organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1649-o1650

4-Amino-N-(4,6-di­methyl­pyrimidin-2-yl)­benzene­sulfonamide–4-nitro­benzoic acid (1/1)

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 22 April 2012; accepted 1 May 2012; online 5 May 2012)

In the asymmetric unit of the title co-crystal, C7H5NO4·C12H14N4O2S, there are two independent but conformationally similar heterodimers, which are formed through inter­molecular N—H⋯Ocarb­oxy and carbox­yl–pyrimidine O—H⋯N hydrogen-bond pairs, giving a cyclic motif [graph set R22(8)]. The dihedral angles between the rings in the sulfonamide molecules are 78.77 (8) and 82.33 (9)° while the dihedral angles between the ring and the CO2H group in the acids are 2.19 (9) and 7.02 (10)°. A two-dimensional structure parallel to the ab plane is generated from the heterodimer units through hydrogen-bonding associations between NH2 and sulfone groups. Between neighbouring two-dimensional arrays there are two types of aromatic ππ stacking inter­actions involving either one of the pyrimidine rings and a 4-nitro­benzoic acid mol­ecule [minimum ring centroid separation = 3.5886 (9) Å] or two acid mol­ecules [minimum ring centroid separation = 3.7236 (10) Å].

Related literature

For background on sulfamethazole as a model for co-crystal formation, see: Caira (2008[Caira, M. R. (2008). Mol. Pharm. 4, 310-316.]). For structures of 1:1 adducts of sulfamethazine with benzoic acid analogues, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.]); Caira (1991[Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648.], 1992[Caira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193-200.]); Lynch et al. (2000[Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383-387.]); Patel et al. (1988[Patel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264-1267.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·C12H14N4O2S

  • Mr = 445.46

  • Triclinic, [P \overline 1]

  • a = 8.3483 (3) Å

  • b = 13.8354 (6) Å

  • c = 17.9813 (8) Å

  • α = 90.810 (4)°

  • β = 92.841 (4)°

  • γ = 96.090 (4)°

  • V = 2062.23 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.35 × 0.35 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.968, Tmax = 0.988

  • 25486 measured reflections

  • 8077 independent reflections

  • 6075 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 0.99

  • 8077 reflections

  • 595 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O12C 0.84 (2) 1.92 (2) 2.758 (2) 178.6 (16)
N2B—H2B⋯O12D 0.88 (2) 1.96 (2) 2.825 (2) 167.9 (17)
N41A—H41A⋯O12Bi 0.88 (2) 2.23 (2) 3.093 (2) 168.5 (17)
N41B—H41B⋯O12Aii 0.86 (2) 2.44 (2) 2.943 (2) 117.9 (15)
N41A—H42A⋯O11Aiii 0.80 (3) 2.22 (3) 3.002 (2) 164 (2)
N41B—H42B⋯O11Biii 0.84 (2) 2.30 (2) 3.066 (2) 152 (2)
O11C—H11C⋯N1A 0.95 (3) 1.74 (3) 2.6829 (18) 175 (2)
O11D—H11D⋯N3B 0.99 (3) 1.67 (3) 2.652 (2) 171 (3)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The drug sulfamethazine [4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide] has been used as a model for co-crystal formation (Caira, 2008), commonly forming 1:1 adducts with carboxylic acids, particularly the benzoic analogues. The structures of a number of these have been reported, e.g. with benzoic acid (Arman et al., 2010); salicylic acid (Patel et al., 1988); anthranilic acid and 4-aminobenzoic acid (Caira, 1991); 4-aminosalicylic acid and acetylsalicylic acid (Caira, 1992) and 2,4-dinitrobenzoic acid (Lynch et al., 2000). In all of these co-crystals, heterodimers are formed through a cyclic hydrogen-bonding motif [graph set R22(8) (Etter et al., 1990)], involving amine N—H···Ocarboxyl–carboxylic acid O—H···Npyrimidine pairs.

Our 1:1 stoichiometric interaction of sulfamethazine with 4-nitrobenzoic acid also gave a 1:1 co-crystalline adduct C12H14N4O2S . C7H5NO4, the title compound, and the structure is reported here. In this co-crystal (Fig. 1), there are two independent molecular pairs (sulfamethazine molecules A and B with 4-nitrobenzoic acid molecules C and D respectively), which interact as previously described, giving cyclic R22(8) hydrogen-bonded heterodimers (Table 1). Intermolecular amine N—H···Osulfone hydrogen-bonding interactions from the heterodimer units (Table 1) generate a two-dimensional structure lying parallel to the ab plane (Fig. 2). Between neighbouring two-dimensional structures there are two types of aromatic ππ stacking interactions involving either one of the pyrimidine rings (A) and a 4-nitrobenzoic acid molecule Civ ([minimum ring centroid separation = 3.5886 (9) Å] or two acid molecules (DDv) ([minimum ring centroid separation = 3.7236 (10) Å] [symmetry codes: (iv) -x + 1, -y + 2, -z + 1; (v) -x + 3, -y + 2, -z + 2].

There are minor conformational differences between the molecules within the two heterodimer units. The inter-ring dihedral angles between the pyrimidine ring (1) and the benzene ring (2) of the sulfamethazine molecule and the angle between these and the benzene ring of the 4-nitrobenzene group (3) are 78.77 (8), 1.99 (8) and 77.44 (8)°, respectively (the AC pair) compared to 82.33 (9), 10.85 (9) and 74.47 (8)° (the BD pair).

Related literature top

For background on sulfamethazole as a model for co-crystal formation, see: Caira (2008). For structures of 1:1 adducts of sulfamethazine with benzoic acid analogues, see: Arman et al. (2010); Caira (1991, 1992); Lynch et al. (2000); Patel et al. (1988). For graph-set analysis, see: Etter et al. (1990).

Experimental top

The title compound was formed in the interaction of 1 mmol quantities of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine) and 4-nitrobenzoic acid in 50 ml of 50% ethanol–water with 10 min refluxing. Partial evaporation of the solvent gave pale yellow crystal prisms (m.p. 482 K) from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.96 Å] and treated as riding, with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq (C) (methyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme for the two independent hydrogen-bonded heteromolecular pairs (AC and BD) in the asymmetric unit of the title co-crystal, with inter-species hydrogen bonds shown as dashed lines. Non-hydrogen atoms are shown as 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the two-dimensional structure which extends down b, showing hydrogen-bonding associations as dashed lines. For symmetry codes (i)–(iii), see Table 1.
4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide–4-nitrobenzoic acid (1/1) top
Crystal data top
C7H5NO4·C12H14N4O2SZ = 4
Mr = 445.46F(000) = 928
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Melting point: 482 K
a = 8.3483 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.8354 (6) ÅCell parameters from 10792 reflections
c = 17.9813 (8) Åθ = 3.2–28.7°
α = 90.810 (4)°µ = 0.21 mm1
β = 92.841 (4)°T = 200 K
γ = 96.090 (4)°Block, pale yellow
V = 2062.23 (15) Å30.35 × 0.35 × 0.30 mm
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
8077 independent reflections
Radiation source: Enhance (Mo) X-ray source6075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0774 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1717
Tmin = 0.968, Tmax = 0.988l = 2222
25486 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
8077 reflections(Δ/σ)max = 0.002
595 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C7H5NO4·C12H14N4O2Sγ = 96.090 (4)°
Mr = 445.46V = 2062.23 (15) Å3
Triclinic, P1Z = 4
a = 8.3483 (3) ÅMo Kα radiation
b = 13.8354 (6) ŵ = 0.21 mm1
c = 17.9813 (8) ÅT = 200 K
α = 90.810 (4)°0.35 × 0.35 × 0.30 mm
β = 92.841 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
8077 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6075 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.028
25486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.27 e Å3
8077 reflectionsΔρmin = 0.41 e Å3
595 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.43065 (5)0.79681 (3)0.28848 (2)0.0280 (1)
O11A0.31284 (15)0.85129 (9)0.25216 (7)0.0359 (4)
O12A0.42294 (15)0.69500 (9)0.27420 (7)0.0354 (4)
N1A0.43974 (15)0.81078 (9)0.50370 (7)0.0224 (4)
N2A0.40684 (17)0.81744 (11)0.37704 (8)0.0273 (5)
N3A0.55850 (16)0.69806 (9)0.42680 (7)0.0237 (4)
N41A1.0704 (2)0.99483 (15)0.22870 (10)0.0431 (7)
C2A0.47352 (18)0.77249 (11)0.43760 (9)0.0213 (5)
C4A0.60735 (19)0.65360 (12)0.48885 (9)0.0248 (5)
C5A0.5729 (2)0.68510 (12)0.55886 (10)0.0279 (6)
C6A0.49003 (19)0.76604 (12)0.56539 (9)0.0239 (5)
C11A0.6208 (2)0.85296 (13)0.26962 (9)0.0277 (6)
C21A0.7486 (2)0.79910 (13)0.25577 (10)0.0320 (6)
C31A0.8974 (2)0.84640 (13)0.24231 (10)0.0345 (6)
C41A0.9242 (2)0.94797 (13)0.24233 (9)0.0306 (6)
C42A0.6982 (2)0.56738 (13)0.47789 (11)0.0349 (6)
C51A0.7929 (2)1.00111 (13)0.25553 (10)0.0342 (6)
C61A0.6457 (2)0.95425 (13)0.26920 (10)0.0319 (6)
C62A0.4544 (2)0.80788 (13)0.63896 (9)0.0349 (6)
S1B0.82454 (5)0.68304 (3)0.76744 (2)0.0244 (1)
O11B0.68139 (14)0.63072 (9)0.73454 (6)0.0316 (4)
O12B0.86553 (15)0.78235 (8)0.74704 (6)0.0328 (4)
N1B0.70460 (19)0.53427 (11)0.88061 (8)0.0360 (5)
N2B0.80838 (18)0.69373 (11)0.85831 (8)0.0265 (5)
N3B0.84663 (17)0.63531 (10)0.97601 (7)0.0297 (5)
N41B1.3917 (2)0.47448 (14)0.72035 (12)0.0455 (7)
C2B0.7850 (2)0.61641 (12)0.90656 (9)0.0257 (5)
C4B0.8206 (2)0.56378 (14)1.02567 (10)0.0377 (6)
C5B0.7358 (3)0.47662 (14)1.00405 (10)0.0465 (7)
C6B0.6801 (3)0.46280 (14)0.93033 (10)0.0425 (7)
C11B0.98815 (19)0.61767 (12)0.75446 (9)0.0240 (5)
C21B0.9706 (2)0.52772 (12)0.71686 (9)0.0273 (5)
C31B1.1044 (2)0.48082 (13)0.70492 (9)0.0306 (6)
C41B1.2593 (2)0.52095 (12)0.73000 (10)0.0292 (6)
C42B0.8890 (3)0.58491 (16)1.10348 (11)0.0558 (8)
C51B1.2744 (2)0.61104 (13)0.76910 (10)0.0313 (6)
C61B1.1415 (2)0.65878 (12)0.78025 (9)0.0290 (6)
C62B0.5914 (4)0.36946 (16)0.90160 (13)0.0728 (9)
O11C0.28879 (15)0.96896 (9)0.52899 (6)0.0318 (4)
O12C0.28175 (16)0.98996 (9)0.40610 (7)0.0381 (5)
O41C0.13930 (17)1.36383 (10)0.56806 (8)0.0465 (5)
O42C0.16315 (18)1.37390 (10)0.44819 (8)0.0544 (6)
N4C0.11616 (17)1.33583 (11)0.50508 (9)0.0331 (5)
C1C0.14838 (18)1.09566 (11)0.48052 (9)0.0222 (5)
C2C0.1110 (2)1.12500 (12)0.55148 (9)0.0259 (5)
C3C0.0221 (2)1.20285 (12)0.55982 (10)0.0281 (6)
C4C0.02707 (19)1.24986 (11)0.49670 (10)0.0248 (5)
C5C0.0061 (2)1.22156 (12)0.42589 (10)0.0291 (6)
C6C0.0943 (2)1.14346 (12)0.41817 (9)0.0279 (6)
C11C0.24604 (19)1.01288 (12)0.46862 (9)0.0239 (5)
O11D1.05367 (18)0.78479 (11)1.02329 (7)0.0484 (5)
O12D1.02623 (17)0.85230 (10)0.91233 (7)0.0466 (5)
O41D1.5322 (2)1.24767 (12)1.05689 (9)0.0733 (7)
O42D1.5638 (2)1.17003 (12)1.15790 (10)0.0726 (7)
N4D1.5070 (2)1.17635 (12)1.09470 (10)0.0439 (6)
C1D1.1964 (2)0.93775 (13)1.00653 (9)0.0292 (5)
C2D1.2715 (2)0.93354 (14)1.07650 (10)0.0376 (6)
C3D1.3738 (2)1.01145 (14)1.10513 (11)0.0399 (7)
C4D1.3976 (2)1.09326 (13)1.06304 (10)0.0329 (6)
C5D1.3250 (2)1.09989 (14)0.99312 (11)0.0399 (7)
C6D1.2240 (2)1.02123 (14)0.96483 (10)0.0374 (6)
C11D1.0844 (2)0.85434 (13)0.97541 (10)0.0321 (6)
H2A0.370 (2)0.8702 (15)0.3853 (11)0.044 (6)*
H5A0.605000.652500.601000.0330*
H21A0.733300.731500.255600.0380*
H31A0.982100.810100.233000.0410*
H41A1.084 (2)1.0588 (17)0.2288 (11)0.048 (6)*
H42A1.148 (3)0.9654 (19)0.2322 (14)0.068 (8)*
H43A0.789500.585400.448700.0520*
H44A0.628800.516300.452500.0520*
H45A0.734700.545000.525500.0520*
H51A0.806901.068700.254900.0410*
H61A0.560600.990300.278400.0380*
H62A0.532200.862500.651700.0520*
H63A0.460000.759400.676400.0520*
H64A0.348200.828700.636100.0520*
H2B0.864 (2)0.7480 (16)0.8755 (11)0.046 (6)*
H5B0.716000.427601.038300.0560*
H21B0.868800.499800.700000.0330*
H31B1.091900.421200.679600.0370*
H41B1.387 (2)0.4219 (16)0.6936 (11)0.044 (6)*
H42B1.483 (3)0.5016 (16)0.7337 (12)0.050 (7)*
H43B0.988500.626401.102100.0840*
H44B0.908500.525101.127000.0840*
H45B0.813700.616801.131200.0840*
H51B1.375600.638300.787500.0380*
H61B1.153400.718700.805100.0350*
H62B0.516000.382400.861900.1090*
H63B0.534500.337700.941100.1090*
H64B0.666800.328200.883300.1090*
H2C0.145701.092300.593100.0310*
H3C0.004101.223100.606800.0340*
H5C0.030001.254100.384400.0350*
H6C0.117701.122600.370900.0340*
H11C0.343 (3)0.9142 (19)0.5171 (14)0.090 (9)*
H2D1.253000.877801.104400.0450*
H3D1.425501.008701.151900.0480*
H5D1.343601.156100.965600.0480*
H6D1.174001.024000.917600.0450*
H11D0.976 (3)0.732 (2)1.0009 (15)0.092 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0325 (2)0.0323 (3)0.0213 (2)0.0143 (2)0.0006 (2)0.0012 (2)
O11A0.0363 (7)0.0457 (8)0.0284 (7)0.0191 (6)0.0042 (5)0.0030 (6)
O12A0.0428 (8)0.0312 (7)0.0330 (7)0.0108 (6)0.0010 (6)0.0079 (5)
N1A0.0244 (7)0.0211 (7)0.0226 (7)0.0053 (6)0.0024 (6)0.0018 (6)
N2A0.0360 (9)0.0266 (8)0.0226 (8)0.0177 (7)0.0035 (6)0.0007 (6)
N3A0.0241 (7)0.0204 (7)0.0276 (8)0.0070 (6)0.0027 (6)0.0011 (6)
N41A0.0408 (11)0.0334 (11)0.0573 (12)0.0109 (9)0.0078 (9)0.0097 (9)
C2A0.0200 (8)0.0201 (8)0.0242 (9)0.0034 (7)0.0024 (7)0.0018 (7)
C4A0.0231 (9)0.0191 (9)0.0325 (10)0.0043 (7)0.0004 (7)0.0025 (7)
C5A0.0324 (10)0.0238 (9)0.0278 (10)0.0063 (7)0.0029 (7)0.0050 (7)
C6A0.0236 (9)0.0231 (9)0.0250 (9)0.0028 (7)0.0010 (7)0.0022 (7)
C11A0.0343 (10)0.0316 (10)0.0195 (9)0.0141 (8)0.0016 (7)0.0010 (7)
C21A0.0397 (11)0.0271 (10)0.0321 (10)0.0146 (8)0.0062 (8)0.0029 (8)
C31A0.0379 (11)0.0340 (11)0.0357 (11)0.0194 (9)0.0092 (8)0.0043 (8)
C41A0.0368 (10)0.0336 (10)0.0230 (9)0.0112 (8)0.0014 (7)0.0054 (7)
C42A0.0393 (11)0.0279 (10)0.0400 (11)0.0154 (8)0.0021 (8)0.0021 (8)
C51A0.0439 (11)0.0269 (10)0.0335 (10)0.0134 (8)0.0010 (8)0.0019 (8)
C61A0.0370 (11)0.0324 (11)0.0292 (10)0.0193 (8)0.0012 (8)0.0024 (8)
C62A0.0471 (12)0.0354 (11)0.0243 (10)0.0146 (9)0.0015 (8)0.0018 (8)
S1B0.0281 (2)0.0269 (2)0.0183 (2)0.0036 (2)0.0003 (2)0.0045 (2)
O11B0.0270 (6)0.0409 (7)0.0263 (7)0.0030 (5)0.0052 (5)0.0029 (5)
O12B0.0446 (8)0.0274 (7)0.0272 (7)0.0065 (6)0.0034 (5)0.0085 (5)
N1B0.0519 (10)0.0304 (9)0.0240 (8)0.0039 (7)0.0034 (7)0.0020 (6)
N2B0.0354 (9)0.0235 (8)0.0202 (8)0.0012 (7)0.0018 (6)0.0014 (6)
N3B0.0377 (9)0.0301 (8)0.0204 (8)0.0004 (7)0.0009 (6)0.0033 (6)
N41B0.0340 (11)0.0366 (11)0.0662 (13)0.0076 (8)0.0000 (9)0.0114 (9)
C2B0.0302 (9)0.0285 (10)0.0189 (9)0.0037 (7)0.0046 (7)0.0019 (7)
C4B0.0503 (12)0.0389 (11)0.0228 (10)0.0025 (9)0.0036 (8)0.0064 (8)
C5B0.0738 (15)0.0349 (12)0.0280 (11)0.0099 (10)0.0042 (10)0.0106 (9)
C6B0.0675 (14)0.0310 (11)0.0266 (10)0.0068 (10)0.0054 (9)0.0024 (8)
C11B0.0266 (9)0.0257 (9)0.0194 (8)0.0014 (7)0.0014 (7)0.0044 (7)
C21B0.0305 (9)0.0277 (10)0.0218 (9)0.0032 (7)0.0027 (7)0.0010 (7)
C31B0.0366 (10)0.0253 (10)0.0291 (10)0.0013 (8)0.0003 (8)0.0027 (7)
C41B0.0319 (10)0.0246 (9)0.0318 (10)0.0047 (8)0.0044 (8)0.0048 (7)
C42B0.0830 (17)0.0518 (14)0.0270 (11)0.0160 (12)0.0058 (11)0.0114 (10)
C51B0.0272 (9)0.0291 (10)0.0363 (10)0.0014 (8)0.0004 (8)0.0003 (8)
C61B0.0316 (10)0.0238 (9)0.0304 (10)0.0012 (7)0.0005 (7)0.0022 (7)
C62B0.129 (2)0.0411 (14)0.0390 (13)0.0308 (14)0.0040 (14)0.0038 (10)
O11C0.0423 (8)0.0292 (7)0.0270 (7)0.0179 (6)0.0017 (5)0.0038 (5)
O12C0.0565 (9)0.0342 (8)0.0290 (7)0.0256 (6)0.0106 (6)0.0056 (6)
O41C0.0499 (9)0.0397 (8)0.0529 (9)0.0200 (7)0.0044 (7)0.0136 (7)
O42C0.0679 (10)0.0431 (9)0.0584 (10)0.0341 (8)0.0029 (8)0.0120 (7)
N4C0.0273 (8)0.0241 (8)0.0488 (11)0.0069 (6)0.0033 (7)0.0013 (7)
C1C0.0211 (8)0.0189 (8)0.0269 (9)0.0029 (7)0.0019 (7)0.0018 (7)
C2C0.0286 (9)0.0235 (9)0.0259 (9)0.0066 (7)0.0030 (7)0.0018 (7)
C3C0.0305 (10)0.0267 (10)0.0274 (10)0.0054 (7)0.0014 (7)0.0052 (7)
C4C0.0203 (8)0.0180 (9)0.0365 (10)0.0044 (7)0.0020 (7)0.0000 (7)
C5C0.0307 (10)0.0277 (10)0.0305 (10)0.0085 (8)0.0033 (7)0.0090 (7)
C6C0.0332 (10)0.0275 (10)0.0248 (9)0.0086 (8)0.0058 (7)0.0036 (7)
C11C0.0248 (9)0.0209 (9)0.0266 (9)0.0039 (7)0.0031 (7)0.0040 (7)
O11D0.0623 (10)0.0428 (9)0.0337 (8)0.0189 (7)0.0128 (7)0.0109 (6)
O12D0.0654 (10)0.0410 (8)0.0280 (8)0.0142 (7)0.0082 (7)0.0018 (6)
O41D0.1005 (14)0.0516 (10)0.0588 (11)0.0353 (9)0.0064 (9)0.0048 (8)
O42D0.0851 (13)0.0546 (10)0.0690 (12)0.0144 (9)0.0378 (10)0.0039 (9)
N4D0.0429 (10)0.0384 (10)0.0480 (11)0.0071 (8)0.0045 (8)0.0051 (8)
C1D0.0290 (9)0.0332 (10)0.0252 (9)0.0020 (8)0.0026 (7)0.0004 (7)
C2D0.0430 (11)0.0340 (11)0.0338 (11)0.0041 (9)0.0031 (8)0.0058 (8)
C3D0.0412 (11)0.0428 (12)0.0330 (11)0.0037 (9)0.0080 (8)0.0026 (9)
C4D0.0291 (10)0.0327 (11)0.0360 (11)0.0012 (8)0.0033 (8)0.0054 (8)
C5D0.0473 (12)0.0328 (11)0.0383 (11)0.0039 (9)0.0054 (9)0.0064 (9)
C6D0.0475 (12)0.0378 (11)0.0256 (10)0.0009 (9)0.0010 (8)0.0022 (8)
C11D0.0365 (10)0.0334 (11)0.0263 (10)0.0024 (8)0.0022 (8)0.0005 (8)
Geometric parameters (Å, º) top
S1A—O11A1.4386 (13)C42A—H44A0.9600
S1A—O12A1.4224 (13)C42A—H43A0.9600
S1A—N2A1.6393 (15)C42A—H45A0.9600
S1A—C11A1.7429 (18)C51A—H51A0.9300
S1B—O12B1.4375 (12)C61A—H61A0.9300
S1B—N2B1.6520 (15)C62A—H64A0.9600
S1B—C11B1.7395 (17)C62A—H62A0.9600
S1B—O11B1.4270 (12)C62A—H63A0.9600
O11C—C11C1.304 (2)C4B—C5B1.373 (3)
O12C—C11C1.223 (2)C4B—C42B1.498 (3)
O41C—N4C1.223 (2)C5B—C6B1.387 (3)
O42C—N4C1.224 (2)C6B—C62B1.491 (3)
O11C—H11C0.95 (3)C11B—C21B1.398 (2)
O11D—C11D1.314 (2)C11B—C61B1.399 (2)
O12D—C11D1.210 (2)C21B—C31B1.374 (2)
O41D—N4D1.212 (2)C31B—C41B1.402 (2)
O42D—N4D1.217 (3)C41B—C51B1.413 (2)
O11D—H11D0.99 (3)C51B—C61B1.372 (2)
N1A—C6A1.348 (2)C5B—H5B0.9300
N1A—C2A1.349 (2)C21B—H21B0.9300
N2A—C2A1.384 (2)C31B—H31B0.9300
N3A—C2A1.328 (2)C42B—H45B0.9600
N3A—C4A1.348 (2)C42B—H43B0.9600
N41A—C41A1.355 (2)C42B—H44B0.9600
N2A—H2A0.84 (2)C51B—H51B0.9300
N41A—H41A0.88 (2)C61B—H61B0.9300
N41A—H42A0.80 (3)C62B—H64B0.9600
N1B—C2B1.324 (2)C62B—H63B0.9600
N1B—C6B1.349 (2)C62B—H62B0.9600
N2B—C2B1.391 (2)C1C—C11C1.494 (2)
N3B—C2B1.338 (2)C1C—C6C1.390 (2)
N3B—C4B1.350 (2)C1C—C2C1.394 (2)
N41B—C41B1.354 (2)C2C—C3C1.382 (2)
N2B—H2B0.88 (2)C3C—C4C1.382 (2)
N41B—H41B0.86 (2)C4C—C5C1.377 (3)
N41B—H42B0.84 (2)C5C—C6C1.380 (2)
N4C—C4C1.478 (2)C2C—H2C0.9300
N4D—C4D1.479 (2)C3C—H3C0.9300
C4A—C42A1.496 (2)C5C—H5C0.9300
C4A—C5A1.380 (2)C6C—H6C0.9300
C5A—C6A1.384 (2)C1D—C6D1.391 (3)
C6A—C62A1.493 (2)C1D—C11D1.490 (2)
C11A—C21A1.395 (2)C1D—C2D1.382 (2)
C11A—C61A1.395 (3)C2D—C3D1.379 (3)
C21A—C31A1.375 (2)C3D—C4D1.373 (3)
C31A—C41A1.399 (3)C4D—C5D1.377 (3)
C41A—C51A1.411 (2)C5D—C6D1.379 (3)
C51A—C61A1.363 (2)C2D—H2D0.9300
C5A—H5A0.9300C3D—H3D0.9300
C21A—H21A0.9300C5D—H5D0.9300
C31A—H31A0.9300C6D—H6D0.9300
O11A—S1A—O12A119.17 (8)C5B—C4B—C42B123.01 (17)
O11A—S1A—N2A102.91 (8)N3B—C4B—C5B120.29 (16)
O11A—S1A—C11A107.51 (8)N3B—C4B—C42B116.70 (16)
O12A—S1A—N2A109.82 (8)C4B—C5B—C6B118.97 (17)
O12A—S1A—C11A110.09 (8)C5B—C6B—C62B122.51 (18)
N2A—S1A—C11A106.48 (8)N1B—C6B—C5B120.99 (18)
O12B—S1B—N2B101.89 (7)N1B—C6B—C62B116.51 (17)
O12B—S1B—C11B109.32 (8)C21B—C11B—C61B119.77 (15)
N2B—S1B—C11B106.68 (8)S1B—C11B—C21B121.78 (13)
O11B—S1B—C11B109.61 (8)S1B—C11B—C61B118.41 (13)
O11B—S1B—O12B118.86 (7)C11B—C21B—C31B119.71 (15)
O11B—S1B—N2B109.66 (7)C21B—C31B—C41B121.44 (16)
C11C—O11C—H11C110.7 (15)N41B—C41B—C31B122.12 (16)
C11D—O11D—H11D110.8 (16)C31B—C41B—C51B118.07 (15)
C2A—N1A—C6A116.89 (13)N41B—C41B—C51B119.77 (16)
S1A—N2A—C2A127.86 (12)C41B—C51B—C61B120.70 (16)
C2A—N3A—C4A115.69 (13)C11B—C61B—C51B120.29 (15)
C2A—N2A—H2A117.0 (13)C4B—C5B—H5B121.00
S1A—N2A—H2A113.2 (14)C6B—C5B—H5B120.00
H41A—N41A—H42A119 (2)C11B—C21B—H21B120.00
C41A—N41A—H42A118.7 (19)C31B—C21B—H21B120.00
C41A—N41A—H41A119.9 (11)C41B—C31B—H31B119.00
C2B—N1B—C6B115.97 (15)C21B—C31B—H31B119.00
S1B—N2B—C2B125.01 (12)H43B—C42B—H45B109.00
C2B—N3B—C4B116.62 (14)C4B—C42B—H43B109.00
S1B—N2B—H2B110.2 (13)H44B—C42B—H45B109.00
C2B—N2B—H2B118.1 (13)C4B—C42B—H45B109.00
H41B—N41B—H42B117.6 (19)H43B—C42B—H44B110.00
C41B—N41B—H41B121.5 (11)C4B—C42B—H44B109.00
C41B—N41B—H42B119.9 (16)C41B—C51B—H51B120.00
O41C—N4C—C4C118.18 (15)C61B—C51B—H51B120.00
O41C—N4C—O42C124.27 (15)C11B—C61B—H61B120.00
O42C—N4C—C4C117.55 (15)C51B—C61B—H61B120.00
O41D—N4D—O42D123.73 (18)H62B—C62B—H64B109.00
O42D—N4D—C4D118.08 (16)H63B—C62B—H64B109.00
O41D—N4D—C4D118.17 (17)C6B—C62B—H63B109.00
N1A—C2A—N2A113.44 (13)C6B—C62B—H64B109.00
N1A—C2A—N3A126.78 (14)H62B—C62B—H63B110.00
N2A—C2A—N3A119.77 (14)C6B—C62B—H62B109.00
C5A—C4A—C42A121.72 (15)C2C—C1C—C6C120.19 (14)
N3A—C4A—C5A121.65 (15)C6C—C1C—C11C117.96 (14)
N3A—C4A—C42A116.62 (15)C2C—C1C—C11C121.85 (14)
C4A—C5A—C6A118.98 (16)C1C—C2C—C3C119.79 (15)
N1A—C6A—C62A117.53 (14)C2C—C3C—C4C118.46 (16)
C5A—C6A—C62A122.59 (15)N4C—C4C—C3C118.98 (15)
N1A—C6A—C5A119.88 (15)N4C—C4C—C5C118.03 (15)
C21A—C11A—C61A119.40 (16)C3C—C4C—C5C122.97 (15)
S1A—C11A—C61A119.01 (13)C4C—C5C—C6C118.09 (16)
S1A—C11A—C21A121.59 (14)C1C—C6C—C5C120.48 (15)
C11A—C21A—C31A119.68 (16)O11C—C11C—C1C115.10 (14)
C21A—C31A—C41A121.45 (16)O12C—C11C—C1C120.96 (15)
C31A—C41A—C51A118.00 (16)O11C—C11C—O12C123.95 (15)
N41A—C41A—C31A121.62 (17)C1C—C2C—H2C120.00
N41A—C41A—C51A120.37 (17)C3C—C2C—H2C120.00
C41A—C51A—C61A120.54 (16)C2C—C3C—H3C121.00
C11A—C61A—C51A120.93 (16)C4C—C3C—H3C121.00
C6A—C5A—H5A121.00C4C—C5C—H5C121.00
C4A—C5A—H5A121.00C6C—C5C—H5C121.00
C11A—C21A—H21A120.00C1C—C6C—H6C120.00
C31A—C21A—H21A120.00C5C—C6C—H6C120.00
C21A—C31A—H31A119.00C2D—C1D—C11D120.85 (16)
C41A—C31A—H31A119.00C6D—C1D—C11D119.40 (15)
C4A—C42A—H44A109.00C2D—C1D—C6D119.74 (16)
C4A—C42A—H45A109.00C1D—C2D—C3D120.44 (17)
C4A—C42A—H43A110.00C2D—C3D—C4D118.56 (17)
H43A—C42A—H45A109.00N4D—C4D—C3D117.89 (16)
H43A—C42A—H44A109.00C3D—C4D—C5D122.53 (17)
H44A—C42A—H45A109.00N4D—C4D—C5D119.58 (16)
C41A—C51A—H51A120.00C4D—C5D—C6D118.38 (17)
C61A—C51A—H51A120.00C1D—C6D—C5D120.34 (17)
C11A—C61A—H61A120.00O11D—C11D—C1D113.51 (15)
C51A—C61A—H61A120.00O12D—C11D—C1D122.71 (16)
H62A—C62A—H63A109.00O11D—C11D—O12D123.78 (17)
H63A—C62A—H64A109.00C1D—C2D—H2D120.00
H62A—C62A—H64A109.00C3D—C2D—H2D120.00
C6A—C62A—H62A109.00C2D—C3D—H3D121.00
C6A—C62A—H64A110.00C4D—C3D—H3D121.00
C6A—C62A—H63A109.00C4D—C5D—H5D121.00
N1B—C2B—N2B118.33 (15)C6D—C5D—H5D121.00
N1B—C2B—N3B127.13 (15)C1D—C6D—H6D120.00
N2B—C2B—N3B114.53 (14)C5D—C6D—H6D120.00
O11A—S1A—N2A—C2A170.32 (14)S1A—C11A—C61A—C51A179.27 (14)
O12A—S1A—N2A—C2A42.43 (17)C61A—C11A—C21A—C31A0.4 (3)
C11A—S1A—N2A—C2A76.75 (16)C21A—C11A—C61A—C51A0.1 (3)
O11A—S1A—C11A—C21A141.58 (14)C11A—C21A—C31A—C41A0.2 (3)
O11A—S1A—C11A—C61A39.11 (16)C21A—C31A—C41A—C51A0.9 (3)
O12A—S1A—C11A—C21A10.30 (17)C21A—C31A—C41A—N41A179.64 (17)
O12A—S1A—C11A—C61A170.39 (13)C31A—C41A—C51A—C61A1.2 (3)
N2A—S1A—C11A—C21A108.69 (15)N41A—C41A—C51A—C61A179.95 (17)
N2A—S1A—C11A—C61A70.62 (15)C41A—C51A—C61A—C11A0.8 (3)
N2B—S1B—C11B—C21B118.51 (14)N3B—C4B—C5B—C6B1.1 (3)
N2B—S1B—C11B—C61B63.86 (15)C42B—C4B—C5B—C6B178.5 (2)
O11B—S1B—N2B—C2B59.69 (16)C4B—C5B—C6B—N1B1.7 (3)
O12B—S1B—N2B—C2B173.51 (14)C4B—C5B—C6B—C62B178.1 (2)
C11B—S1B—N2B—C2B58.93 (16)S1B—C11B—C61B—C51B177.98 (13)
O11B—S1B—C11B—C21B0.14 (16)S1B—C11B—C21B—C31B176.99 (13)
O11B—S1B—C11B—C61B177.48 (12)C21B—C11B—C61B—C51B0.3 (2)
O12B—S1B—C11B—C21B132.04 (14)C61B—C11B—C21B—C31B0.6 (2)
O12B—S1B—C11B—C61B45.59 (15)C11B—C21B—C31B—C41B0.3 (3)
C2A—N1A—C6A—C5A0.4 (2)C21B—C31B—C41B—N41B178.27 (18)
C2A—N1A—C6A—C62A179.66 (14)C21B—C31B—C41B—C51B0.8 (3)
C6A—N1A—C2A—N3A3.7 (2)C31B—C41B—C51B—C61B1.8 (3)
C6A—N1A—C2A—N2A175.03 (14)N41B—C41B—C51B—C61B179.24 (18)
S1A—N2A—C2A—N3A5.7 (2)C41B—C51B—C61B—C11B1.5 (3)
S1A—N2A—C2A—N1A175.49 (12)C11C—C1C—C6C—C5C178.81 (15)
C2A—N3A—C4A—C5A1.1 (2)C2C—C1C—C11C—O12C177.81 (16)
C4A—N3A—C2A—N1A4.0 (2)C6C—C1C—C11C—O11C177.86 (14)
C4A—N3A—C2A—N2A174.64 (14)C2C—C1C—C11C—O11C2.0 (2)
C2A—N3A—C4A—C42A177.89 (14)C6C—C1C—C2C—C3C1.0 (2)
C6B—N1B—C2B—N3B1.3 (3)C11C—C1C—C2C—C3C179.13 (15)
C2B—N1B—C6B—C5B0.5 (3)C2C—C1C—C6C—C5C1.4 (2)
C6B—N1B—C2B—N2B177.64 (17)C6C—C1C—C11C—O12C2.4 (2)
C2B—N1B—C6B—C62B179.3 (2)C1C—C2C—C3C—C4C0.2 (2)
S1B—N2B—C2B—N1B30.2 (2)C2C—C3C—C4C—N4C177.39 (15)
S1B—N2B—C2B—N3B150.71 (13)C2C—C3C—C4C—C5C1.2 (3)
C2B—N3B—C4B—C5B0.5 (3)C3C—C4C—C5C—C6C0.9 (3)
C2B—N3B—C4B—C42B179.80 (17)N4C—C4C—C5C—C6C177.70 (15)
C4B—N3B—C2B—N2B177.15 (15)C4C—C5C—C6C—C1C0.4 (2)
C4B—N3B—C2B—N1B1.9 (3)C6D—C1D—C2D—C3D0.1 (3)
O41C—N4C—C4C—C5C176.68 (15)C11D—C1D—C2D—C3D179.39 (16)
O41C—N4C—C4C—C3C2.0 (2)C2D—C1D—C6D—C5D0.4 (3)
O42C—N4C—C4C—C3C177.47 (15)C11D—C1D—C6D—C5D178.87 (16)
O42C—N4C—C4C—C5C3.9 (2)C2D—C1D—C11D—O11D6.9 (2)
O42D—N4D—C4D—C5D176.81 (17)C2D—C1D—C11D—O12D174.15 (17)
O42D—N4D—C4D—C3D3.7 (3)C6D—C1D—C11D—O11D172.39 (16)
O41D—N4D—C4D—C3D177.85 (17)C6D—C1D—C11D—O12D6.6 (3)
O41D—N4D—C4D—C5D1.6 (3)C1D—C2D—C3D—C4D0.8 (3)
N3A—C4A—C5A—C6A1.8 (2)C2D—C3D—C4D—N4D179.69 (16)
C42A—C4A—C5A—C6A179.26 (15)C2D—C3D—C4D—C5D0.9 (3)
C4A—C5A—C6A—N1A2.2 (2)N4D—C4D—C5D—C6D179.77 (16)
C4A—C5A—C6A—C62A177.08 (15)C3D—C4D—C5D—C6D0.4 (3)
S1A—C11A—C21A—C31A178.96 (14)C4D—C5D—C6D—C1D0.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O12C0.84 (2)1.92 (2)2.758 (2)178.6 (16)
N2B—H2B···O12D0.88 (2)1.96 (2)2.825 (2)167.9 (17)
N41A—H41A···O12Bi0.88 (2)2.23 (2)3.093 (2)168.5 (17)
N41B—H41B···O12Aii0.86 (2)2.44 (2)2.943 (2)117.9 (15)
N41A—H42A···O11Aiii0.80 (3)2.22 (3)3.002 (2)164 (2)
N41B—H42B···O11Biii0.84 (2)2.30 (2)3.066 (2)152 (2)
O11C—H11C···N1A0.95 (3)1.74 (3)2.6829 (18)175 (2)
O11D—H11D···N3B0.99 (3)1.67 (3)2.652 (2)171 (3)
C2D—H2D···O11D0.932.412.727 (2)100
C5A—H5A···O11B0.932.483.361 (2)157
C6C—H6C···O12Biv0.932.513.179 (2)129
C62B—H63B···O41Dv0.962.443.313 (3)151
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC7H5NO4·C12H14N4O2S
Mr445.46
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.3483 (3), 13.8354 (6), 17.9813 (8)
α, β, γ (°)90.810 (4), 92.841 (4), 96.090 (4)
V3)2062.23 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.35 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
25486, 8077, 6075
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 0.99
No. of reflections8077
No. of parameters595
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.41

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O12C0.84 (2)1.92 (2)2.758 (2)178.6 (16)
N2B—H2B···O12D0.88 (2)1.96 (2)2.825 (2)167.9 (17)
N41A—H41A···O12Bi0.88 (2)2.23 (2)3.093 (2)168.5 (17)
N41B—H41B···O12Aii0.86 (2)2.44 (2)2.943 (2)117.9 (15)
N41A—H42A···O11Aiii0.80 (3)2.22 (3)3.002 (2)164 (2)
N41B—H42B···O11Biii0.84 (2)2.30 (2)3.066 (2)152 (2)
O11C—H11C···N1A0.95 (3)1.74 (3)2.6829 (18)175 (2)
O11D—H11D···N3B0.99 (3)1.67 (3)2.652 (2)171 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Reseach Council and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCaira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641–648.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaira, M. R. (2008). Mol. Pharm. 4, 310–316.  Web of Science CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPatel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264–1267.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1649-o1650
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds