organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1891-o1892

(2R,3R)-3-O-Benzoyl-N-benzyl­tartramide

aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
*Correspondence e-mail: izabela@ch.pw.edu.pl

(Received 17 May 2012; accepted 19 May 2012; online 26 May 2012)

The title compound, C18H17NO6 [systematic name: (2R,3R)-4-benzyl­amino-2-benzo­yloxy-3-hy­droxy-4-oxobutanoic acid], is the first structurally characterized unsymmetrical monoamide–monoacyl tartaric acid derivative. The mol­ecule shows a staggered conformation around the tartramide Csp3—Csp3 bond with trans-oriented carboxyl and amide groups. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds between the carboxyl and amide carbonyl groups, forming translational chains along [001]. Further O—H⋯O and N—H⋯O hydrogen bonds as well as weaker C—H⋯O and C—H⋯π inter­molecular inter­actions extend the supra­molecular assembly into a double-layer structure parallel to (100). There are no directional inter­actions between the double layers.

Related literature

For crystal structures of R,R-tartaric mono amides, see: Rychlewska et al. (1999[Rychlewska, U., Szarecka, A., Rychlewski, J. & Motała, R. (1999). Acta Cryst. B55, 617-625.]); Rychlewska & Warżajtis (2000[Rychlewska, U. & Warżajtis, B. (2000). Acta Cryst. B56, 833-848.], 2001[Rychlewska, U. & Warżajtis, B. (2001). Acta Cryst. B57, 415-427.]). For examples of the crystal structures of monoacyl derivatives, see: Madura et al. (2010[Madura, I. D., Zachara, J., Bernaś, U., Hajmowicz, H., Kliś, T., Serwatowski, J. & Synoradzki, L. (2010). J. Mol. Struct. 984, 75-82.]); Knyazev et al. (1988[Knyazev, V. N., Drozd, V. N., Lipovtsev, V. N., Kurapov, P. B., Yufit, D. S. & Struchkov, Y. T. (1988). Russ. J. Org. Chem. 24, 2174-2182.]); Chekhlov et al. (1986[Chekhlov, A. N., Belov, Yu. P., Martynov, I. V. & Aksinenko, A. Y. (1986). Russ. Chem. Bull. 35, 2587-2589.]); Ishihara et al. (1993[Ishihara, K., Gao, Q. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 10412-10413.]). For the synthesis, see: Bell (1987[Bell, K. H. (1987). Aust. J. Chem. 40, 1723-1735.]); Bernaś et al. (2010[Bernaś, U., Hajmowicz, H., Madura, I. D., Majcher, M., Synoradzki, L. & Zawada, K. (2010). Arkivoc, xi, 1-12.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17NO6

  • Mr = 343.33

  • Monoclinic, C 2

  • a = 35.7118 (6) Å

  • b = 6.17734 (11) Å

  • c = 7.48599 (15) Å

  • β = 93.0377 (15)°

  • V = 1649.12 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 100 K

  • 0.54 × 0.22 × 0.18 mm

Data collection
  • Agilent Gemini A Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.724, Tmax = 1.000

  • 29440 measured reflections

  • 2945 independent reflections

  • 2928 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.06

  • 2945 reflections

  • 235 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1321 Friedel pairs

  • Flack parameter: −0.01 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.99 (2) 1.55 (2) 2.5317 (13) 171.2 (17)
O4—H4⋯O2ii 0.81 (2) 1.96 (2) 2.7501 (14) 165 (2)
N1—H1A⋯O6iii 0.88 (2) 2.002 (19) 2.7788 (17) 146.4 (18)
N1—H1A⋯O4 0.88 (2) 2.12 (2) 2.5894 (14) 112.8 (15)
C12—H12A⋯O1iv 0.99 2.52 3.4827 (16) 165
C12—H12B⋯O1v 0.99 2.44 3.3117 (16) 146
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+2]; (iii) x, y+1, z; (iv) x, y+1, z-1; (v) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title molecule crystallizes in non-centrosymmetric C2 space group as R,R enantiomer. Molecular structure with the atom numbering scheme is presented in Fig. 1. Similarly to the previously characterized tartaric acid mono amides (Rychlewska et al., 1999; Rychlewska & Warżajtis, 2000, 2001), the title molecule adopts the staggered conformation around the C2–C3 bond (Fig. 2.). Thus, the carboxylic group is in trans (T) orientation with respect to the amide group, whereas the hydroxy and benzoyl substituents adopt the gauche counterclockwise orientation. The conformation on C–C* bond in amide fragment enables the formation of an intramolecular N–H···O hydrogen bond between N–H donor and the hydroxyl group. Hence the carbonyl group is on the opposite side of the proximal C*–O bond. Such orientation, called antiplanar (a) is also observed in the carboxylic fragment, and the overall conformation of molecules can be given as T(a,a). It is worth noting that in case of dibenzoyl tartaric mono amides (Rychlewska & Warżajtis, 2001) or those with unsubstituted OH groups (Rychlewska et al., 1999; Rychlewska & Warżajtis, 2000) the conformation of the acid fragment is such that the carbonyl group eclipses the nearest C–O bond (synplanar conformation, s), while the presence of at least one N–H bond forces the conformation of the amide fragment to be antiplanar with the intramolecular N–H···O bond.

The analysis of intermolecular interactions shows that the title molecules related by translation along [001] form infinite head-to-tail chains via hydrogen bonds between carboxylic OH donors and amide carbonyl groups. A topologically analogous chain motif was observed in the crystal structures of dibenzoyl mono amides by Rychlewska & Warżajtis (2001). Further, the O–H hydroxyl group acts as a donor to carboxyl C=O group joining the chains related by 21 screw axis into a double layer (Fig. 3). The layer is enhanced by N—H···Obenzoyl carbonyl as well as weaker C—H···O and C—H···π intermolecular interactions. The neighbouring layers are held together by weak van der Waals forces only.

Related literature top

For crystal structures of R,R-tartaric mono amides, see: Rychlewska et al. (1999); Rychlewska & Warżajtis (2000, 2001). For examples of the crystal structures of monoacyl derivatives, see: Madura et al. (2010); Knyazev et al. (1988); Chekhlov et al. (1986); Ishihara et al. (1993). For the synthesis, see: Bell (1987); Bernaś et al. (2010).

Experimental top

A (1:2 mol/mol) mixture of O-benzoyl-L-tartaric anhydride (Bernaś et al., 2010) and benzylamine in acetonitrile was stirred at room temperature for 10 min. The mixture was then acidified with 10% HCl and filtered. The resulting white solid product was rinsed with water to give pure title compound with m.p. 465–467 K. Preparation and characterization of regioisomer of the title compound was described by Bell (1987), although its structure was defined incorrectly. [α]25D = +40.9°, (c 1, EtOH). IR (EtOH): ν = 693, 708 (C=C, Ph); 1112, 1263 (C—O); 1663 (C=O, CONH); 1710 (C=O, COOH); 1723 (C=O, COBz) cm-1. 1H NMR (400 MHz, DMSO-d6): δ = 4.43–4.15 (m, 2H), 4.62 (d, 1H), 5.53 (d, 1H), 6.42 (br), 6.81–6.91 (m, 5H), 7.42–7.99 (m, 5H), 8.69 (t, 1H) p.p.m.. 13C NMR (400 MHz, DMSO-d6): δ = 41.87 (CH2), 71.33 (CH), 74.04 (CH), 126.44, 127.88, 128.76, 128.76, 129.06, 129.52, 133.71, 139.25 (Ph), 165.01, 168.93, 170.28 (C=O) p.p.m.. Anal. Calcd. (%) for C18H17NO6: C 62.97; H 4.99; N 4.08. Found: C 62.92; H 4.99; N 4.11. Crystals suitable for single-crystal X-ray diffraction measurement were obtained from saturated ethyl acetate/methanol (3:1).

Refinement top

The position of the H atoms attached to O and N atoms were freely refined with Uiso(H) = 1.2×Ueq(N) and Uiso(H) =1.5×Ueq(O). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2× Ueq(C). The absolute structure was assigned on the basis of anomalous dispersion that confirmed the known chirality of the reagent. The estimated number of measured Friedel pairs amounts to 1321 with the fraction of 0.813.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are depicted as spheres with arbitrary radii. Dotted line indicates intramolecular hydrogen bond.
[Figure 2] Fig. 2. (a) The staggered conformation (T) around C2—C3 bond; (b) Antiplanar (a) conformations around C1—C2 and C4—C3 bonds.
[Figure 3] Fig. 3. View along the [010] direction showing double-layers of molecules formed by two types of O—H···O (dashed lines) and N—H···O (dotted lines) bonds. Symmetry codes: (i) x, y, z + 1; (ii) -x + 1/2, y + 1/2, -z + 2; (iii) x, y + 1, z.
(2R,3R)-4-benzylamino-2-benzoyloxy-3-hydroxy-4-oxobutanoic acid top
Crystal data top
C18H17NO6Dx = 1.383 Mg m3
Mr = 343.33Melting point: 193 K
Monoclinic, C2Cu Kα radiation, λ = 1.5418 Å
a = 35.7118 (6) ÅCell parameters from 23556 reflections
b = 6.17734 (11) Åθ = 5.0–67.0°
c = 7.48599 (15) ŵ = 0.88 mm1
β = 93.0377 (15)°T = 100 K
V = 1649.12 (5) Å3Prism, colourless
Z = 40.54 × 0.22 × 0.18 mm
F(000) = 720
Data collection top
Agilent Gemini A Ultra
diffractometer
2945 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2928 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.3347 pixels mm-1θmax = 67.1°, θmin = 5.0°
ω scansh = 4242
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 77
Tmin = 0.724, Tmax = 1.000l = 88
29440 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.6346P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2945 reflectionsΔρmax = 0.19 e Å3
235 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1321 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (13)
Crystal data top
C18H17NO6V = 1649.12 (5) Å3
Mr = 343.33Z = 4
Monoclinic, C2Cu Kα radiation
a = 35.7118 (6) ŵ = 0.88 mm1
b = 6.17734 (11) ÅT = 100 K
c = 7.48599 (15) Å0.54 × 0.22 × 0.18 mm
β = 93.0377 (15)°
Data collection top
Agilent Gemini A Ultra
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2928 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 1.000Rint = 0.038
29440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.17 e Å3
2945 reflectionsAbsolute structure: Flack (1983), 1321 Friedel pairs
235 parametersAbsolute structure parameter: 0.01 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31056 (3)0.28482 (16)1.07911 (12)0.0222 (2)
H10.2993 (5)0.315 (4)1.194 (3)0.046*
O20.25203 (3)0.35877 (17)0.97437 (12)0.0229 (2)
O30.33951 (2)0.36177 (15)0.77766 (11)0.0195 (2)
O40.29381 (3)0.72671 (16)0.76263 (12)0.0213 (2)
H40.2772 (6)0.764 (4)0.825 (3)0.046*
O50.28714 (3)0.38296 (17)0.38200 (11)0.0254 (2)
O60.34669 (3)0.0721 (2)0.60328 (18)0.0446 (3)
N10.31211 (3)0.7200 (2)0.43257 (14)0.0196 (2)
H1A0.3160 (5)0.818 (3)0.517 (3)0.037*
C10.28496 (3)0.3271 (2)0.95296 (16)0.0185 (3)
C20.29952 (3)0.3381 (2)0.76528 (16)0.0175 (3)
H20.29240.20400.69690.021*
C30.28249 (3)0.5372 (2)0.67065 (16)0.0185 (3)
H30.25450.52620.66890.022*
C40.29469 (3)0.5431 (2)0.47812 (16)0.0176 (3)
C50.36003 (4)0.2140 (2)0.69603 (17)0.0217 (3)
C60.40098 (4)0.2478 (2)0.72820 (16)0.0220 (3)
C70.41579 (4)0.4261 (3)0.82131 (18)0.0256 (3)
H70.39960.52980.87040.031*
C80.45432 (4)0.4509 (3)0.8417 (2)0.0325 (4)
H80.46460.57320.90370.039*
C90.47800 (4)0.2982 (3)0.7721 (2)0.0341 (4)
H90.50440.31550.78740.041*
C100.46321 (4)0.1209 (3)0.6808 (2)0.0327 (3)
H100.47950.01630.63370.039*
C110.42477 (4)0.0950 (3)0.6574 (2)0.0275 (3)
H110.41470.02630.59350.033*
C120.32616 (4)0.7696 (2)0.25671 (16)0.0202 (3)
H12A0.31750.91600.21960.024*
H12B0.31540.66470.16800.024*
C130.36848 (4)0.7612 (2)0.25630 (16)0.0206 (3)
C140.38841 (4)0.5883 (2)0.33400 (19)0.0270 (3)
H140.37530.47350.38760.032*
C150.42720 (4)0.5825 (3)0.3336 (2)0.0310 (3)
H150.44060.46530.38850.037*
C160.44647 (4)0.7487 (3)0.25267 (19)0.0308 (3)
H160.47310.74580.25300.037*
C170.42679 (4)0.9175 (3)0.1720 (2)0.0317 (3)
H170.43991.02900.11410.038*
C180.38793 (4)0.9259 (2)0.17444 (19)0.0260 (3)
H180.37461.04410.12030.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (4)0.0281 (5)0.0133 (4)0.0021 (4)0.0010 (3)0.0001 (4)
O20.0203 (4)0.0337 (5)0.0152 (4)0.0001 (4)0.0047 (3)0.0039 (4)
O30.0167 (4)0.0254 (5)0.0165 (4)0.0000 (4)0.0009 (3)0.0036 (4)
O40.0232 (4)0.0257 (5)0.0157 (4)0.0002 (4)0.0062 (3)0.0049 (4)
O50.0358 (5)0.0284 (5)0.0123 (4)0.0105 (4)0.0024 (4)0.0018 (4)
O60.0270 (5)0.0438 (7)0.0643 (8)0.0105 (5)0.0154 (5)0.0338 (6)
N10.0207 (5)0.0243 (6)0.0140 (5)0.0020 (5)0.0032 (4)0.0020 (5)
C10.0228 (6)0.0175 (6)0.0152 (6)0.0023 (5)0.0011 (5)0.0002 (5)
C20.0167 (6)0.0237 (6)0.0121 (6)0.0015 (5)0.0010 (4)0.0019 (5)
C30.0175 (6)0.0257 (7)0.0125 (6)0.0014 (6)0.0020 (4)0.0010 (5)
C40.0151 (5)0.0248 (6)0.0128 (6)0.0000 (5)0.0010 (4)0.0011 (5)
C50.0229 (6)0.0235 (7)0.0192 (6)0.0012 (6)0.0065 (5)0.0028 (6)
C60.0223 (6)0.0284 (8)0.0156 (6)0.0019 (6)0.0046 (5)0.0034 (5)
C70.0234 (7)0.0343 (8)0.0192 (6)0.0007 (6)0.0030 (5)0.0037 (6)
C80.0243 (7)0.0486 (10)0.0243 (7)0.0042 (7)0.0010 (6)0.0054 (7)
C90.0181 (6)0.0575 (11)0.0266 (7)0.0026 (7)0.0009 (5)0.0055 (7)
C100.0269 (8)0.0434 (9)0.0286 (8)0.0110 (7)0.0083 (6)0.0052 (7)
C110.0269 (7)0.0314 (8)0.0250 (7)0.0035 (6)0.0073 (6)0.0009 (6)
C120.0241 (6)0.0237 (7)0.0131 (6)0.0025 (5)0.0027 (5)0.0028 (5)
C130.0241 (6)0.0255 (7)0.0124 (5)0.0019 (5)0.0029 (5)0.0020 (5)
C140.0270 (7)0.0307 (8)0.0237 (7)0.0014 (6)0.0059 (5)0.0052 (6)
C150.0272 (7)0.0399 (9)0.0261 (7)0.0062 (6)0.0029 (6)0.0027 (6)
C160.0203 (6)0.0437 (9)0.0289 (7)0.0010 (6)0.0049 (5)0.0088 (7)
C170.0289 (8)0.0345 (8)0.0329 (8)0.0083 (6)0.0111 (6)0.0021 (7)
C180.0278 (7)0.0267 (7)0.0241 (7)0.0017 (6)0.0055 (6)0.0019 (6)
Geometric parameters (Å, º) top
O1—C11.3053 (15)C8—H80.9500
O1—H10.99 (2)C9—C81.387 (2)
O2—C11.2111 (16)C9—H90.9500
O3—C21.4336 (14)C10—C91.381 (3)
O3—C51.3384 (16)C10—C111.384 (2)
O4—C31.4067 (17)C10—H100.9500
O4—H40.81 (2)C11—H110.9500
O5—C41.2442 (17)C12—H12A0.9900
O6—C51.2010 (18)C12—H12B0.9900
N1—C41.3115 (18)C13—C121.5126 (17)
N1—C121.4659 (16)C13—C181.3922 (19)
N1—H1A0.88 (2)C14—C131.393 (2)
C2—C11.5253 (17)C14—C151.386 (2)
C2—C31.5293 (18)C14—H140.9500
C2—H21.0000C15—C161.392 (2)
C3—C41.5280 (16)C15—H150.9500
C3—H31.0000C16—H160.9500
C6—C51.4841 (18)C17—C161.379 (2)
C6—C71.393 (2)C17—H170.9500
C6—C111.393 (2)C18—H180.9500
C7—C81.385 (2)C18—C171.390 (2)
C7—H70.9500
C1—O1—H1106.9 (12)C9—C8—H8119.8
C5—O3—C2117.93 (10)C8—C9—C10120.05 (13)
C3—O4—H4108.7 (16)C8—C9—H9120.0
C4—N1—C12126.69 (12)C10—C9—H9120.0
C4—N1—H1A116.4 (13)C9—C10—C11120.34 (14)
C12—N1—H1A116.9 (13)C9—C10—H10119.8
O1—C1—O2125.75 (11)C11—C10—H10119.8
O1—C1—C2114.55 (10)C6—C11—C10119.61 (15)
O2—C1—C2119.70 (11)C6—C11—H11120.2
O3—C2—C1109.39 (9)C10—C11—H11120.2
O3—C2—C3108.56 (10)N1—C12—C13112.59 (10)
O3—C2—H2110.1N1—C12—H12A109.1
C1—C2—C3108.41 (10)N1—C12—H12B109.1
C1—C2—H2110.1C13—C12—H12A109.1
C3—C2—H2110.1C13—C12—H12B109.1
O4—C3—C2110.23 (9)H12A—C12—H12B107.8
O4—C3—C4110.67 (10)C14—C13—C12120.92 (12)
O4—C3—H3108.9C18—C13—C12119.84 (12)
C2—C3—H3108.9C18—C13—C14119.23 (12)
C4—C3—C2109.26 (10)C13—C14—H14119.8
C4—C3—H3108.9C15—C14—C13120.48 (13)
O5—C4—N1127.10 (11)C15—C14—H14119.8
O5—C4—C3117.56 (11)C14—C15—C16119.95 (14)
N1—C4—C3115.34 (11)C14—C15—H15120.0
O3—C5—O6123.49 (12)C16—C15—H15120.0
O3—C5—C6112.86 (11)C15—C16—H16120.1
O6—C5—C6123.63 (12)C17—C16—C15119.71 (13)
C5—C6—C7122.51 (12)C17—C16—H16120.1
C5—C6—C11117.27 (13)C18—C17—H17119.7
C7—C6—C11120.20 (13)C16—C17—C18120.58 (14)
C6—C7—C8119.44 (14)C16—C17—H17119.7
C6—C7—H7120.3C13—C18—H18120.0
C8—C7—H7120.3C17—C18—C13120.01 (13)
C7—C8—C9120.35 (15)C17—C18—H18120.0
C7—C8—H8119.8
C5—O3—C2—C1123.19 (12)C11—C6—C5—O3176.38 (12)
C5—O3—C2—C3118.68 (11)C11—C6—C5—O65.2 (2)
C2—O3—C5—O65.3 (2)C11—C6—C7—C80.5 (2)
C2—O3—C5—C6176.29 (10)C5—C6—C7—C8178.03 (13)
C12—N1—C4—C3178.86 (11)C5—C6—C11—C10178.85 (13)
C12—N1—C4—O50.9 (2)C7—C6—C11—C100.2 (2)
C4—N1—C12—C13108.11 (14)C6—C7—C8—C90.9 (2)
O3—C2—C1—O116.83 (15)C10—C9—C8—C70.5 (2)
O3—C2—C1—O2162.45 (12)C11—C10—C9—C80.3 (2)
C3—C2—C1—O1135.05 (11)C9—C10—C11—C60.6 (2)
C3—C2—C1—O244.24 (16)C14—C13—C12—N146.90 (17)
O3—C2—C3—O456.88 (12)C18—C13—C12—N1134.32 (13)
O3—C2—C3—C464.93 (12)C12—C13—C18—C17179.25 (12)
C1—C2—C3—O461.86 (12)C14—C13—C18—C170.4 (2)
C1—C2—C3—C4176.32 (10)C15—C14—C13—C12179.72 (13)
O4—C3—C4—O5178.58 (11)C15—C14—C13—C181.5 (2)
O4—C3—C4—N11.62 (15)C13—C14—C15—C161.0 (2)
C2—C3—C4—O557.03 (14)C14—C15—C16—C170.5 (2)
C2—C3—C4—N1123.17 (12)C18—C17—C16—C151.6 (2)
C7—C6—C5—O35.05 (18)C13—C18—C17—C161.1 (2)
C7—C6—C5—O6173.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.99 (2)1.55 (2)2.5317 (13)171.2 (17)
O4—H4···O2ii0.81 (2)1.96 (2)2.7501 (14)165 (2)
N1—H1A···O6iii0.88 (2)2.002 (19)2.7788 (17)146.4 (18)
N1—H1A···O40.88 (2)2.12 (2)2.5894 (14)112.8 (15)
C2—H2···O61.002.252.6879 (17)105
C12—H12A···O1iv0.992.523.4827 (16)165
C12—H12B···O1v0.992.443.3117 (16)146
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z; (iv) x, y+1, z1; (v) x, y, z1.

Experimental details

Crystal data
Chemical formulaC18H17NO6
Mr343.33
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)35.7118 (6), 6.17734 (11), 7.48599 (15)
β (°) 93.0377 (15)
V3)1649.12 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.88
Crystal size (mm)0.54 × 0.22 × 0.18
Data collection
DiffractometerAgilent Gemini A Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.724, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
29440, 2945, 2928
Rint0.038
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.06
No. of reflections2945
No. of parameters235
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17
Absolute structureFlack (1983), 1321 Friedel pairs
Absolute structure parameter0.01 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.99 (2)1.55 (2)2.5317 (13)171.2 (17)
O4—H4···O2ii0.81 (2)1.96 (2)2.7501 (14)165 (2)
N1—H1A···O6iii0.88 (2)2.002 (19)2.7788 (17)146.4 (18)
N1—H1A···O40.88 (2)2.12 (2)2.5894 (14)112.8 (15)
C12—H12A···O1iv0.992.523.4827 (16)165
C12—H12B···O1v0.992.443.3117 (16)146
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z; (iv) x, y+1, z1; (v) x, y, z1.
 

Footnotes

Tartaric acid and its O-acyl derivatives. Part 13.

Acknowledgements

This work was supported financially by Warsaw University of Technology.

References

First citationBell, K. H. (1987). Aust. J. Chem. 40, 1723–1735.  CrossRef CAS Google Scholar
First citationBernaś, U., Hajmowicz, H., Madura, I. D., Majcher, M., Synoradzki, L. & Zawada, K. (2010). Arkivoc, xi, 1–12.  Google Scholar
First citationChekhlov, A. N., Belov, Yu. P., Martynov, I. V. & Aksinenko, A. Y. (1986). Russ. Chem. Bull. 35, 2587–2589.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshihara, K., Gao, Q. & Yamamoto, H. (1993). J. Am. Chem. Soc. 115, 10412–10413.  CSD CrossRef CAS Web of Science Google Scholar
First citationKnyazev, V. N., Drozd, V. N., Lipovtsev, V. N., Kurapov, P. B., Yufit, D. S. & Struchkov, Y. T. (1988). Russ. J. Org. Chem. 24, 2174–2182.  CAS Google Scholar
First citationMadura, I. D., Zachara, J., Bernaś, U., Hajmowicz, H., Kliś, T., Serwatowski, J. & Synoradzki, L. (2010). J. Mol. Struct. 984, 75–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRychlewska, U., Szarecka, A., Rychlewski, J. & Motała, R. (1999). Acta Cryst. B55, 617–625.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRychlewska, U. & Warżajtis, B. (2000). Acta Cryst. B56, 833–848.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRychlewska, U. & Warżajtis, B. (2001). Acta Cryst. B57, 415–427.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1891-o1892
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds