Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2R,3R)-3-O-Benzoyl-N-benzyltartramide¹

Izabela D. Madura,* Janusz Zachara, Urszula Bernaś, Halina Hajmowicz and Ludwik Synoradzki

Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa Poland

Correspondence e-mail: izabela@ch.pw.edu.pl

Received 17 May 2012; accepted 19 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.071; data-to-parameter ratio = 12.5.

The title compound, $C_{18}H_{17}NO_6$ [systematic name: (2R,3R)-4benzylamino-2-benzoyloxy-3-hydroxy-4-oxobutanoic acid], is the first structurally characterized unsymmetrical monoamide-monoacyl tartaric acid derivative. The molecule shows a staggered conformation around the tartramide $Csp^3 - Csp^3$ bond with trans-oriented carboxyl and amide groups. The molecular conformation is stabilized by an intramolecular N- $H \cdot \cdot \cdot O$ hydrogen bond. In the crystal, molecules are linked by $O-H \cdots O$ hydrogen bonds between the carboxyl and amide carbonyl groups, forming translational chains along [001]. Further $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds as well as weaker C-H···O and C-H··· π intermolecular interactions extend the supramolecular assembly into a double-layer structure parallel to (100). There are no directional interactions between the double layers.

Related literature

For crystal structures of R,R-tartaric mono amides, see: Rychlewska et al. (1999); Rychlewska & Warżajtis (2000, 2001). For examples of the crystal structures of monoacyl derivatives, see: Madura et al. (2010); Knyazev et al. (1988); Chekhlov et al. (1986); Ishihara et al. (1993). For the synthesis, see: Bell (1987); Bernaś et al. (2010).

¹ Tartaric acid and its O-acyl derivatives. Part 13.

Hydrogen-bond geometry (Å, °).

D-H

0.99 (2)

0.81 (2)

0.88(2)

0.99

0.99

2.44 3.3117 (16) Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 2$; (iii) x, y + 1, z; (iv) x, y + 1, z - 1; (v) x, y, z - 1.

2.52

 $H \cdot \cdot \cdot A$

1.55 (2)

1.96 (2)

2.12 (2)

2.002 (19)

Data collection: CrvsAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

This work was supported financially by Warsaw University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2491).

References

- Bell, K. H. (1987). Aust. J. Chem. 40, 1723-1735.
- Bernaś, U., Hajmowicz, H., Madura, I. D., Majcher, M., Synoradzki, L. & Zawada, K. (2010). Arkivoc, xi, 1-12.
- Chekhlov, A. N., Belov, Yu. P., Martynov, I. V. & Aksinenko, A. Y. (1986). Russ. Chem. Bull. 35, 2587-2589.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- C₁₈H₁₇NO₆ $M_r = 343.33$ Monoclinic, C2 a = 35.7118 (6) Å b = 6.17734 (11) Å c = 7.48599 (15) Å $\beta = 93.0377 (15)^{\circ}$

Experimental

Crystal data

Data collection

Agilent Gemini A Ultra diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.724, T_{\max} = 1.000$

Refinement

Table 1

 $D - H \cdots A$

 $O1-H1\cdots O5^{i}$

 $O4 - H4 \cdot \cdot \cdot O2^{i}$

 $N1 - H1A \cdots O4$

 $C12-H12A\cdots O1^{iv}$

 $C12 - H12B \cdots O1^{v}$

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.071$ S = 1.062945 reflections 235 parameters 1 restraint

V = 1649.12 (5) Å³ Z = 4Cu Ka radiation $\mu = 0.88 \text{ mm}^{-1}$ T = 100 K $0.54 \times 0.22 \times 0.18 \text{ mm}$

29440 measured reflections 2945 independent reflections 2928 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1321 Friedel pairs
Flack parameter: -0.01 (13)

 $D \cdots A$

2.5317 (13)

2.7501 (14)

2.7788 (17)

2.5894 (14)

3 4827 (16)

 $D - H \cdot \cdot \cdot A$

171.2(17)

146.4 (18)

112.8 (15)

165(2)

165

146

Ishihara, K., Gao, Q. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 10412– 10413.

- Knyazev, V. N., Drozd, V. N., Lipovtsev, V. N., Kurapov, P. B., Yufit, D. S. & Struchkov, Y. T. (1988). *Russ. J. Org. Chem.* 24, 2174–2182.
- Madura, I. D., Zachara, J., Bernaś, U., Hajmowicz, H., Kliś, T., Serwatowski, J. & Synoradzki, L. (2010). J. Mol. Struct. 984, 75–82.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Rychlewska, U., Szarecka, A., Rychlewski, J. & Motała, R. (1999). Acta Cryst. B55, 617–625.
- Rychlewska, U. & Warżajtis, B. (2000). Acta Cryst. B56, 833-848.
- Rychlewska, U. & Warżajtis, B. (2001). Acta Cryst. B57, 415-427.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o1891-o1892 [doi:10.1107/S1600536812022933]

(2R,3R)-3-O-Benzoyl-N-benzyltartramide

Izabela D. Madura, Janusz Zachara, Urszula Bernaś, Halina Hajmowicz and Ludwik Synoradzki

S1. Comment

The title molecule crystallizes in non-centrosymmetric *C*2 space group as *R*,*R* enantiomer. Molecular structure with the atom numbering scheme is presented in Fig. 1. Similarly to the previously characterized tartaric acid mono amides (Rychlewska *et al.*, 1999; Rychlewska & Warżajtis, 2000, 2001), the title molecule adopts the staggered conformation around the C2–C3 bond (Fig. 2.). Thus, the carboxylic group is in *trans* (*T*) orientation with respect to the amide group, whereas the hydroxy and benzoyl substituents adopt the *gauche* counterclockwise orientation. The conformation on C–C* bond in amide fragment enables the formation of an intramolecular N–H···O hydrogen bond between N–H donor and the hydroxyl group. Hence the carbonyl group is on the opposite side of the proximal C*–O bond. Such orientation, called antiplanar (*a*) is also observed in the carboxylic fragment, and the overall conformation of molecules can be given as *T*(*a*,*a*). It is worth noting that in case of dibenzoyl tartaric mono amides (Rychlewska & Warżajtis, 2001) or those with unsubstituted OH groups (Rychlewska *et al.*, 1999; Rychlewska & Warżajtis, 2000) the conformation of the acid fragment is such that the carbonyl group eclipses the nearest C–O bond (*synplanar* conformation, *s*), while the presence of at least one N–H bond forces the conformation of the amide fragment to be *antiplanar* with the intramolecular N–H···O bond.

The analysis of intermolecular interactions shows that the title molecules related by translation along [001] form infinite head-to-tail chains *via* hydrogen bonds between carboxylic OH donors and amide carbonyl groups. A topologically analogous chain motif was observed in the crystal structures of dibenzoyl mono amides by Rychlewska & Warżajtis (2001). Further, the O–H hydroxyl group acts as a donor to carboxyl C=O group joining the chains related by 2_1 screw axis into a double layer (Fig. 3). The layer is enhanced by N–H…O_{benzoyl carbonyl} as well as weaker C–H…O and C–H… π intermolecular interactions. The neighbouring layers are held together by weak van der Waals forces only.

S2. Experimental

A (1:2 mol/mol) mixture of *O*-benzoyl-*L*-tartaric anhydride (Bernaś *et al.*, 2010) and benzylamine in acetonitrile was stirred at room temperature for 10 min. The mixture was then acidified with 10% HCl and filtered. The resulting white solid product was rinsed with water to give pure title compound with m.p. 465–467 K. Preparation and characterization of regioisomer of the title compound was described by Bell (1987), although its structure was defined incorrectly. $[a]^{25}{}_{D}$ = +40.9°, (c 1, EtOH). IR (EtOH): *v* = 693, 708 (C=C, Ph); 1112, 1263 (C—O); 1663 (C=O, CONH); 1710 (C=O, COOH); 1723 (C=O, COBz) cm^{-1.1}H NMR (400 MHz, DMSO-*d6*): δ = 4.43–4.15 (m, 2H), 4.62 (d, 1H), 5.53 (d, 1H), 6.42 (br), 6.81–6.91 (m, 5H), 7.42–7.99 (m, 5H), 8.69 (t, 1H) p.p.m.. ¹³C NMR (400 MHz, DMSO-*d6*): δ = 41.87 (CH2), 71.33 (CH), 74.04 (CH), 126.44, 127.88, 128.76, 128.76, 129.06, 129.52, 133.71, 139.25 (Ph), 165.01, 168.93, 170.28 (C=O) p.p.m.. Anal. Calcd. (%) for C₁₈H₁₇NO₆: C 62.97; H 4.99; N 4.08. Found: C 62.92; H 4.99; N 4.11. Crystals suitable for single-crystal X-ray diffraction measurement were obtained from saturated ethyl acetate/methanol (3:1).

S3. Refinement

The position of the H atoms attached to O and N atoms were freely refined with $U_{iso}(H) = 1.2 \times U_{eq}(N)$ and $U_{iso}(H) = 1.5 \times U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2 \times U_{eq}(C)$. The absolute structure was assigned on the basis of anomalous dispersion that confirmed the known chirality of the reagent. The estimated number of measured Friedel pairs amounts to 1321 with the fraction of 0.813.

Figure 1

ORTEP plot of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are depicted as spheres with arbitrary radii. Dotted line indicates intramolecular hydrogen bond.

Figure 2

(*a*) The staggered conformation (*T*) around C2—C3 bond; (*b*) Antiplanar (*a*) conformations around C1—C2 and C4—C3 bonds.

Figure 3

View along the [010] direction showing double-layers of molecules formed by two types of O—H…O (dashed lines) and N—H…O (dotted lines) bonds. Symmetry codes: (i) x, y, z + 1; (ii) -x + 1/2, y + 1/2, -z + 2; (iii) x, y + 1, z.

(2R,3R)-4-benzylamino-2-benzoyloxy-3-hydroxy-4-oxobutanoic acid

Crystal data	
$C_{18}H_{17}NO_{6}$	Z = 4
$M_r = 343.33$	F(000) = 720
Monoclinic, C2	$D_{\rm x} = 1.383 {\rm ~Mg} {\rm ~m}^{-3}$
<i>a</i> = 35.7118 (6) Å	Melting point: 193 K
b = 6.17734 (11) Å	Cu <i>K</i> α radiation, $\lambda = 1.5418$ Å
c = 7.48599 (15) Å	Cell parameters from 23556 reflections
$\beta = 93.0377 \ (15)^{\circ}$	$\theta = 5.0-67.0^{\circ}$
V = 1649.12 (5) Å ³	$\mu=0.88~\mathrm{mm^{-1}}$

T = 100 KPrism, colourless

Data collection

Dulu collection	
Agilent Gemini A Ultra diffractometer	$T_{\min} = 0.724, T_{\max} = 1.000$ 29440 measured reflections
Radiation source: Enhance Ultra (Cu) X-ray Source	2945 independent reflections 2928 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.038$
Detector resolution: 10.3347 pixels mm ⁻¹	$\theta_{\rm max} = 67.1^{\circ}, \ \theta_{\rm min} = 5.0^{\circ}$
ω scans	$h = -42 \rightarrow 42$
Absorption correction: multi-scan	$k = -7 \rightarrow 7$
(CrysAlis PRO; Oxford Diffraction, 2009)	$l = -8 \rightarrow 8$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of independent
$wR(F^2) = 0.071$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.6346P]$
2945 reflections	where $P = (F_o^2 + 2F_c^2)/3$
235 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 1321 Friedel
Secondamy stam site locations difference Fourier	noina

Secondary atom site location: difference Fourier map

pairs Absolute structure parameter: -0.01 (13)

 $0.54 \times 0.22 \times 0.18 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.31056 (3)	0.28482 (16)	1.07911 (12)	0.0222 (2)	
H1	0.2993 (5)	0.315 (4)	1.194 (3)	0.046*	
O2	0.25203 (3)	0.35877 (17)	0.97437 (12)	0.0229 (2)	
03	0.33951 (2)	0.36177 (15)	0.77766 (11)	0.0195 (2)	
O4	0.29381 (3)	0.72671 (16)	0.76263 (12)	0.0213 (2)	
H4	0.2772 (6)	0.764 (4)	0.825 (3)	0.046*	
05	0.28714 (3)	0.38296 (17)	0.38200 (11)	0.0254 (2)	
06	0.34669 (3)	0.0721 (2)	0.60328 (18)	0.0446 (3)	
N1	0.31211 (3)	0.7200 (2)	0.43257 (14)	0.0196 (2)	
H1A	0.3160 (5)	0.818 (3)	0.517 (3)	0.037*	
C1	0.28496 (3)	0.3271 (2)	0.95296 (16)	0.0185 (3)	
C2	0.29952 (3)	0.3381 (2)	0.76528 (16)	0.0175 (3)	

H2	0.2924	0.2040	0.6969	0.021*
C3	0.28249 (3)	0.5372 (2)	0.67065 (16)	0.0185 (3)
H3	0.2545	0.5262	0.6689	0.022*
C4	0.29469 (3)	0.5431 (2)	0.47812 (16)	0.0176 (3)
C5	0.36003 (4)	0.2140 (2)	0.69603 (17)	0.0217 (3)
C6	0.40098 (4)	0.2478 (2)	0.72820 (16)	0.0220 (3)
C7	0.41579 (4)	0.4261 (3)	0.82131 (18)	0.0256 (3)
H7	0.3996	0.5298	0.8704	0.031*
C8	0.45432 (4)	0.4509 (3)	0.8417 (2)	0.0325 (4)
H8	0.4646	0.5732	0.9037	0.039*
С9	0.47800 (4)	0.2982 (3)	0.7721 (2)	0.0341 (4)
H9	0.5044	0.3155	0.7874	0.041*
C10	0.46321 (4)	0.1209 (3)	0.6808 (2)	0.0327 (3)
H10	0.4795	0.0163	0.6337	0.039*
C11	0.42477 (4)	0.0950 (3)	0.6574 (2)	0.0275 (3)
H11	0.4147	-0.0263	0.5935	0.033*
C12	0.32616 (4)	0.7696 (2)	0.25671 (16)	0.0202 (3)
H12A	0.3175	0.9160	0.2196	0.024*
H12B	0.3154	0.6647	0.1680	0.024*
C13	0.36848 (4)	0.7612 (2)	0.25630 (16)	0.0206 (3)
C14	0.38841 (4)	0.5883 (2)	0.33400 (19)	0.0270 (3)
H14	0.3753	0.4735	0.3876	0.032*
C15	0.42720 (4)	0.5825 (3)	0.3336 (2)	0.0310 (3)
H15	0.4406	0.4653	0.3885	0.037*
C16	0.44647 (4)	0.7487 (3)	0.25267 (19)	0.0308 (3)
H16	0.4731	0.7458	0.2530	0.037*
C17	0.42679 (4)	0.9175 (3)	0.1720 (2)	0.0317 (3)
H17	0.4399	1.0290	0.1141	0.038*
C18	0.38793 (4)	0.9259 (2)	0.17444 (19)	0.0260 (3)
H18	0.3746	1.0441	0.1203	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0249 (4)	0.0281 (5)	0.0133 (4)	0.0021 (4)	-0.0010 (3)	0.0001 (4)
O2	0.0203 (4)	0.0337 (5)	0.0152 (4)	0.0001 (4)	0.0047 (3)	0.0039 (4)
O3	0.0167 (4)	0.0254 (5)	0.0165 (4)	0.0000 (4)	0.0009 (3)	-0.0036 (4)
O4	0.0232 (4)	0.0257 (5)	0.0157 (4)	-0.0002 (4)	0.0062 (3)	-0.0049 (4)
O5	0.0358 (5)	0.0284 (5)	0.0123 (4)	-0.0105 (4)	0.0024 (4)	-0.0018 (4)
O6	0.0270 (5)	0.0438 (7)	0.0643 (8)	-0.0105 (5)	0.0154 (5)	-0.0338 (6)
N1	0.0207 (5)	0.0243 (6)	0.0140 (5)	-0.0020 (5)	0.0032 (4)	-0.0020 (5)
C1	0.0228 (6)	0.0175 (6)	0.0152 (6)	-0.0023 (5)	0.0011 (5)	-0.0002 (5)
C2	0.0167 (6)	0.0237 (6)	0.0121 (6)	-0.0015 (5)	0.0010 (4)	-0.0019 (5)
C3	0.0175 (6)	0.0257 (7)	0.0125 (6)	-0.0014 (6)	0.0020 (4)	-0.0010 (5)
C4	0.0151 (5)	0.0248 (6)	0.0128 (6)	0.0000 (5)	-0.0010 (4)	0.0011 (5)
C5	0.0229 (6)	0.0235 (7)	0.0192 (6)	-0.0012 (6)	0.0065 (5)	-0.0028 (6)
C6	0.0223 (6)	0.0284 (8)	0.0156 (6)	0.0019 (6)	0.0046 (5)	0.0034 (5)
C7	0.0234 (7)	0.0343 (8)	0.0192 (6)	0.0007 (6)	0.0030 (5)	-0.0037 (6)

supporting information

C8	0.0243 (7)	0.0486 (10)	0.0243 (7)	-0.0042 (7)	-0.0010 (6)	-0.0054 (7)
C9	0.0181 (6)	0.0575 (11)	0.0266 (7)	0.0026 (7)	0.0009 (5)	0.0055 (7)
C10	0.0269 (8)	0.0434 (9)	0.0286 (8)	0.0110 (7)	0.0083 (6)	0.0052 (7)
C11	0.0269 (7)	0.0314 (8)	0.0250 (7)	0.0035 (6)	0.0073 (6)	0.0009 (6)
C12	0.0241 (6)	0.0237 (7)	0.0131 (6)	-0.0025 (5)	0.0027 (5)	0.0028 (5)
C13	0.0241 (6)	0.0255 (7)	0.0124 (5)	-0.0019 (5)	0.0029 (5)	-0.0020 (5)
C14	0.0270 (7)	0.0307 (8)	0.0237 (7)	0.0014 (6)	0.0059 (5)	0.0052 (6)
C15	0.0272 (7)	0.0399 (9)	0.0261 (7)	0.0062 (6)	0.0029 (6)	0.0027 (6)
C16	0.0203 (6)	0.0437 (9)	0.0289 (7)	-0.0010 (6)	0.0049 (5)	-0.0088(7)
C17	0.0289 (8)	0.0345 (8)	0.0329 (8)	-0.0083 (6)	0.0111 (6)	-0.0021 (7)
C18	0.0278 (7)	0.0267 (7)	0.0241 (7)	-0.0017 (6)	0.0055 (6)	0.0019 (6)

Geometric parameters (Å, °)

01—C1	1.3053 (15)	С8—Н8	0.9500
01—H1	0.99 (2)	С9—С8	1.387 (2)
O2—C1	1.2111 (16)	С9—Н9	0.9500
O3—C2	1.4336 (14)	C10—C9	1.381 (3)
O3—C5	1.3384 (16)	C10—C11	1.384 (2)
O4—C3	1.4067 (17)	C10—H10	0.9500
O4—H4	0.81 (2)	C11—H11	0.9500
O5—C4	1.2442 (17)	C12—H12A	0.9900
O6—C5	1.2010 (18)	C12—H12B	0.9900
N1C4	1.3115 (18)	C13—C12	1.5126 (17)
N1-C12	1.4659 (16)	C13—C18	1.3922 (19)
N1—H1A	0.88 (2)	C14—C13	1.393 (2)
C2—C1	1.5253 (17)	C14—C15	1.386 (2)
С2—С3	1.5293 (18)	C14—H14	0.9500
С2—Н2	1.0000	C15—C16	1.392 (2)
C3—C4	1.5280 (16)	C15—H15	0.9500
С3—Н3	1.0000	C16—H16	0.9500
C6—C5	1.4841 (18)	C17—C16	1.379 (2)
С6—С7	1.393 (2)	C17—H17	0.9500
C6—C11	1.393 (2)	C18—H18	0.9500
С7—С8	1.385 (2)	C18—C17	1.390 (2)
С7—Н7	0.9500		
C1—01—H1	106.9 (12)	С9—С8—Н8	119.8
C5—O3—C2	117.93 (10)	C8—C9—C10	120.05 (13)
C3—O4—H4	108.7 (16)	С8—С9—Н9	120.0
C4—N1—C12	126.69 (12)	С10—С9—Н9	120.0
C4—N1—H1A	116.4 (13)	C9—C10—C11	120.34 (14)
C12—N1—H1A	116.9 (13)	C9—C10—H10	119.8
O1—C1—O2	125.75 (11)	C11-C10-H10	119.8
O1—C1—C2	114.55 (10)	C6—C11—C10	119.61 (15)
O2—C1—C2	119.70 (11)	C6—C11—H11	120.2
O3—C2—C1	109.39 (9)	C10—C11—H11	120.2
O3—C2—C3	108.56 (10)	N1-C12-C13	112.59 (10)

O3—C2—H2	110.1	N1—C12—H12A	109.1
C1—C2—C3	108.41 (10)	N1-C12-H12B	109.1
C1—C2—H2	110.1	C13—C12—H12A	109 1
C^2 C^2 H^2	110.1	C_{12} C_{12} H_{12} H_{12}	100.1
	110.1		109.1
04 - C3 - C2	110.23 (9)	H12A—C12—H12B	107.8
O4—C3—C4	110.67 (10)	C14—C13—C12	120.92 (12)
O4—C3—H3	108.9	C18—C13—C12	119.84 (12)
С2—С3—Н3	108.9	C18—C13—C14	119.23 (12)
C4-C3-C2	109.26 (10)	C13—C14—H14	119.8
C4—C3—H3	108.9	C15-C14-C13	120 48 (13)
05	127 10 (11)	C_{15} C_{14} H_{14}	119.8
$O_5 C_4 C_3$	117 56 (11)	C_{14} C_{15} C_{16}	119.0
03C4C3	117.30(11)	C14 - C15 - C10	119.95 (14)
NI = C4 = C3	115.34 (11)		120.0
03-05-06	123.49 (12)	С16—С15—Н15	120.0
O3—C5—C6	112.86 (11)	C15—C16—H16	120.1
O6—C5—C6	123.63 (12)	C17—C16—C15	119.71 (13)
C5—C6—C7	122.51 (12)	C17—C16—H16	120.1
C5—C6—C11	117.27 (13)	С18—С17—Н17	119.7
C7—C6—C11	120.20 (13)	C16—C17—C18	120.58 (14)
C6-C7-C8	119 44 (14)	C16—C17—H17	119 7
С6—С7—Н7	120.3	C_{13} C_{18} H_{18}	120.0
C° C^{7} H^{7}	120.3	C_{12} C_{13} C_{13} C_{13}	120.01(12)
	120.3	C17 - C18 - C13	120.01 (13)
C/C8C9	120.35 (15)	C1/C18H18	120.0
С/—С8—Н8	119.8		
C5—O3—C2—C1	123.19(12)	C11—C6—C5—O3	176.38 (12)
$C_{5} - C_{3} - C_{2} - C_{3}$	-11868(11)	$C_{11} - C_{6} - C_{5} - O_{6}$	-52(2)
$C_2 C_2 C_2 C_3 C_5 C_6$	5 2 (2)	C_{11} C_{6} C_{7} C_{8}	0.5(2)
$C_2 = 0_3 = C_3 = 0_0$	5.5(2)	$C_{11} = C_{0} = C_{1} = C_{0}$	0.5(2)
$C_2 = 0_3 = C_3 = C_0$	-170.29 (10)	$C_{3} = C_{0} = C_{7} = C_{8}$	-178.03(13)
C12—N1—C4—C3	-1/8.86 (11)	C5—C6—C11—C10	1/8.85 (13)
C12—N1—C4—O5	0.9 (2)	C7—C6—C11—C10	0.2 (2)
C4—N1—C12—C13	-108.11 (14)	C6—C7—C8—C9	-0.9 (2)
O3—C2—C1—O1	-16.83 (15)	C10—C9—C8—C7	0.5 (2)
O3—C2—C1—O2	162.45 (12)	C11—C10—C9—C8	0.3 (2)
C3—C2—C1—O1	-135.05(11)	C9—C10—C11—C6	-0.6(2)
C3—C2—C1—O2	44.24 (16)	C14—C13—C12—N1	46.90 (17)
$03-C^2-C^3-04$	-56.88(12)	C_{18} C_{13} C_{12} N_{1}	-13432(13)
$O_3 C_2 C_3 C_4$	64.03 (12)	C_{12} C_{13} C_{18} C_{17}	-179.25(12)
03 - 02 - 03 - 04	(1.95)(12)	C12 - C13 - C18 - C17	1/9.23(12)
C1 = C2 = C3 = C4	01.80 (12)		-0.4(2)
01-02-03-04	-1/6.32(10)	C15—C14—C13—C12	-1/9.72 (13)
O4—C3—C4—O5	178.58 (11)	C15—C14—C13—C18	1.5 (2)
O4—C3—C4—N1	-1.62 (15)	C13—C14—C15—C16	-1.0 (2)
C2—C3—C4—O5	57.03 (14)	C14—C15—C16—C17	-0.5 (2)
C2-C3-C4-N1	-123.17 (12)	C18—C17—C16—C15	1.6 (2)
C7—C6—C5—O3	-5.05(18)	C13—C18—C17—C16	-1.1 (2)
C7—C6—C5—O6	173.34 (14)		

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
01—H1…O5 ⁱ	0.99 (2)	1.55 (2)	2.5317 (13)	171.2 (17)
O4—H4···O2 ⁱⁱ	0.81 (2)	1.96 (2)	2.7501 (14)	165 (2)
N1—H1A···O6 ⁱⁱⁱ	0.88 (2)	2.002 (19)	2.7788 (17)	146.4 (18)
N1—H1 <i>A</i> …O4	0.88 (2)	2.12 (2)	2.5894 (14)	112.8 (15)
С2—Н2…О6	1.00	2.25	2.6879 (17)	105
C12—H12A…O1 ^{iv}	0.99	2.52	3.4827 (16)	165
C12—H12B…O1 ^v	0.99	2.44	3.3117 (16)	146

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+1/2, *y*+1/2, –*z*+2; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*+1, *z*-1; (v) *x*, *y*, *z*-1.