organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1590-o1591

10-(Prop-2-yn-1-yl)-2,7-di­aza­pheno­thia­zine

aDepartment of Organic Chemistry, The Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland, bInstitute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland, and cFaculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, ul. Wóycickiego 1/3, 01 938 Warszawa, Poland
*Correspondence e-mail: pluta@sum.edu.pl

(Received 3 April 2012; accepted 26 April 2012; online 2 May 2012)

In the title mol­ecule [systematic name: 10-(prop-2-yn-1-yl)dipyrido[3,4-b:3′,4′-e][1,4]thia­zine], C13H9N3S, the dihedral angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thia­zine ring is 138.84 (8)°, resulting in a butterfly shape for the tricyclic system. The central thia­zine ring adopts a boat conformation, with the 2-propynyl substituent at the thia­zine N atom located in a pseudo-equatorial position and oriented to the concave side of the diaza­phenothia­zine system. In the crystal, mol­ecules are arranged via ππ inter­actions between the pyridine rings [centroid–centroid distances = 3.838 (1) and 3.845 (1) Å] into stacks extending along [001]. There are C—H⋯C and C—H⋯N inter­actions between mol­ecules of neighbouring stacks.

Related literature

For recent literature on the biological activity of phenothia­zines, see: Aaron et al. (2009[Aaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem. 16, 153-231.]); Pluta et al. (2011[Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179-3189.]). For the structure of 10-(2-propyn­yl)phenothia­zine and its transformations into anti­cancer derivatives, see: Bisi et al. (2008[Bisi, A., Meli, M., Gobbi, S., Rampa, A., Tolomeo, M. & Dusonchet, L. (2008). Bioorg. Med. Chem. 16, 6474-6482.]). For the synthesis and the anti­cancer and immunosuppressive activity of 2,7-diaza­phenothia­zines, see: Morak-Młodawska & Pluta (2009[Morak-Młodawska, B. & Pluta, K. (2009). Heterocycles, 78, 1289-1298.]); Zimecki et al. (2009[Zimecki, M., Artym, J., Kocięba, M., Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). Cell. Mol. Biol. Lett. 14, 622-635.]); Pluta et al. (2010[Pluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). Pharmacol. Rep. 62, 319-332.]). For planar and folded structures of the 2,7-diaza­phenothia­zine system, see: Morak et al. (2002[Morak, B., Pluta, K. & Suwińska, K. (2002). Heterocycl. Commun. 8, 331-334.]); Morak-Młodawska et al. (2010[Morak-Młodawska, B., Pluta, K., Suwińska, K. & Jeleń, M. (2010). Heterocycles, 81, 2511-2522.]). For alkyl­ation of aza­phenothia­zines, see: Pluta et al. (2009[Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355-391.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3S

  • Mr = 239.29

  • Monoclinic, P 21 /c

  • a = 14.1150 (9) Å

  • b = 10.1909 (6) Å

  • c = 7.6749 (5) Å

  • β = 104.212 (3)°

  • V = 1070.20 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.60 × 0.50 × 0.35 mm

Data collection
  • Nonius KappaCCD diffractometer upgraded with APEXII detector

  • 7015 measured reflections

  • 2407 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.114

  • S = 1.11

  • 2407 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.62 3.457 (3) 147
C13—H13⋯C11ii 0.95 2.78 3.677 (3) 159
C13—H13⋯C12ii 0.95 2.78 3.686 (3) 161
C3—H3⋯C13i 0.95 2.78 3.662 (3) 155
C8—H8⋯C13iii 0.95 2.69 3.407 (3) 133
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Phenothiazines exhibit not only recognized neuroleptic, antihistaminic and antitussive activities but recently also anticancer, antibacterial and reversal multidrug resistance [Aaron et al., (2009); Pluta et al., (2011)]. The modifications of the phenothiazine structures are mainly directed into the introduction of new pharmacophoric substituents at the thiazine nitrogen atom and the substitution of the benzene ring with an azine ring (Pluta et al., 2009, 2011). Synthesis of substituted 10-(2-propynyl)phenothiazines and their transformations into various aminobutynyl derivatives of anticancer and multidrug resistance reverting activities was reported by Bisi et al. (2008). We modified the phenothiazine structure via the substitution of the benzene ring with the pyridine ring to form 2,7-diazaphenothiazines (Morak-Młodawska & Pluta, 2009) possessing anticancer and immunosuppressive activities (Zimecki et al., 2009; Pluta et al. 2010). Alkylation of azaphenothiazines proceeds at the thiazine and/or the azine nitrogen atoms, depending on the reaction conditions (Pluta et al., 2009). N-Alkylation of 10H-2,7-diazaphenothiazine led to both types of the products showing planar and folded 2,7-diazaphenothiazine ring system (Morak-Młodawska et al., 2010). 10H-2,7-Diazaphenothiazine was transformed into the title compound, C13H9N3S, a convenient substrate to other 2,7-diazaphenothiazine derivatives using aminomethylation or 1,3-dipolar cycloaddition. The X-ray study showed the propynyl group to be attached to the thiazine nitrogen atom. In the molecule, the butterfly angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thiazine ring is 138.84 (8)°. The 2-propynyl substituent is in a pseudo-equatorial position with the angle S5···N10–C11 of 163.8 (2)° and directed to the concave side of the diazaphenothiazine system with the angle between the N10/C11/C12/C13 and C4a/C5a/C9a/C10a planes of 86.3 (1)°. The thiazine nitrogen atom shows pyramidality as the sum of the C–N10–C bond angles is 356.1 (1)°. Hydrogen bond C4–H4···N2 (Table 1) results in one-dimensional polymeric chain parallel to the b axis. Acidic hydrogen atom H13 is in close contact to C11 and C12 atoms of the propynyl substituent (both H···C distances equal to 2.78 Å). This suggests, that H13 is involved in C–H···C interactions to these two carbon atoms rather than in the C–H···π interaction to the π system of the triple C12C13 bond (H13···centerC12C13 distance of 2.96 Å ). Additionally, the C12 C13 bond π electrons interact with two aromatic H atoms (H3 and H8) of two other adjacent molecules with short C–H···C intermolecular contacts (less than the sum of van der Waals radii) between H3 and H8, and C13 (see Table 1). On the basis of these interactions a three-dimensional network is formed. Molecules π-stack along the c axis. Aromatic rings N2/C1/C10a/C4a/C4/C3 π-stack with centroid-to-centroid distance of 3.845 (1) Å, similarly, for rings N7/C6/C5A/C9A/C9/C8 the centroid-to-centroid distance is 3.838 (1) Å (see Figure 2).

Related literature top

For recent literature on the biological activity of phenothiazines, see: Aaron et al. (2009); Pluta et al. (2011). For the structure of 10-(2-propynyl)phenothiazine and its transformations into anticancer derivatives, see: Bisi et al. (2008). For the synthesis and the anticancer and immunosuppressive activity of 2,7-diazaphenothiazines, see: Morak-Młodawska & Pluta (2009); Zimecki et al. (2009); Pluta et al. (2010). For planar and folded structures of the 2,7-diazaphenothiazine system, see: Morak et al. (2002); Morak-Młodawska et al. (2010). For alkylation of azaphenothiazines, see: Pluta et al. (2009).

Experimental top

To a suspension of 10H-2,7-diazaphenothiazine (100 mg, 0.5 mmol) in 5 ml DMF potassium tert-butoxide (80 mg, 0.72 mmol) was added. The mixture was stirred at room temperature for 1 h. Then a solution of propargyl bromide (80 mg, 0.64 mmol) in toluene was added dropwise. The solution was stirred at room temperature for 24 h and poured into water (15 ml), extracted with methylene chloride (15 ml), dried with Na2SO4 and evaporated to the brown oil. The residue was purified by column chromatography (silica gel, CHCl3) to yield 10-(2-propynyl)-2,7-diazaphenothiazine (72 mg, 60%), mp. 149–150°C. 1H NMR in CDCl3: δ 2.57 (t, J = 2.5 Hz, 1H), 4.54(d, J = 2.5 Hz, 2H), 7.14 (m, 2H, H-9, H-4), 8.12 (s, 1H, H-1), 8.22 (d, J = 5.5 Hz, H-3), 8.35 (d, J = 5.5 Hz, H-8), 8.40 (s, 1H, H-6). FAB MS: 240 (M+H, 100), 201 (M—CH2CCH+1, 45).

Refinement top

All H atoms in the were treated as riding atoms in geometrically idealized positions, with C–H distances of 0.95 (aromatic and acetylene) or 0.99 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing shown along the c axis.
10-(Prop-2-yn-1-yl)-2,7-diazaphenothiazine top
Crystal data top
C13H9N3SF(000) = 496
Mr = 239.29Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2229 reflections
a = 14.1150 (9) Åθ = 2.5–27.5°
b = 10.1909 (6) ŵ = 0.28 mm1
c = 7.6749 (5) ÅT = 100 K
β = 104.212 (3)°Block, yellow
V = 1070.20 (12) Å30.60 × 0.50 × 0.35 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer upgraded with APEXII detector
2011 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 8.3 pixels mm-1h = 1818
ω scank = 1213
7015 measured reflectionsl = 99
2407 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.4885P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H9N3SV = 1070.20 (12) Å3
Mr = 239.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1150 (9) ŵ = 0.28 mm1
b = 10.1909 (6) ÅT = 100 K
c = 7.6749 (5) Å0.60 × 0.50 × 0.35 mm
β = 104.212 (3)°
Data collection top
Nonius KappaCCD
diffractometer upgraded with APEXII detector
2011 reflections with I > 2σ(I)
7015 measured reflectionsRint = 0.041
2407 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.11Δρmax = 0.45 e Å3
2407 reflectionsΔρmin = 0.35 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92188 (15)0.1074 (2)0.5605 (3)0.0172 (4)
H10.91450.01480.55220.021*
C31.01573 (17)0.2865 (2)0.6685 (3)0.0218 (5)
H31.07620.32250.73350.026*
C40.94013 (16)0.3721 (2)0.5945 (3)0.0195 (5)
H40.94790.46400.61350.023*
C4a0.85325 (16)0.3212 (2)0.4927 (3)0.0159 (4)
C5a0.65940 (16)0.3263 (2)0.3914 (3)0.0164 (4)
C60.57174 (16)0.3834 (2)0.4013 (3)0.0197 (5)
H60.57030.47590.41610.024*
C80.49541 (17)0.1852 (2)0.3756 (3)0.0226 (5)
H80.43770.13510.36650.027*
C90.58017 (16)0.1180 (2)0.3718 (3)0.0192 (5)
H90.58010.02490.36400.023*
C9a0.66564 (15)0.1889 (2)0.3797 (3)0.0154 (4)
C10a0.84271 (15)0.1850 (2)0.4757 (3)0.0147 (4)
C110.75374 (17)0.0072 (2)0.3179 (3)0.0182 (5)
H11a0.81520.02510.28190.022*
H11b0.69920.01980.21020.022*
C120.74397 (16)0.1054 (2)0.4530 (3)0.0194 (5)
C130.73370 (18)0.1884 (3)0.5542 (4)0.0284 (6)
H130.72540.25520.63560.034*
S50.75938 (4)0.42507 (5)0.37659 (8)0.01880 (16)
N21.00796 (13)0.15579 (19)0.6532 (3)0.0204 (4)
N70.48877 (14)0.3163 (2)0.3912 (3)0.0226 (4)
N100.75434 (13)0.12936 (18)0.3721 (2)0.0158 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0160 (10)0.0151 (10)0.0217 (11)0.0027 (8)0.0071 (9)0.0011 (8)
C30.0170 (11)0.0228 (12)0.0250 (12)0.0042 (10)0.0041 (9)0.0051 (10)
C40.0194 (11)0.0165 (10)0.0244 (12)0.0023 (9)0.0085 (9)0.0050 (9)
C4a0.0165 (10)0.0147 (10)0.0178 (11)0.0005 (8)0.0070 (8)0.0003 (8)
C5a0.0176 (10)0.0166 (10)0.0142 (10)0.0009 (8)0.0025 (8)0.0013 (8)
C60.0195 (11)0.0186 (10)0.0197 (11)0.0028 (9)0.0023 (9)0.0007 (9)
C80.0168 (11)0.0245 (12)0.0250 (12)0.0011 (9)0.0024 (9)0.0024 (10)
C90.0175 (10)0.0170 (10)0.0217 (11)0.0004 (9)0.0022 (9)0.0013 (9)
C9a0.0155 (10)0.0156 (10)0.0143 (10)0.0027 (8)0.0022 (8)0.0005 (8)
C10a0.0141 (10)0.0144 (10)0.0169 (11)0.0017 (8)0.0064 (8)0.0000 (8)
C110.0199 (11)0.0136 (10)0.0218 (11)0.0011 (9)0.0064 (9)0.0028 (9)
C120.0149 (10)0.0177 (10)0.0250 (12)0.0000 (9)0.0037 (9)0.0034 (9)
C130.0256 (13)0.0242 (12)0.0360 (15)0.0034 (10)0.0086 (11)0.0067 (11)
S50.0187 (3)0.0143 (3)0.0241 (3)0.0015 (2)0.0066 (2)0.0035 (2)
N20.0131 (9)0.0226 (10)0.0248 (10)0.0021 (8)0.0033 (7)0.0002 (8)
N70.0164 (9)0.0244 (10)0.0254 (11)0.0039 (8)0.0020 (8)0.0014 (8)
N100.0119 (8)0.0185 (9)0.0167 (9)0.0014 (7)0.0030 (7)0.0005 (7)
Geometric parameters (Å, º) top
C1—N21.342 (3)C6—H60.9500
C1—C10a1.393 (3)C8—N71.347 (3)
C1—H10.9500C8—C91.385 (3)
C3—N21.339 (3)C8—H80.9500
C3—C41.387 (3)C9—C9a1.395 (3)
C3—H30.9500C9—H90.9500
C4—C4a1.383 (3)C9a—N101.405 (3)
C4—H40.9500C10a—N101.422 (3)
C4a—C10a1.398 (3)C11—N101.452 (3)
C4a—S51.758 (2)C11—C121.471 (3)
C5a—C61.386 (3)C11—H11a0.9900
C5a—C9a1.407 (3)C11—H11b0.9900
C5a—S51.760 (2)C12—C131.181 (3)
C6—N71.342 (3)C13—H130.9500
N2—C1—C10a123.9 (2)C8—C9—H9120.5
N2—C1—H1118.1C9a—C9—H9120.5
C10a—C1—H1118.1C9—C9a—N10122.98 (19)
N2—C3—C4123.5 (2)C9—C9a—C5a116.82 (19)
N2—C3—H3118.3N10—C9a—C5a120.18 (19)
C4—C3—H3118.3C1—C10a—C4a117.7 (2)
C4a—C4—C3118.8 (2)C1—C10a—N10121.87 (19)
C4a—C4—H4120.6C4a—C10a—N10120.42 (19)
C3—C4—H4120.6N10—C11—C12116.42 (19)
C4—C4a—C10a119.0 (2)N10—C11—H11a108.2
C4—C4a—S5120.91 (17)C12—C11—H11a108.2
C10a—C4a—S5120.04 (17)N10—C11—H11b108.2
C6—C5a—C9a119.5 (2)C12—C11—H11b108.2
C6—C5a—S5120.26 (17)H11a—C11—H11b107.3
C9a—C5a—S5120.09 (16)C13—C12—C11176.5 (3)
N7—C6—C5a124.1 (2)C12—C13—H13180.0
N7—C6—H6117.9C4a—S5—C5a98.00 (10)
C5a—C6—H6117.9C3—N2—C1117.1 (2)
N7—C8—C9124.9 (2)C6—N7—C8115.6 (2)
N7—C8—H8117.6C9a—N10—C10a118.21 (18)
C9—C8—H8117.6C9a—N10—C11118.89 (18)
C8—C9—C9a119.0 (2)C10a—N10—C11119.00 (18)
N2—C3—C4—C4a2.9 (4)C4—C4a—S5—C5a148.01 (19)
C3—C4—C4a—C10a3.3 (3)C10a—C4a—S5—C5a35.26 (19)
C3—C4—C4a—S5173.43 (17)C6—C5a—S5—C4a148.16 (19)
C9a—C5a—C6—N73.6 (4)C9a—C5a—S5—C4a36.6 (2)
S5—C5a—C6—N7171.68 (18)C4—C3—N2—C10.1 (3)
N7—C8—C9—C9a1.8 (4)C10a—C1—N2—C32.2 (3)
C8—C9—C9a—N10178.4 (2)C5a—C6—N7—C81.9 (3)
C8—C9—C9a—C5a0.1 (3)C9—C8—N7—C60.8 (4)
C6—C5a—C9a—C92.4 (3)C9—C9a—N10—C10a144.8 (2)
S5—C5a—C9a—C9172.88 (17)C5a—C9a—N10—C10a36.8 (3)
C6—C5a—C9a—N10179.1 (2)C9—C9a—N10—C1112.8 (3)
S5—C5a—C9a—N105.6 (3)C5a—C9a—N10—C11165.6 (2)
N2—C1—C10a—C4a1.7 (3)C1—C10a—N10—C9a142.9 (2)
N2—C1—C10a—N10177.10 (19)C4a—C10a—N10—C9a38.3 (3)
C4—C4a—C10a—C11.2 (3)C1—C10a—N10—C1114.6 (3)
S5—C4a—C10a—C1175.63 (16)C4a—C10a—N10—C11164.16 (19)
C4—C4a—C10a—N10179.98 (19)C12—C11—N10—C9a76.0 (3)
S5—C4a—C10a—N103.2 (3)C12—C11—N10—C10a81.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.623.457 (3)147
C13—H13···C11ii0.952.783.677 (3)159
C13—H13···C12ii0.952.783.686 (3)161
C3—H3···C13i0.952.783.662 (3)155
C8—H8···C13iii0.952.693.407 (3)133
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H9N3S
Mr239.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1150 (9), 10.1909 (6), 7.6749 (5)
β (°) 104.212 (3)
V3)1070.20 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.60 × 0.50 × 0.35
Data collection
DiffractometerNonius KappaCCD
diffractometer upgraded with APEXII detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7015, 2407, 2011
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 1.11
No. of reflections2407
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.35

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.623.457 (3)147
C13—H13···C11ii0.952.783.677 (3)159
C13—H13···C12ii0.952.783.686 (3)161
C3—H3···C13i0.952.783.662 (3)155
C8—H8···C13iii0.952.693.407 (3)133
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1.
 

Footnotes

Azinyl sulfides. Part CXXVII.

Acknowledgements

The work was supported by the Medical University of Silesia (grant KNW-1–073/P/1/0).

References

First citationAaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem. 16, 153–231.  CrossRef CAS Google Scholar
First citationBisi, A., Meli, M., Gobbi, S., Rampa, A., Tolomeo, M. & Dusonchet, L. (2008). Bioorg. Med. Chem. 16, 6474–6482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorak, B., Pluta, K. & Suwińska, K. (2002). Heterocycl. Commun. 8, 331–334.  CrossRef CAS Google Scholar
First citationMorak-Młodawska, B. & Pluta, K. (2009). Heterocycles, 78, 1289–1298.  Google Scholar
First citationMorak-Młodawska, B., Pluta, K., Suwińska, K. & Jeleń, M. (2010). Heterocycles, 81, 2511–2522.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). Pharmacol. Rep. 62, 319–332.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355–391.  Web of Science CrossRef CAS Google Scholar
First citationPluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179–3189.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimecki, M., Artym, J., Kocięba, M., Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). Cell. Mol. Biol. Lett. 14, 622–635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1590-o1591
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds