organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis[(3-chloro­benz­yl)sulfan­yl]-1,3,4-thia­diazole

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China
*Correspondence e-mail: nabosun@gmail.com

(Received 25 April 2012; accepted 28 April 2012; online 5 May 2012)

The complete mol­ecule of the title compound, C16H12Cl2N2S3, is generated by crystallographic twofold symmetry, with the S atom of the thiadiazole ring lying on the rotation axis. The dihedral angle between the mean planes of the 1,3,4-thia­diazole and benzene rings is 87.19 (7)°. In the crystal, mol­ecules are linked by C—H⋯N inter­actions and short S⋯S contacts [3.3389 (9) Å] occur.

Related literature

For details of the synthesis, see: Liu et al. (2012[Liu, X.-H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y.-H. & Li, Z.-M. (2012). Mol. Divers. doi:10.1007/s11030-011-9352-z.]); Tan et al. (2012[Tan, C.-X., Shi, Y.-X., Tan, C.-X., Liu, X.-H., Li, B.-J. & Zhao, W.-G. (2012). Lett. Drug. Des. Discov. 9, 431-435.]). For a related structure, see: Liu & Liu (2011[Liu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.]. For the biological activity of related compounds, see: Liu et al. (2011a[Liu, X. H., Weng, J. Q. & Tan, C. X. (2011a). Asian J. Chem. 23, 4064-4066.],b[Liu, X. H., Tan, C. X. & Jian, Q. W. (2011b). Phosphorus Sulfur Silicon Relat. Elem. 186, 552-557.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2N2S3

  • Mr = 399.36

  • Monoclinic, C 2/c

  • a = 17.200 (3) Å

  • b = 5.6604 (11) Å

  • c = 17.524 (4) Å

  • β = 92.56 (3)°

  • V = 1704.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 113 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.916, Tmax = 0.957

  • 5343 measured reflections

  • 1491 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.17

  • 1491 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.59 3.514 (2) 172
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For details of the synthesis, see: Liu et al. (2012), Tan et al. (2012). For a related structure, see: Liu & Liu (2011. For the biological activity of related compounds, see: Liu et al. (2011a,b).

Experimental top

To a stirred solution of 1,3,4-thiadiazole-2,5-dithiol (5.1 mmol) and potassium carbonate (5.6 mmol) in DMF (15 ml), 1-chloro-3-(chloromethyl)benzene (5.6 mmol) was added dropwise. The resulting mixture was stirred at room temperature overnight. The mixture was poured into water, the precipitate formed was filtered off and recrystallized from acetone to give title compound in good yields. Compound was dissolved in hot alcohol and the resulting solution was allowed to stand in air at room temperature to colourless blocks of the title compound.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
2,5-Bis[(3-chlorobenzyl)sulfanyl]-1,3,4-thiadiazole top
Crystal data top
C16H12Cl2N2S3F(000) = 816
Mr = 399.36Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.200 (3) ÅCell parameters from 2634 reflections
b = 5.6604 (11) Åθ = 3.3–27.9°
c = 17.524 (4) ŵ = 0.75 mm1
β = 92.56 (3)°T = 113 K
V = 1704.4 (6) Å3Block, colorless
Z = 40.12 × 0.10 × 0.06 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1491 independent reflections
Radiation source: rotating anode1382 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 2020
Tmin = 0.916, Tmax = 0.957k = 66
5343 measured reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0254P)2 + 1.1171P]
where P = (Fo2 + 2Fc2)/3
1491 reflections(Δ/σ)max = 0.001
105 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H12Cl2N2S3V = 1704.4 (6) Å3
Mr = 399.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.200 (3) ŵ = 0.75 mm1
b = 5.6604 (11) ÅT = 113 K
c = 17.524 (4) Å0.12 × 0.10 × 0.06 mm
β = 92.56 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
1491 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1382 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.957Rint = 0.028
5343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.17Δρmax = 0.25 e Å3
1491 reflectionsΔρmin = 0.22 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03445 (2)0.05340 (7)0.41412 (2)0.01769 (13)
S20.00000.13382 (10)0.25000.01979 (16)
Cl10.36343 (2)0.14225 (8)0.42335 (3)0.03039 (14)
N10.01164 (7)0.3031 (2)0.28829 (7)0.0161 (3)
C10.22023 (9)0.0583 (3)0.41728 (9)0.0198 (3)
H10.20610.05990.45080.024*
C20.29495 (9)0.0682 (3)0.39189 (9)0.0206 (4)
C30.31795 (9)0.2422 (3)0.34242 (9)0.0255 (4)
H30.36870.24640.32630.031*
C40.26429 (10)0.4097 (3)0.31736 (10)0.0284 (4)
H40.27890.52780.28400.034*
C50.18844 (10)0.4023 (3)0.34188 (9)0.0232 (4)
H50.15250.51500.32450.028*
C60.16605 (9)0.2277 (3)0.39205 (8)0.0171 (3)
C70.08449 (9)0.2289 (3)0.42062 (9)0.0190 (3)
H7A0.05400.34480.39160.023*
H7B0.08690.27930.47360.023*
C80.01873 (8)0.0905 (3)0.31589 (8)0.0136 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0171 (2)0.0229 (2)0.0129 (2)0.00199 (16)0.00114 (15)0.00075 (15)
S20.0314 (3)0.0127 (3)0.0149 (3)0.0000.0042 (2)0.000
Cl10.0197 (2)0.0303 (3)0.0404 (3)0.00735 (18)0.00680 (18)0.00062 (19)
N10.0158 (6)0.0171 (7)0.0153 (6)0.0004 (6)0.0002 (5)0.0007 (5)
C10.0191 (8)0.0213 (8)0.0187 (8)0.0008 (7)0.0024 (6)0.0009 (7)
C20.0169 (8)0.0213 (8)0.0230 (8)0.0029 (7)0.0063 (6)0.0050 (7)
C30.0143 (8)0.0314 (10)0.0308 (9)0.0037 (7)0.0006 (7)0.0027 (8)
C40.0230 (10)0.0274 (10)0.0348 (10)0.0044 (8)0.0018 (7)0.0074 (8)
C50.0198 (9)0.0204 (9)0.0289 (9)0.0020 (7)0.0031 (7)0.0004 (7)
C60.0153 (8)0.0201 (8)0.0156 (7)0.0020 (7)0.0030 (6)0.0070 (6)
C70.0166 (8)0.0214 (8)0.0190 (8)0.0002 (7)0.0009 (6)0.0061 (7)
C80.0096 (7)0.0164 (8)0.0149 (8)0.0001 (6)0.0006 (6)0.0018 (6)
Geometric parameters (Å, º) top
S1—C81.7432 (15)C2—C31.382 (2)
S1—C71.8161 (17)C3—C41.381 (2)
S2—C8i1.7367 (15)C3—H30.9300
S2—C81.7368 (15)C4—C51.392 (2)
Cl1—C21.7471 (17)C4—H40.9300
N1—C81.301 (2)C5—C61.389 (2)
N1—N1i1.383 (2)C5—H50.9300
C1—C21.380 (2)C6—C71.511 (2)
C1—C61.395 (2)C7—H7A0.9700
C1—H10.9300C7—H7B0.9700
C8—S1—C7102.72 (7)C6—C5—C4120.47 (16)
C8i—S2—C886.03 (10)C6—C5—H5119.8
C8—N1—N1i112.28 (8)C4—C5—H5119.8
C2—C1—C6119.25 (15)C5—C6—C1119.31 (15)
C2—C1—H1120.4C5—C6—C7119.64 (15)
C6—C1—H1120.4C1—C6—C7121.02 (14)
C1—C2—C3121.89 (15)C6—C7—S1114.82 (11)
C1—C2—Cl1119.68 (13)C6—C7—H7A108.6
C3—C2—Cl1118.43 (13)S1—C7—H7A108.6
C4—C3—C2118.87 (15)C6—C7—H7B108.6
C4—C3—H3120.6S1—C7—H7B108.6
C2—C3—H3120.6H7A—C7—H7B107.5
C3—C4—C5120.22 (16)N1—C8—S2114.69 (11)
C3—C4—H4119.9N1—C8—S1119.12 (11)
C5—C4—H4119.9S2—C8—S1125.76 (9)
C6—C1—C2—C30.4 (2)C5—C6—C7—S1131.52 (14)
C6—C1—C2—Cl1179.77 (12)C1—C6—C7—S150.67 (18)
C1—C2—C3—C40.5 (3)C8—S1—C7—C669.17 (13)
Cl1—C2—C3—C4179.85 (13)N1i—N1—C8—S21.62 (19)
C2—C3—C4—C50.1 (3)N1i—N1—C8—S1171.24 (12)
C3—C4—C5—C60.4 (3)C8i—S2—C8—N10.62 (7)
C4—C5—C6—C10.5 (2)C8i—S2—C8—S1171.70 (14)
C4—C5—C6—C7177.37 (15)C7—S1—C8—N1154.09 (12)
C2—C1—C6—C50.1 (2)C7—S1—C8—S233.91 (11)
C2—C1—C6—C7177.73 (14)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1ii0.932.593.514 (2)172
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12Cl2N2S3
Mr399.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)17.200 (3), 5.6604 (11), 17.524 (4)
β (°) 92.56 (3)
V3)1704.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.916, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
5343, 1491, 1382
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.17
No. of reflections1491
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.593.514 (2)172
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The project was supported by the Program of the Education Department of Zhejiang Province, China (Y200803060).

References

First citationLiu, X.-F. & Liu, X.-H. (2011). Acta Cryst. E67, o202.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Pan, L., Weng, J. Q., Tan, C. X., Li, Y.-H. & Li, Z.-M. (2012). Mol. Divers. doi:10.1007/s11030-011-9352-z.  Google Scholar
First citationLiu, X. H., Tan, C. X. & Jian, Q. W. (2011b). Phosphorus Sulfur Silicon Relat. Elem. 186, 552–557.  Web of Science CrossRef CAS Google Scholar
First citationLiu, X. H., Weng, J. Q. & Tan, C. X. (2011a). Asian J. Chem. 23, 4064–4066.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C.-X., Shi, Y.-X., Tan, C.-X., Liu, X.-H., Li, B.-J. & Zhao, W.-G. (2012). Lett. Drug. Des. Discov. 9, 431–435.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds