organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)quinoxaline

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: zhangzhiqiang@ustl.edu.cn

(Received 31 March 2012; accepted 21 April 2012; online 19 May 2012)

In the title compound, C14H9FN2, the dihedral angle between the benzene ring and the quinoxaline ring system is 22.2 (3)°. Any aromatic ππ stacking in the crystal must be very weak, with a minimum centroid–centroid separation of 3.995 (2) Å.

Related literature

For background to the applications of quinoxaline derivatives, see: Lindsley et al. (2005[Lindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Hu, J. R., Huber, H. E. & Duggan, M. E. (2005). Bioorg. Med. Chem. Lett. 15, 761-764.]); Dailey et al. (2001[Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238-2243.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9FN2

  • Mr = 224.23

  • Monoclinic, C 2/c

  • a = 24.249 (13) Å

  • b = 3.7925 (19) Å

  • c = 22.609 (13) Å

  • β = 91.866 (9)°

  • V = 2078.2 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.990

  • 9711 measured reflections

  • 2454 independent reflections

  • 1797 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.109

  • S = 1.01

  • 2454 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoxaline and its derivatives are an important class of nitrogen-containing heterocycles displaying both biologial activities (Lindsley et al., 2005) and technological applications (Dailey et al., 2001). Here, we report the synthesis and crystal structure of the title compound (Fig. 1).

In the title compound, C14H9FN2, the dihedral angle between the benzene ring and the quinoxaline ring is 22.2 (3)°.

Related literature top

For background to the applications of quinoxaline derivatives, see: Lindsley et al. (2005); Dailey et al. (2001).

Experimental top

A solution of benzene-1,2-diamine (1.5 mmol) and 2-(4-fluorophenyl)-2-oxoacetaldehyde monohydrate (1.5 mmol) in EtOH (10 ml) was stirred at room temperature for 0.5 h. After completion of the reaction (monitored by TLC or HPLC), the precipitated solid was collected by filtration and dried to afford the pure product. Or after completion of the reaction, water was added to the reaction mixture and filtered to afford the product. When necessary, the product was recrystallized from ethanol/water. Colourless prisms were grown by slow evaporation of a solution in chloroform/ethanol (1:1).

Refinement top

H atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
2-(4-Fluorophenyl)quinoxaline top
Crystal data top
C14H9FN2F(000) = 928
Mr = 224.23Dx = 1.433 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.249 (13) ÅCell parameters from 3509 reflections
b = 3.7925 (19) Åθ = 1.7–27.9°
c = 22.609 (13) ŵ = 0.10 mm1
β = 91.866 (9)°T = 113 K
V = 2078.2 (19) Å3Prism, colorless
Z = 80.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2454 independent reflections
Radiation source: rotating anode1797 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.032
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 3131
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 44
Tmin = 0.981, Tmax = 0.990l = 2929
9711 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H9FN2V = 2078.2 (19) Å3
Mr = 224.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.249 (13) ŵ = 0.10 mm1
b = 3.7925 (19) ÅT = 113 K
c = 22.609 (13) Å0.20 × 0.18 × 0.10 mm
β = 91.866 (9)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
2454 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
1797 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.032
9711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
2454 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.46580 (3)0.67692 (19)1.18737 (3)0.0321 (2)
N10.39311 (3)0.1470 (2)0.93164 (4)0.0184 (2)
N20.28374 (3)0.1127 (2)0.93193 (4)0.0213 (2)
C10.36818 (4)0.0119 (3)0.88147 (4)0.0182 (2)
C20.39774 (4)0.0011 (3)0.82863 (5)0.0216 (3)
H20.43470.08130.82830.026*
C30.37306 (5)0.1322 (3)0.77801 (5)0.0238 (3)
H30.39310.14080.74260.029*
C40.31805 (5)0.2552 (3)0.77785 (5)0.0246 (3)
H40.30130.34340.74230.030*
C50.28877 (4)0.2481 (3)0.82842 (5)0.0226 (3)
H50.25190.33320.82800.027*
C60.31319 (4)0.1147 (3)0.88123 (5)0.0189 (2)
C70.30886 (4)0.0153 (3)0.97928 (5)0.0205 (2)
H70.28950.01801.01520.025*
C80.36398 (4)0.1514 (3)0.97994 (5)0.0175 (2)
C90.38994 (4)0.2927 (3)1.03511 (4)0.0173 (2)
C100.35866 (4)0.4178 (3)1.08148 (5)0.0204 (3)
H100.31950.41321.07790.025*
C110.38416 (5)0.5485 (3)1.13269 (5)0.0217 (3)
H110.36300.63521.16420.026*
C120.44101 (5)0.5499 (3)1.13683 (5)0.0217 (3)
C130.47352 (4)0.4309 (3)1.09221 (5)0.0220 (3)
H130.51260.43561.09630.026*
C140.44741 (4)0.3042 (3)1.04120 (5)0.0193 (2)
H140.46900.22351.00960.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0308 (4)0.0440 (5)0.0213 (4)0.0068 (3)0.0033 (3)0.0063 (3)
N10.0176 (4)0.0186 (5)0.0190 (4)0.0001 (4)0.0009 (3)0.0012 (4)
N20.0164 (4)0.0220 (5)0.0256 (5)0.0004 (4)0.0011 (4)0.0017 (4)
C10.0184 (5)0.0157 (5)0.0204 (5)0.0005 (4)0.0014 (4)0.0015 (4)
C20.0208 (5)0.0212 (6)0.0228 (6)0.0016 (4)0.0017 (4)0.0009 (4)
C30.0282 (6)0.0227 (6)0.0206 (5)0.0005 (5)0.0023 (4)0.0004 (5)
C40.0279 (6)0.0225 (6)0.0229 (6)0.0010 (5)0.0066 (4)0.0017 (5)
C50.0183 (5)0.0208 (6)0.0284 (6)0.0000 (4)0.0045 (5)0.0002 (5)
C60.0180 (5)0.0152 (5)0.0233 (5)0.0018 (4)0.0011 (4)0.0023 (4)
C70.0164 (5)0.0225 (6)0.0226 (5)0.0002 (4)0.0021 (4)0.0026 (4)
C80.0156 (5)0.0161 (6)0.0207 (5)0.0020 (4)0.0002 (4)0.0031 (4)
C90.0177 (5)0.0159 (5)0.0182 (5)0.0010 (4)0.0007 (4)0.0034 (4)
C100.0163 (5)0.0224 (6)0.0227 (5)0.0008 (4)0.0022 (4)0.0032 (4)
C110.0245 (5)0.0228 (6)0.0183 (5)0.0011 (5)0.0050 (4)0.0013 (4)
C120.0260 (5)0.0221 (6)0.0169 (5)0.0035 (4)0.0024 (4)0.0007 (4)
C130.0176 (5)0.0247 (6)0.0235 (5)0.0008 (4)0.0010 (4)0.0018 (5)
C140.0176 (5)0.0196 (6)0.0208 (5)0.0007 (4)0.0027 (4)0.0012 (4)
Geometric parameters (Å, º) top
F1—C121.3617 (13)C5—H50.9500
N1—C81.3198 (14)C7—C81.4325 (15)
N1—C11.3676 (14)C7—H70.9500
N2—C71.3078 (15)C8—C91.4792 (16)
N2—C61.3703 (14)C9—C141.3966 (15)
C1—C21.4138 (16)C9—C101.3969 (15)
C1—C61.4171 (16)C10—C111.3864 (16)
C2—C31.3676 (16)C10—H100.9500
C2—H20.9500C11—C121.3787 (17)
C3—C41.4131 (17)C11—H110.9500
C3—H30.9500C12—C131.3764 (16)
C4—C51.3656 (16)C13—C141.3835 (15)
C4—H40.9500C13—H130.9500
C5—C61.4095 (16)C14—H140.9500
C8—N1—C1117.21 (9)C8—C7—H7118.3
C7—N2—C6116.44 (10)N1—C8—C7120.74 (10)
N1—C1—C2119.44 (10)N1—C8—C9118.54 (10)
N1—C1—C6121.36 (10)C7—C8—C9120.71 (9)
C2—C1—C6119.20 (10)C14—C9—C10118.67 (10)
C3—C2—C1119.98 (11)C14—C9—C8119.37 (9)
C3—C2—H2120.0C10—C9—C8121.96 (10)
C1—C2—H2120.0C11—C10—C9120.66 (10)
C2—C3—C4120.63 (10)C11—C10—H10119.7
C2—C3—H3119.7C9—C10—H10119.7
C4—C3—H3119.7C12—C11—C10118.41 (10)
C5—C4—C3120.52 (10)C12—C11—H11120.8
C5—C4—H4119.7C10—C11—H11120.8
C3—C4—H4119.7F1—C12—C13118.89 (10)
C4—C5—C6120.05 (10)F1—C12—C11118.13 (10)
C4—C5—H5120.0C13—C12—C11122.98 (10)
C6—C5—H5120.0C12—C13—C14117.86 (10)
N2—C6—C5119.65 (10)C12—C13—H13121.1
N2—C6—C1120.73 (10)C14—C13—H13121.1
C5—C6—C1119.61 (10)C13—C14—C9121.40 (10)
N2—C7—C8123.50 (10)C13—C14—H14119.3
N2—C7—H7118.3C9—C14—H14119.3
C8—N1—C1—C2179.57 (9)C1—N1—C8—C9179.40 (9)
C8—N1—C1—C60.65 (15)N2—C7—C8—N11.44 (17)
N1—C1—C2—C3179.32 (10)N2—C7—C8—C9179.95 (10)
C6—C1—C2—C30.47 (16)N1—C8—C9—C1421.66 (15)
C1—C2—C3—C40.10 (17)C7—C8—C9—C14156.99 (10)
C2—C3—C4—C50.63 (17)N1—C8—C9—C10157.91 (10)
C3—C4—C5—C60.56 (17)C7—C8—C9—C1023.44 (16)
C7—N2—C6—C5179.90 (10)C14—C9—C10—C110.46 (16)
C7—N2—C6—C10.90 (15)C8—C9—C10—C11179.97 (10)
C4—C5—C6—N2179.19 (10)C9—C10—C11—C120.40 (16)
C4—C5—C6—C10.02 (16)C10—C11—C12—F1179.66 (10)
N1—C1—C6—N21.55 (16)C10—C11—C12—C130.72 (17)
C2—C1—C6—N2178.67 (9)F1—C12—C13—C14179.76 (9)
N1—C1—C6—C5179.25 (9)C11—C12—C13—C140.15 (18)
C2—C1—C6—C50.53 (15)C12—C13—C14—C90.76 (16)
C6—N2—C7—C80.53 (16)C10—C9—C14—C131.06 (16)
C1—N1—C8—C70.76 (15)C8—C9—C14—C13179.36 (9)

Experimental details

Crystal data
Chemical formulaC14H9FN2
Mr224.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)24.249 (13), 3.7925 (19), 22.609 (13)
β (°) 91.866 (9)
V3)2078.2 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.981, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9711, 2454, 1797
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.01
No. of reflections2454
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Open Fund of the Functional Material Laboratory–Key Laboratory of Liaoning Education Department (USTLKL-2011–10). The authors are indebted to Beijing Amber Tech Co. Ltd for the offer of some reagents.

References

First citationDailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001). J. Mater. Chem. 11, 2238–2243.  Web of Science CrossRef CAS Google Scholar
First citationLindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Hu, J. R., Huber, H. E. & Duggan, M. E. (2005). Bioorg. Med. Chem. Lett. 15, 761–764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds