

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-methylpiperidinium) naphthalene-1,5-disulfonate

Qian Xu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: xqchem@yahoo.com.cn

Received 24 April 2012; accepted 4 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.134; data-to-parameter ratio = 19.3.

In the structure of the title molecular salt, $2C_6H_{14}N^+$.- $C_{10}H_6O_6S_2^{2-}$, the asymmetric unit consists of one 2-methylpiperidinium cation and one-half of a naphthalene-1,5disulfonate anion; the anion lies across a centre of symmetry. In the crystal, the cations and anions are linked through N-H···O hydrogen bonds, forming a two-dimensional network.

Related literature

For general background on ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental

Crystal data

$2C_6H_{14}N^+ \cdot C_{10}H_6O_6S_2^2$
$M_r = 486.63$
Monoclinic, $P2_1/c$
a = 12.040 (2) Å
b = 8.8133 (18) Å

c = 12.715 (3) Å
$\beta = 112.62 \ (3)^{\circ}$
V = 1245.4 (4) Å ³
Z = 2
Mo $K\alpha$ radiation

```
organic compounds
```

2814 independent reflections 1942 reflections with $I > 2\sigma(I)$

 $0.32 \times 0.27 \times 0.22 \text{ mm}$

Standard reflections: ?

 $R_{\rm int} = 0.069$

 $\mu = 0.25 \text{ mm}^{-1}$ T = 293 K

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.924$, $T_{max} = 0.947$ 12383 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 146 parameters $wR(F^2) = 0.134$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$ 2814 reflections $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O2$	0.90	1.91	2.795 (3)	169
$N1-H1A\cdotsO1^{i}$	0.90	1.93	2.820 (3)	169

Symmetry code: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2054).

References

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supporting information

Acta Cryst. (2012). E68, o1733 [doi:10.1107/S1600536812020041]

Bis(2-methylpiperidinium) naphthalene-1,5-disulfonate

Qian Xu

S1. Comment

The title compound, (I), was synthesized to assess its ferroelectric properties by dielectric measurements as a function of temperature (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008; Zhang *et al.*, 2010). In the range from 190K to near its melting point (m.p. >370K), no dielectric anomaly was observed.

A view of (I) is shown in Fig.1. Two intermolecular N–H…O hydrogen bonds form a two-dimensional network, Table, 1, Fig. 2.

S2. Experimental

A mixture of 2-methy piperidine (0.98 g, 10 mmol), naphthalene-1,5-disulfonic acid (2.5 g, 10 mmol) in water was stirred for several days at ambient temperature, colourless crystals were obtained.

S3. Refinement

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.98Å and N–H = 0.90Å, and with $U_{iso}(H)=1.2U_{eq}(C \text{ or } N)$, 1.5 $U_{iso}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level. Symmetry code for A: 1 - x, 1 - y, 1 - z.

Figure 2

Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.

Bis(2-methylpiperidinium) naphthalene-1,5-disulfonate

a _ c)

Crystal data

2C₆H₁₄N⁺·C₁₀H₆O₆S₂²⁻ $M_r = 486.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.040 (2) Å b = 8.8133 (18) Å c = 12.715 (3) Å $\beta = 112.62$ (3)° V = 1245.4 (4) Å³ Z = 2

Data collection

Rigaku SCXmini	12383 measured reflections
diffractometer	2814 independent reflections
Radiation source: fine-focus sealed tube	1942 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.069$
CCD_Profile_fitting scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(CrystalClear; Rigaku, 2005)	$k = -11 \rightarrow 11$
$T_{\min} = 0.924, \ T_{\max} = 0.947$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 SecLeast-squares matrix: fulln $R[F^2 > 2\sigma(F^2)] = 0.058$ Hyo $wR(F^2) = 0.134$ nS = 1.04H-a2814 reflectionsw =146 parametersw0 restraints(Δ/σ Primary atom site location: structure-invariant $\Delta\rho_{n}$ direct methods $\Delta\rho_{n}$

F(000) = 520 $D_x = 1.298 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2814 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.32 \times 0.27 \times 0.22 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 0.481P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.78457 (5)	0.59654 (7)	0.69286 (5)	0.0339 (2)	
01	0.88140 (15)	0.6629 (2)	0.66486 (16)	0.0499 (5)	
O2	0.81475 (16)	0.4419 (2)	0.73778 (15)	0.0452 (5)	
O3	0.74714 (16)	0.6921 (2)	0.76559 (16)	0.0508 (5)	
C7	0.6587 (2)	0.5777 (3)	0.5596 (2)	0.0306 (5)	
C8	0.6710 (2)	0.6257 (3)	0.4618 (2)	0.0376 (6)	
H8	0.7426	0.6706	0.4663	0.045*	
C9	0.5757 (2)	0.6074 (3)	0.3545 (2)	0.0439 (7)	
H9	0.5848	0.6414	0.2890	0.053*	
C10	0.5479 (2)	0.5101 (3)	0.55522 (19)	0.0286 (5)	
C11	0.5297 (2)	0.4597 (3)	0.6538 (2)	0.0388 (6)	
H11	0.5907	0.4727	0.7253	0.047*	
N1	0.88441 (18)	0.1722 (2)	0.66473 (18)	0.0395 (5)	
H1A	0.9617	0.1614	0.7127	0.047*	
H1B	0.8586	0.2628	0.6790	0.047*	
C1	0.8782 (2)	0.1714 (3)	0.5439 (2)	0.0475 (7)	
H1	0.9076	0.0732	0.5292	0.057*	
C2	0.7463 (3)	0.1887 (3)	0.4635 (2)	0.0509 (8)	
H2A	0.7176	0.2877	0.4750	0.061*	
H2B	0.7404	0.1834	0.3854	0.061*	
C3	0.6666 (3)	0.0666 (4)	0.4827 (3)	0.0713 (10)	
H3A	0.6888	-0.0317	0.4624	0.086*	
H3B	0.5833	0.0860	0.4341	0.086*	
C4	0.6799 (3)	0.0642 (4)	0.6077 (3)	0.0668 (10)	
H4A	0.6468	0.1569	0.6248	0.080*	
H4B	0.6345	-0.0204	0.6196	0.080*	
C5	0.8109 (3)	0.0494 (3)	0.6881 (3)	0.0552 (8)	
H5A	0.8172	0.0568	0.7663	0.066*	
H5B	0.8415	-0.0490	0.6780	0.066*	
C6	0.9591 (3)	0.2953 (4)	0.5302 (3)	0.0726 (10)	
H6A	0.9276	0.3927	0.5383	0.109*	
H6B	0.9623	0.2879	0.4561	0.109*	
H6C	1.0387	0.2838	0.5875	0.109*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0244 (3)	0.0376 (4)	0.0378 (4)	-0.0008 (3)	0.0099 (2)	-0.0067 (3)
O1	0.0283 (9)	0.0686 (14)	0.0508 (12)	-0.0130 (9)	0.0130 (8)	-0.0050 (10)
02	0.0429 (11)	0.0441 (11)	0.0426 (11)	0.0092 (8)	0.0099 (8)	0.0024 (8)
O3	0.0425 (11)	0.0563 (13)	0.0549 (12)	-0.0018 (9)	0.0201 (9)	-0.0229 (10)
C7	0.0239 (12)	0.0284 (12)	0.0400 (14)	-0.0010 (10)	0.0128 (10)	0.0001 (10)
C8	0.0287 (13)	0.0395 (15)	0.0466 (16)	-0.0077 (11)	0.0166 (12)	0.0011 (12)
С9	0.0392 (14)	0.0593 (18)	0.0380 (15)	-0.0038 (13)	0.0200 (12)	0.0103 (13)
C10	0.0260 (12)	0.0274 (12)	0.0318 (13)	0.0005 (10)	0.0103 (9)	0.0013 (10)
C11	0.0304 (13)	0.0516 (16)	0.0307 (14)	-0.0030 (12)	0.0077 (11)	0.0052 (11)
N1	0.0324 (11)	0.0387 (13)	0.0425 (13)	0.0040 (9)	0.0088 (10)	0.0010 (10)
C1	0.0460 (16)	0.0509 (18)	0.0490 (17)	0.0072 (13)	0.0221 (14)	-0.0056 (13)
C2	0.0547 (18)	0.0561 (19)	0.0350 (16)	-0.0007 (15)	0.0097 (13)	-0.0042 (13)
C3	0.061 (2)	0.074 (2)	0.061 (2)	-0.0227 (18)	0.0029 (17)	-0.0099 (18)
C4	0.0486 (19)	0.075 (2)	0.070(2)	-0.0180 (17)	0.0150 (17)	0.0046 (17)
C5	0.0578 (19)	0.0477 (18)	0.0576 (19)	-0.0046 (14)	0.0196 (16)	0.0110 (14)
C6	0.055 (2)	0.102 (3)	0.064(2)	-0.0095(19)	0.0280(17)	0.017(2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u>S1–O3</u>	1.4452 (18)	C1—C6	1.518 (4)	
S101	1.4652 (18)	C1—C2	1.530 (4)	
S1—O2	1.4687 (19)	C1—H1	0.9800	
S1—C7	1.794 (3)	C2—C3	1.523 (4)	
С7—С8	1.374 (3)	C2—H2A	0.9700	
C7—C10	1.442 (3)	C2—H2B	0.9700	
С8—С9	1.414 (4)	C3—C4	1.535 (5)	
С8—Н8	0.9300	С3—НЗА	0.9700	
C9-C11 ⁱ	1.367 (3)	С3—Н3В	0.9700	
С9—Н9	0.9300	C4—C5	1.519 (4)	
C10-C11	1.424 (3)	C4—H4A	0.9700	
C10-C10 ⁱ	1.445 (4)	C4—H4B	0.9700	
C11—C9 ⁱ	1.367 (3)	C5—H5A	0.9700	
C11—H11	0.9300	С5—Н5В	0.9700	
N1C5	1.498 (3)	C6—H6A	0.9600	
N1—C1	1.509 (3)	C6—H6B	0.9600	
N1—H1A	0.90	С6—Н6С	0.9600	
N1—H1B	0.90			
O3—S1—O1	113.33 (12)	C2—C1—H1	108.6	
O3—S1—O2	112.56 (12)	C3—C2—C1	112.2 (2)	
O1—S1—O2	111.33 (12)	C3—C2—H2A	109.2	
O3—S1—C7	107.48 (11)	C1—C2—H2A	109.2	
O1—S1—C7	105.63 (11)	C3—C2—H2B	109.2	
O2—S1—C7	105.90 (11)	C1—C2—H2B	109.2	
C8—C7—C10	120.8 (2)	H2A—C2—H2B	107.9	

C8—C7—S1	118.69 (18)	C2—C3—C4	110.8 (2)
C10—C7—S1	120.49 (18)	С2—С3—НЗА	109.5
С7—С8—С9	120.6 (2)	С4—С3—НЗА	109.5
С7—С8—Н8	119.7	С2—С3—Н3В	109.5
С9—С8—Н8	119.7	C4—C3—H3B	109.5
C11 ⁱ —C9—C8	120.6 (2)	H3A—C3—H3B	108.1
С11 ^і —С9—Н9	119.7	C5—C4—C3	111.5 (3)
С8—С9—Н9	119.7	C5—C4—H4A	109.3
C11—C10—C7	123.2 (2)	C3—C4—H4A	109.3
C11-C10-C10 ⁱ	118.8 (3)	C5—C4—H4B	109.3
C7-C10-C10 ⁱ	118.0 (3)	C3—C4—H4B	109.3
C9 ⁱ —C11—C10	121.3 (2)	H4A—C4—H4B	108.0
C9 ⁱ —C11—H11	119.3	N1C5C4	110.1 (2)
C10—C11—H11	119.3	N1—C5—H5A	109.6
C5—N1—C1	113.4 (2)	С4—С5—Н5А	109.6
C5—N1—H1A	109.0	N1—C5—H5B	109.6
C1—N1—H1A	108.8	C4—C5—H5B	109.6
C5—N1—H1B	108.9	H5A—C5—H5B	108.1
C1—N1—H1B	108.9	C1—C6—H6A	109.5
H1A—N1—H1B	107.7	C1—C6—H6B	109.5
N1—C1—C6	109.3 (2)	H6A—C6—H6B	109.5
N1—C1—C2	108.2 (2)	C1—C6—H6C	109.5
C6—C1—C2	113.5 (3)	H6A—C6—H6C	109.5
N1—C1—H1	108.6	H6B—C6—H6C	109.5
C6—C1—H1	108.6		
O3—S1—C7—C8	120.4 (2)	S1C7C10C10 ⁱ	-176.5 (2)
O1—S1—C7—C8	-0.8 (2)	C7—C10—C11—C9 ⁱ	-178.3 (2)
O2—S1—C7—C8	-119.0 (2)	$C10^{i}$ — $C10$ — $C11$ — $C9^{i}$	0.4 (4)
O3—S1—C7—C10	-61.0(2)	C5—N1—C1—C6	-177.8 (2)
O1—S1—C7—C10	177.70 (18)	C5—N1—C1—C2	58.2 (3)
O2—S1—C7—C10	59.5 (2)	N1—C1—C2—C3	-56.1 (3)
C10—C7—C8—C9	-1.1 (4)	C6—C1—C2—C3	-177.6 (3)
S1—C7—C8—C9	177.49 (19)	C1—C2—C3—C4	55.1 (4)
C7—C8—C9—C11 ⁱ	-0.7 (4)	C2—C3—C4—C5	-53.6 (4)
C8—C7—C10—C11	-179.3 (2)	C1—N1—C5—C4	-58.2 (3)
S1—C7—C10—C11	2.1 (3)	C3—C4—C5—N1	54.5 (4)
C8-C7-C10-C10 ⁱ	2.0 (4)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	$H \cdots A$	D···· A	D—H···A
N1—H1 <i>B</i> …O2	0.90	1.91	2.795 (3)	169
N1—H1A····O1 ⁱⁱ	0.90	1.93	2.820 (3)	169

Symmetry code: (ii) –*x*+2, *y*–1/2, –*z*+3/2.