 (3)
C11	0.058 (5)	0.051 (5)	0.071 (6)	0.009 (4)	0.033 (4)	-0.007 (4)
C12	0.073 (6)	0.058 (5)	0.071 (6)	-0.001 (4)	0.045 (5)	0.007 (4)
C13	0.065 (5)	0.049 (5)	0.062 (5)	0.008 (4)	0.025 (4)	0.018 (4)
C14	0.040 (4)	0.032 (3)	0.038 (4)	-0.004 (3)	-0.003 (3)	0.010 (3)
C15	0.064 (5)	0.047 (4)	0.050 (4)	0.012 (4)	-0.007 (4)	0.013 (4)
C16	0.079 (6)	0.079 (6)	0.048 (5)	0.003 (5)	-0.013 (4)	0.024 (4)
C17	0.107 (8)	0.065 (6)	0.040 (5)	-0.004(5)	-0.008(5)	0.004 (4)
C18	0.128 (9)	0.043 (5)	0.043 (5)	0.013 (5)	-0.002 (5)	0.000 (4)
C19	0.044 (4)	0.063 (5)	0.088 (6)	-0.017 (4)	-0.010 (4)	0.036 (5)
C20	0.071 (5)	0.057 (5)	0.049 (5)	0.024 (4)	-0.003 (4)	0.001 (4)

Geometric parameters (Å, °)

Yb1—Cl1	2.5220 (19)	C5—C6	1.384 (10)	
Yb1—Cl2	2.5834 (18)	С5—Н5	0.93	
Yb1—N1	2.268 (5)	C6—C7	1.355 (11)	
Yb1—N3	2.579 (5)	С6—Н6	0.93	
Yb1—N4	2.556 (6)	C7—C8	1.373 (10)	
Yb1—O1	2.289 (5)	С7—Н7	0.9301	

Yb1—O2	2.287 (5)	С8—Н8	0.9303
N1—C1	1.306 (8)	C9—C10	1.380 (10)
N1—C3	1.457 (8)	C10—C11	1.370 (12)
N2—C1	1.338 (8)	С10—Н10	0.9302
N2—C2	1.465 (9)	C11—C12	1.359 (12)
N2—H2'	0.86(6)	C11—H11	0.9302
N3—C4	1 352 (9)	C12-C13	1.386(12)
N3—C8	1 346 (9)	C12_H12	0.9294
NA C13	1.340(9) 1.333(10)	C12 H12	0.9294
N4 C9	1.333(10) 1 3/3 (0)	C_{13}	1.373(10)
N5 C14	1.3+5(9) 1.226(0)	$C_{14} = C_{15}$	1.373(10) 1 284 (11)
N5 C19	1.320(9) 1.227(10)	C15_U15	1.364 (11)
N5-C18	1.327 (10)		0.9294
01-019	1.419 (9)		1.372 (14)
	0.84 (6)		0.9303
O2—C20	1.424 (10)	C17—C18	1.365 (13)
O2—H20′	0.84 (6)	С17—Н17	0.9295
C1—C4	1.453 (9)	C18—H18	0.9304
C2—C14	1.506 (9)	C19—H19A	0.9601
C2—C3	1.559 (9)	C19—H19B	0.9598
С2—Н2	0.9797	C19—H19C	0.9595
С3—С9	1.496 (9)	C20—H20A	0.96
С3—Н3	0.9797	C20—H20B	0.9599
C4—C5	1.379 (9)	C20—H20C	0.96
N1—Yb1—O2	138.18 (18)	N1—C3—H3	107.27
N1—Yb1—O1	141.84 (17)	С2—С3—Н3	107.27
O2—Yb1—O1	77.76 (17)	С9—С3—Н3	107.29
N1—Yb1—Cl1	99.05 (14)	N3—C4—C5	123.1 (6)
Ω_{2} Yb1 - Cl1	92.85 (12)	N3-C4-C1	112.6 (5)
01—Yb1—Cl1	89.06 (12)	$C_{5}-C_{4}-C_{1}$	1243(6)
N1—Yb1—N4	64 63 (18)	C4-C5-C6	118 3 (6)
Ω^2 _Vb1_N4	15652(18)	C4-C5-H5	120.84
02 - 101 - N4	78.77(17)	C4-C5-H5	120.84
$C_1 = 101 = 104$	70.77(17)		120.85
VII VII N2	87.00 (14) (5.20 (17)	C = C = C	118.9 (0)
N1 - YD1 - N3	05.20(17)	C_{3} C_{6} H_{6}	120.5
02 - Y b1 - N3	/6./4 (1/)	C/C6H6	120.57
OI—YbI—N3	152.94 (17)	C6-C7-C8	120.3 (7)
CII—YbI—N3	83.32 (13)	С6—С7—Н7	119.81
N4—Yb1—N3	126.44 (17)	С8—С7—Н7	119.9
N1—Yb1—Cl2	83.18 (14)	N3—C8—C7	122.3 (7)
O2—Yb1—Cl2	86.99 (12)	N3—C8—H8	118.86
O1—Yb1—Cl2	87.74 (12)	С7—С8—Н8	118.87
Cl1—Yb1—Cl2	176.75 (6)	N4—C9—C10	122.1 (6)
N4—Yb1—Cl2	91.79 (13)	N4—C9—C3	115.9 (5)
N3—Yb1—Cl2	00.50(10)	C_{10} C_{0} C_{2}	121.0 (6)
N11 X71 1 C1	99.79 (13)	C10-C9-C3	121.9(0)
NI-YDI-CI	99.79 (13) 19.51 (17)	C10-C9-C3 C11-C10-C9	119.5 (7)
N1 - Yb1 - C1 $O2 - Yb1 - C1$	99.79 (13) 19.51 (17) 121.66 (17)	C11—C10—C9 C9—C10—H10	119.5 (7) 120.28

Cl1—Yb1—C1	91.30 (12)	C12—C11—C10	119.4 (7)
N4—Yb1—C1	81.80 (17)	C10-C11-H11	120.3
N3—Yb1—C1	46.10 (16)	C12—C11—H11	120.28
Cl2—Yb1—C1	91.55 (12)	C11—C12—C13	118.2 (7)
C1—N1—C3	106.9 (5)	C11—C12—H12	120.93
C1—N1—Yb1	125.0 (4)	С13—С12—Н12	120.96
C3—N1—Yb1	127.2 (4)	N4—C13—C12	123.6 (7)
C1—N2—H2′	124 (4)	N4—C13—H13	118.21
C2—N2—H2′	116 (4)	С12—С13—Н13	118.1
C1—N2—C2	108.6 (5)	N5-C14-C15	121.8 (6)
C8—N3—C4	117.0 (6)	N5—C14—C2	115.8 (5)
C8—N3—Yb1	126.7 (4)	C15—C14—C2	122.4 (6)
C4—N3—Yb1	116.2 (4)	C14—C15—C16	119.7 (7)
C13—N4—C9	117.2 (6)	C14—C15—H15	120.18
C13—N4—Yb1	123.8 (5)	C16—C15—H15	120.2
C9—N4—Yb1	119.0 (4)	C17—C16—C15	117.8 (8)
C14—N5—C18	118.5 (6)	C15—C16—H16	121.05
C19—O1—Yb1	132.4 (4)	C17—C16—H16	121.09
Yb1—O1—H10′	116 (5)	C18—C17—C16	119.2 (8)
C19—O1—H10'	111 (5)	С16—С17—Н17	120.4
C20—O2—Yb1	128.2 (4)	С18—С17—Н17	120.42
Yb1—O2—H20'	116 (5)	N5—C18—C17	122.9 (8)
C20—O2—H20'	116 (5)	O1—C19—H19C	109.45
N1—C1—N2	115.4 (6)	H19A—C19—H19C	109.51
N1—C1—C4	119.7 (6)	H19B—C19—H19C	109.53
N2—C1—C4	124.9 (6)	O1—C19—H19B	109.44
N2—C2—C14	111.0 (5)	H19A—C19—H19B	109.48
N2—C2—C3	99.8 (5)	O1—C19—H19A	109.42
C14—C2—C3	117.1 (5)	O2—C20—H20C	109.44
N2—C2—H2	109.54	H20A—C20—H20C	109.47
С3—С2—Н2	109.5	H20B—C20—H20C	109.47
C14—C2—H2	109.48	O2—C20—H20B	109.48
N1—C3—C9	109.5 (5)	H20A-C20-H20B	109.48
N1—C3—C2	104.6 (5)	O2—C20—H20A	109.48
С9—С3—С2	120.3 (5)		
O2—Yb1—N1—C1	-37.1 (6)	N4—Yb1—C1—N1	-27.2 (5)
O1—Yb1—N1—C1	167.7 (4)	N3—Yb1—C1—N1	166.5 (6)
Cl1—Yb1—N1—C1	67.6 (5)	C1—N2—C2—C14	104.9 (6)
N4—Yb1—N1—C1	150.0 (6)	C1—N2—C2—C3	-19.3 (6)
N3—Yb1—N1—C1	-10.7 (5)	C1—N1—C3—C9	-146.0 (5)
Cl2—Yb1—N1—C1	-114.8 (5)	Yb1—N1—C3—C9	23.8 (7)
O2—Yb1—N1—C3	154.9 (4)	C1—N1—C3—C2	-15.8 (6)
O1—Yb1—N1—C3	-0.3 (6)	Yb1—N1—C3—C2	154.0 (4)
Cl1—Yb1—N1—C3	-100.4 (5)	N2—C2—C3—N1	20.8 (6)
N4—Yb1—N1—C3	-18.1 (5)	C14—C2—C3—N1	-99.1 (6)
N3—Yb1—N1—C3	-178.7 (5)	N2—C2—C3—C9	144.2 (6)
Cl2—Yb1—N1—C3	77.2 (5)	C14—C2—C3—C9	24.4 (8)

N1—Yb1—N3—C8	-176.1 (6)	C8—N3—C4—C5	0.1 (10)
O2—Yb1—N3—C8	-13.8 (6)	Yb1—N3—C4—C5	177.6 (5)
O1—Yb1—N3—C8	6.1 (8)	C8—N3—C4—C1	179.4 (6)
Cl1—Yb1—N3—C8	80.7 (6)	Yb1—N3—C4—C1	-3.0(7)
N4—Yb1—N3—C8	162.1 (5)	N1-C1-C4-N3	-5.8 (9)
Cl2—Yb1—N3—C8	-98.3 (6)	N2-C1-C4-N3	174.4 (6)
N1—Yb1—N3—C4	6.7 (4)	N1—C1—C4—C5	173.5 (6)
O2—Yb1—N3—C4	168.9 (5)	N2-C1-C4-C5	-6.3 (10)
O1—Yb1—N3—C4	-171.1 (4)	N3—C4—C5—C6	1.4 (10)
Cl1—Yb1—N3—C4	-96.5 (4)	C1—C4—C5—C6	-177.9 (6)
N4—Yb1—N3—C4	-15.2 (5)	C4—C5—C6—C7	-1.8 (10)
Cl2—Yb1—N3—C4	84.4 (4)	C5—C6—C7—C8	0.7 (11)
N1—Yb1—N4—C13	-173.7 (7)	C4—N3—C8—C7	-1.2 (11)
O2—Yb1—N4—C13	18.1 (9)	Yb1—N3—C8—C7	-178.4 (5)
O1—Yb1—N4—C13	17.3 (6)	C6—C7—C8—N3	0.8 (12)
Cl1—Yb1—N4—C13	-72.3 (6)	C13—N4—C9—C10	-2.0 (10)
N3—Yb1—N4—C13	-151.8 (6)	Yb1-N4-C9-C10	175.4 (5)
Cl2—Yb1—N4—C13	104.7 (6)	C13—N4—C9—C3	-178.1 (6)
N1—Yb1—N4—C9	9.0 (4)	Yb1—N4—C9—C3	-0.7 (7)
O2—Yb1—N4—C9	-159.1 (4)	N1—C3—C9—N4	-12.3 (8)
O1—Yb1—N4—C9	-159.9 (5)	C2-C3-C9-N4	-133.4 (6)
Cl1—Yb1—N4—C9	110.5 (5)	N1—C3—C9—C10	171.6 (6)
N3—Yb1—N4—C9	31.0 (6)	C2-C3-C9-C10	50.5 (9)
Cl2—Yb1—N4—C9	-72.5 (5)	N4-C9-C10-C11	1.0 (11)
N1—Yb1—O1—C19	60.5 (8)	C3—C9—C10—C11	176.9 (7)
O2—Yb1—O1—C19	-102.9 (7)	C9-C10-C11-C12	0.5 (13)
Cl1—Yb1—O1—C19	164.0 (7)	C10-C11-C12-C13	-0.9 (14)
N4—Yb1—O1—C19	76.8 (7)	C9—N4—C13—C12	1.7 (12)
N3—Yb1—O1—C19	-122.7 (7)	Yb1—N4—C13—C12	-175.6 (7)
Cl2—Yb1—O1—C19	-15.4 (7)	C11—C12—C13—N4	-0.2 (14)
N1—Yb1—O2—C20	-75.2 (7)	C18—N5—C14—C15	0.0 (11)
O1—Yb1—O2—C20	89.4 (6)	C18—N5—C14—C2	-177.9 (7)
Cl1—Yb1—O2—C20	177.9 (6)	N2-C2-C14-N5	123.6 (6)
N4—Yb1—O2—C20	88.7 (7)	C3—C2—C14—N5	-122.8 (6)
N3—Yb1—O2—C20	-99.7 (6)	N2-C2-C14-C15	-54.3 (8)
Cl2—Yb1—O2—C20	1.1 (6)	C3—C2—C14—C15	59.4 (9)
C3—N1—C1—N2	3.7 (8)	N5-C14-C15-C16	-0.9 (12)
Yb1—N1—C1—N2	-166.4 (4)	C2-C14-C15-C16	176.9 (7)
C3—N1—C1—C4	-176.1 (5)	C14—C15—C16—C17	0.5 (13)
Yb1—N1—C1—C4	13.8 (8)	C15—C16—C17—C18	0.6 (15)
C2—N2—C1—N1	11.2 (8)	C14—N5—C18—C17	1.2 (14)
C2—N2—C1—C4	-169.0 (6)	C16—C17—C18—N5	-1.5 (16)
Cl1—Yb1—C1—N1	-114.0 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H10'…N5 ⁱ	0.84	1.86	2.681 (3)	164

			supportin	supporting information		
O2—H20'…C13 ⁱ	0.84	2.19	2.956 (3)	152		
N2—H2'…Cl3	0.86	2.25	3.096 (3)	167		

Symmetry code: (i) x, y-1, z.