organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(3S,4Z)-3-Chloro-4-[2-(3-fluoro­benzyl­­idene)hydrazinyl­­idene]-1-methyl-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Government College University, Faisalabad, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan, and dDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 May 2012; accepted 13 May 2012; online 19 May 2012)

In the title compound, C16H13ClFN3O2S, the dihedral angle between the benzene rings is 4.47 (3)°. The conformation of the thia­zine ring is a half-chair and the Cl atom is in an axial orientation. In the crystal, mol­ecules are linked by C—H⋯F inter­actions, generating C(12) chains propagating in [011]. Aromatic ππ stacking inter­actions [centroid–centroid separations = 3.753 (2) and 3.758 (2) Å] also occur.

Related literature

For a related structure and background references, see: Shafiq et al. (2012[Shafiq, M., Tahir, M. N., Khan, I. U. & Zia-Ur-Rehman, M. (2012). Acta Cryst. E68, o338.]). For further synthetic details, see: Shafiq et al. (2011a[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101-2106.],b[Shafiq, M., Zia-ur-rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527-531.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClFN3O2S

  • Mr = 365.80

  • Triclinic, [P \overline 1]

  • a = 7.0072 (3) Å

  • b = 8.9402 (4) Å

  • c = 13.3438 (6) Å

  • α = 98.184 (3)°

  • β = 90.510 (2)°

  • γ = 98.389 (3)°

  • V = 818.19 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.960

  • 11874 measured reflections

  • 2941 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.120

  • S = 1.00

  • 2941 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F1i 0.93 2.53 3.442 (5) 167
Symmetry code: (i) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing synthetic and structural studies of thiazine derivatives (Shafiq et al., 2012), we now describe the title compound, (I), (Fig. 1).

In (I), the benzene rings A (C1—C6) and B (C10—C15) are planar with r. m. s. deviation of 0.0040 and 0.0012 Å, respectively. The dihedral angle between A/B is 4.47 (3)°. The central group C (N2/N3/C9) is of course planar. The dihedral angle between A/C and B/C is 5.87 (7) and 1.48 (8)°, respectively. The thiazine ring D (C1/C6/N1/S1/C7/C8) is in the half-chair form, with the maximum puckering amplitude (Cremer & Pople, 1975), Q = 0.563 (3) Å. In the crystal, the molecules form chains due to H-bonding of C—H···F type (Table 1, Fig. 2). There exist ππ interactions between CgA···CgBi [i = 1 - x, -y, 1 - z] and CgB···CgAii [ii = 2 - x, -y, 1 - z] at a distance of 3.758 (2) and 3.753 (2) Å, where CgA and CgB are the centroids of benzene rings A and B, respectively.

Related literature top

For a related structure and background references, see: Shafiq et al. (2012). For further synthetic details, see: Shafiq et al. (2011a,b). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The Schiff base derivative of (4Z)-4-hydrazinylidene-1-methyl-3,4-dihydro -1H-2,1-benzothiazine 2,2-dioxide and 3-flourobenzaldehyde was prepared using the method reported previously (Shafiq et al. 2011b). The chlorination of the schiff base was undertaken using N-chloro succinimide and dibenzoylperoxide (Shafiq et al., 2011a). The crude product of (I) was re-crystallized in ethyl acetate to obtain yellow needles of the title compound.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram showing polymeric chains.
rac-(3S,4Z)-3-Chloro-4-[2-(3- fluorobenzylidene)hydrazinylidene]- 3-chloro-1-methyl-3,4-dihydro-1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C16H13ClFN3O2SZ = 2
Mr = 365.80F(000) = 376
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0072 (3) ÅCell parameters from 1744 reflections
b = 8.9402 (4) Åθ = 2.3–25.3°
c = 13.3438 (6) ŵ = 0.39 mm1
α = 98.184 (3)°T = 296 K
β = 90.510 (2)°Needle, yellow
γ = 98.389 (3)°0.26 × 0.18 × 0.12 mm
V = 818.19 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube1744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.930, Tmax = 0.960l = 1616
11874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0889P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H13ClFN3O2Sγ = 98.389 (3)°
Mr = 365.80V = 818.19 (6) Å3
Triclinic, P1Z = 2
a = 7.0072 (3) ÅMo Kα radiation
b = 8.9402 (4) ŵ = 0.39 mm1
c = 13.3438 (6) ÅT = 296 K
α = 98.184 (3)°0.26 × 0.18 × 0.12 mm
β = 90.510 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1744 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.960Rint = 0.065
11874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
2941 reflectionsΔρmin = 0.32 e Å3
218 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49246 (13)0.08066 (10)0.23725 (7)0.0532 (4)
S10.86510 (13)0.02559 (10)0.15593 (7)0.0428 (3)
F10.8027 (4)0.4684 (3)0.88468 (18)0.0894 (11)
O11.0538 (3)0.0163 (3)0.19335 (18)0.0532 (9)
O20.8416 (4)0.1283 (3)0.08580 (18)0.0561 (10)
N10.7533 (4)0.1425 (3)0.1110 (2)0.0426 (10)
N20.7629 (4)0.0292 (3)0.4293 (2)0.0459 (11)
N30.7744 (4)0.1263 (3)0.4676 (2)0.0483 (11)
C10.7272 (4)0.2167 (3)0.2815 (3)0.0336 (11)
C20.7020 (5)0.3359 (4)0.3404 (3)0.0450 (12)
C30.6839 (5)0.4857 (4)0.2968 (3)0.0516 (16)
C40.6917 (5)0.5215 (4)0.1934 (3)0.0523 (16)
C50.7157 (5)0.4082 (4)0.1340 (3)0.0478 (12)
C60.7322 (4)0.2558 (4)0.1761 (3)0.0365 (12)
C70.7362 (4)0.0683 (4)0.2675 (2)0.0369 (12)
C80.7431 (4)0.0574 (3)0.3326 (3)0.0349 (11)
C90.7800 (5)0.1472 (4)0.5641 (3)0.0460 (14)
C100.7926 (5)0.2996 (4)0.6232 (3)0.0403 (12)
C110.7939 (5)0.3134 (4)0.7280 (3)0.0446 (12)
C120.8044 (5)0.4569 (5)0.7816 (3)0.0509 (14)
C130.8143 (5)0.5861 (4)0.7388 (3)0.0555 (16)
C140.8139 (6)0.5733 (5)0.6347 (3)0.0616 (17)
C150.8029 (5)0.4312 (4)0.5773 (3)0.0520 (16)
C160.6640 (7)0.1733 (4)0.0094 (3)0.0738 (19)
H20.697510.312730.410450.0537*
H30.666300.563070.337010.0617*
H40.680560.623140.163780.0630*
H50.721070.433690.064120.0575*
H70.797120.166030.305130.0445*
H90.775930.062990.598090.0550*
H110.787730.227870.760880.0531*
H130.821120.681010.778690.0670*
H140.821100.660310.603280.0737*
H150.802410.422900.507000.0627*
H16A0.731190.243040.033050.1104*
H16B0.670650.079480.018410.1104*
H16C0.531380.217680.013000.1104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0468 (6)0.0544 (6)0.0638 (7)0.0169 (5)0.0014 (5)0.0171 (5)
S10.0479 (6)0.0375 (6)0.0431 (6)0.0047 (4)0.0054 (4)0.0072 (4)
F10.118 (2)0.096 (2)0.0487 (17)0.0188 (16)0.0047 (15)0.0117 (13)
O10.0366 (14)0.0522 (16)0.0688 (18)0.0026 (12)0.0021 (13)0.0062 (14)
O20.0778 (19)0.0452 (16)0.0494 (17)0.0094 (13)0.0105 (14)0.0197 (13)
N10.0589 (19)0.0380 (18)0.0290 (17)0.0038 (14)0.0007 (14)0.0021 (14)
N20.062 (2)0.0408 (19)0.0339 (19)0.0118 (15)0.0019 (15)0.0016 (14)
N30.070 (2)0.0406 (19)0.0321 (19)0.0104 (16)0.0009 (16)0.0043 (14)
C10.0342 (19)0.031 (2)0.035 (2)0.0057 (15)0.0041 (16)0.0025 (16)
C20.049 (2)0.044 (2)0.042 (2)0.0071 (18)0.0016 (18)0.0060 (19)
C30.059 (3)0.038 (2)0.059 (3)0.0051 (19)0.007 (2)0.014 (2)
C40.064 (3)0.032 (2)0.059 (3)0.0044 (19)0.007 (2)0.004 (2)
C50.057 (2)0.044 (2)0.040 (2)0.0084 (19)0.0006 (19)0.0031 (19)
C60.038 (2)0.036 (2)0.035 (2)0.0062 (16)0.0027 (16)0.0032 (17)
C70.040 (2)0.034 (2)0.034 (2)0.0038 (16)0.0010 (16)0.0024 (16)
C80.0325 (19)0.035 (2)0.036 (2)0.0037 (15)0.0034 (16)0.0025 (16)
C90.048 (2)0.047 (2)0.043 (3)0.0120 (18)0.0026 (19)0.0019 (19)
C100.041 (2)0.046 (2)0.032 (2)0.0069 (17)0.0038 (16)0.0009 (18)
C110.049 (2)0.047 (2)0.036 (2)0.0043 (18)0.0045 (18)0.0031 (18)
C120.054 (2)0.066 (3)0.027 (2)0.006 (2)0.0025 (18)0.010 (2)
C130.055 (3)0.042 (2)0.065 (3)0.007 (2)0.006 (2)0.008 (2)
C140.071 (3)0.056 (3)0.056 (3)0.007 (2)0.003 (2)0.005 (2)
C150.062 (3)0.053 (3)0.039 (2)0.006 (2)0.0028 (19)0.002 (2)
C160.123 (4)0.056 (3)0.039 (3)0.002 (3)0.016 (3)0.008 (2)
Geometric parameters (Å, º) top
Cl1—C71.774 (3)C10—C111.386 (6)
S1—O11.427 (2)C10—C151.395 (5)
S1—O21.426 (3)C11—C121.369 (6)
S1—N11.620 (3)C12—C131.353 (6)
S1—C71.772 (3)C13—C141.377 (6)
F1—C121.365 (5)C14—C151.378 (6)
N1—C61.418 (5)C2—H20.9300
N1—C161.461 (5)C3—H30.9300
N2—N31.402 (4)C4—H40.9300
N2—C81.281 (5)C5—H50.9300
N3—C91.274 (5)C7—H70.9800
C1—C21.404 (5)C9—H90.9300
C1—C61.402 (6)C11—H110.9300
C1—C81.477 (4)C13—H130.9300
C2—C31.370 (5)C14—H140.9300
C3—C41.375 (6)C15—H150.9300
C4—C51.365 (5)C16—H16A0.9600
C5—C61.386 (5)C16—H16B0.9600
C7—C81.521 (5)C16—H16C0.9600
C9—C101.464 (5)
O1—S1—O2119.60 (17)F1—C12—C13118.7 (4)
O1—S1—N1110.77 (16)C11—C12—C13124.2 (4)
O1—S1—C7103.50 (14)C12—C13—C14118.3 (4)
O2—S1—N1108.96 (15)C13—C14—C15119.8 (4)
O2—S1—C7111.18 (16)C10—C15—C14120.9 (4)
N1—S1—C7101.18 (15)C1—C2—H2119.00
S1—N1—C6117.9 (2)C3—C2—H2119.00
S1—N1—C16121.1 (2)C2—C3—H3120.00
C6—N1—C16120.9 (3)C4—C3—H3120.00
N3—N2—C8113.5 (3)C3—C4—H4120.00
N2—N3—C9111.1 (3)C5—C4—H4120.00
C2—C1—C6117.8 (3)C4—C5—H5119.00
C2—C1—C8118.9 (3)C6—C5—H5119.00
C6—C1—C8123.2 (3)Cl1—C7—H7109.00
C1—C2—C3121.3 (4)S1—C7—H7109.00
C2—C3—C4119.9 (3)C8—C7—H7109.00
C3—C4—C5120.2 (3)N3—C9—H9119.00
C4—C5—C6121.1 (4)C10—C9—H9119.00
N1—C6—C1121.4 (3)C10—C11—H11121.00
N1—C6—C5118.9 (3)C12—C11—H11121.00
C1—C6—C5119.7 (3)C12—C13—H13121.00
Cl1—C7—S1110.70 (15)C14—C13—H13121.00
Cl1—C7—C8109.6 (2)C13—C14—H14120.00
S1—C7—C8108.8 (2)C15—C14—H14120.00
N2—C8—C1119.6 (3)C10—C15—H15120.00
N2—C8—C7122.2 (3)C14—C15—H15120.00
C1—C8—C7118.2 (3)N1—C16—H16A109.00
N3—C9—C10122.1 (3)N1—C16—H16B109.00
C9—C10—C11118.9 (3)N1—C16—H16C109.00
C9—C10—C15122.0 (4)H16A—C16—H16B110.00
C11—C10—C15119.0 (3)H16A—C16—H16C109.00
C10—C11—C12117.9 (3)H16B—C16—H16C109.00
F1—C12—C11117.2 (4)
O1—S1—N1—C656.5 (3)C2—C1—C8—C7169.8 (3)
O2—S1—N1—C6170.0 (2)C8—C1—C2—C3179.1 (3)
C7—S1—N1—C652.8 (3)C6—C1—C2—C30.4 (5)
O1—S1—N1—C16128.2 (3)C6—C1—C8—N2170.9 (3)
O2—S1—N1—C165.4 (3)C1—C2—C3—C40.5 (5)
C7—S1—N1—C16122.6 (3)C2—C3—C4—C50.6 (5)
N1—S1—C7—Cl163.9 (2)C3—C4—C5—C60.1 (5)
O1—S1—C7—C858.3 (2)C4—C5—C6—N1178.8 (3)
O2—S1—C7—C8172.1 (2)C4—C5—C6—C11.0 (5)
N1—S1—C7—C856.5 (2)Cl1—C7—C8—N297.9 (3)
O1—S1—C7—Cl1178.68 (18)Cl1—C7—C8—C182.4 (3)
O2—S1—C7—Cl151.7 (2)S1—C7—C8—N2141.0 (3)
C16—N1—C6—C531.8 (5)S1—C7—C8—C138.7 (3)
S1—N1—C6—C5152.9 (3)N3—C9—C10—C11178.6 (3)
S1—N1—C6—C127.3 (4)N3—C9—C10—C151.2 (5)
C16—N1—C6—C1148.0 (3)C9—C10—C11—C12179.6 (3)
C8—N2—N3—C9175.3 (3)C15—C10—C11—C120.3 (5)
N3—N2—C8—C1179.5 (3)C9—C10—C15—C14179.7 (4)
N3—N2—C8—C70.9 (4)C11—C10—C15—C140.1 (5)
N2—N3—C9—C10179.9 (3)C10—C11—C12—F1179.1 (3)
C2—C1—C6—N1178.7 (3)C10—C11—C12—C130.3 (6)
C2—C1—C6—C51.1 (4)F1—C12—C13—C14179.3 (3)
C8—C1—C6—N10.0 (4)C11—C12—C13—C140.0 (6)
C8—C1—C6—C5179.8 (3)C12—C13—C14—C150.2 (6)
C6—C1—C8—C78.9 (4)C13—C14—C15—C100.2 (6)
C2—C1—C8—N210.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.932.533.442 (5)167
Symmetry code: (i) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC16H13ClFN3O2S
Mr365.80
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0072 (3), 8.9402 (4), 13.3438 (6)
α, β, γ (°)98.184 (3), 90.510 (2), 98.389 (3)
V3)818.19 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.930, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
11874, 2941, 1744
Rint0.065
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.00
No. of reflections2941
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.932.533.442 (5)167
Symmetry code: (i) x, y1, z1.
 

Acknowledgements

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042–120567-PS2–276).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101–2106.  CAS Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U. & Zia-Ur-Rehman, M. (2012). Acta Cryst. E68, o338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527–531.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds