organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[2-(Anthracen-9-vlmethylidene)hydrazinylidene]-3-chloro-1-methyl-3,4dihydro-1*H*-2 λ^6 ,1-benzothiazine-2,2dione

Muhammad Shafiq,^a M. Nawaz Tahir,^b* Islam Ullah Khan,^c Tanveer Hussain Bokhari^a and Muhammad Nadeem Asghar^d

^aDepartment of Chemistry, Government College University, Faisalabad, Pakistan, ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, ^cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan, and ^dForman Christian College (A Chartered University), Ferozepur Road, Lahore-54600, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 6 May 2012; accepted 13 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.136; data-to-parameter ratio = 13.5.

In the title compound, $C_{24}H_{18}ClN_3O_2S$, the dihedral angle between the benzene ring and the anthracene ring system is 41.10 (8)°. The thiazine ring has a half-chair conformation and the Cl atom is in an axial orientation. In the crystal, molecules are linked by C-H···O interactions, generating C(8) chains along [100]. A C-H···N short contact occurs in the molecule, generating an S(6) ring.

Related literature

For a related structure and references to further synthetic details, see: Shafiq et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

0 -
$V = 2091.88 (16) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.31 \text{ mm}^{-1}$
T = 296 K
$0.26 \times 0.22 \times 0.20$ mm

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.930, \ T_{\max} = 0.960$

Refinement

D-

C3-

$R[F^2 > 2\sigma(F^2)] = 0.047$	281 parameters
$wR(F^2) = 0.136$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
3788 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

16154 measured reflections

 $R_{\rm int} = 0.031$

3788 independent reflections

2827 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O2^{i}$ $C22-H22\cdots N3$	0.93	2.59	3.370 (4) 2 913 (4)	142 123

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6779).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shafiq, M., Tahir, M. N., Khan, I. U. & Ahmad, S. (2012). Acta Cryst. E68, 01787
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1788 [doi:10.1107/S1600536812021642]

4-[2-(Anthracen-9-ylmethylidene)hydrazinylidene]-3-chloro-1-methyl-3,4-dihydro-1H-2 λ^6 ,1-benzothiazine-2,2-dione

Muhammad Shafiq, M. Nawaz Tahir, Islam Ullah Khan, Tanveer Hussain Bokhari and Muhammad Nadeem Asghar

S1. Comment

As part of our ongoing studies of thiazine derivatives (Shafiq *et al.*, 2012), we now describe the structure of the title compound, (I), (Fig. 1).

In (I), the benzene ring A (C1—C6) and anthracene group B (C10—C23) are almost planar with r. m. s. deviation of 0.0090 and 0.0144 Å, respectively. The dihedral angle between A/B is 41.10 (8)°. The central group C (N2/N3/C9) is of course planar. The dihedral angle between A/C and B/C is 13.63 (26) and 27.48 (26)°, respectively. The thiazine ring D (C1/C6/C7/C8/S1/N1) is in the half-chair form, with the maximum puckering amplitude (Cremer & Pople, 1975), Q = 0.578 (2) Å. There exist *S*(6) ring motif (Bernstein *et al.*, 1995) due to H-bonding of C—H…N type (Table 1, Fig. 1). The molecules form C(8) chains extending along the *a*-axis due to H-bonding of C—H…O type (Table 1, Fig. 2).

S2. Experimental

Schiff base derivative of (4*Z*)-4-hydrazinylidene-1-methyl-3,4-dihydro -1*H*-2,1-benzothiazine 2,2-dioxide and anthracene-9-carbaldehyde was prepared using the method reported previously (Shafiq *et al.* 2012). The chlorination of the schiff base was undertaken using *N*-chloro succinimide and dibenzoylperoxide (Shafiq *et al.*, 2012). The crude product of (I) was re-crystallized in ethyl acetate to get orange prisms.

S3. Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicates the intra-molecular short contact.

Figure 2

The partial packing, which shows that molecules form one-dimensional polymeric chains extending along the [100] direction.

$\label{eq:2-(Anthracen-9-ylmethylidene)} 4-[2-(Anthracen-9-ylmethylidene) hydrazinylidene]-3-chloro-1-methyl-3,4-dihydro-1H-2\lambda^6,1-benzothiazine-2,2-dione$

Crystal data	
$C_{24}H_{18}ClN_3O_2S$	$\beta = 105.026 \ (2)^{\circ}$
$M_r = 447.92$	$V = 2091.88 (16) Å^3$
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 928
a = 8.5133 (4) Å	$D_{\rm x} = 1.422 {\rm ~Mg} {\rm ~m}^{-3}$
b = 19.8999 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.7849 (6) Å	Cell parameters from 2827 reflections

 $\theta = 2.1 - 25.3^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 296 K

Data collection

Data collection	
Bruker Kappa APEXII CCD	16154 measured reflections
diffractometer	3788 independent reflections
Radiation source: fine-focus sealed tube	2827 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan	$k = -23 \rightarrow 18$
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 15$
$T_{\min} = 0.930, \ T_{\max} = 0.960$	
Refinement	
Refinement on F^2	Secondary atom site location: difference For

Prism, orange

 $0.26 \times 0.22 \times 0.20 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.136$	neighbouring sites
S = 1.04	H-atom parameters constrained
3788 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0652P)^2 + 0.8876P]$
281 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.31773 (12)	0.02405 (4)	0.89027 (7)	0.0772 (3)	
S1	0.47338 (9)	0.15552 (4)	0.89884 (6)	0.0561 (3)	
01	0.6215 (3)	0.12587 (13)	0.95945 (17)	0.0790 (8)	
O2	0.4770 (2)	0.20988 (10)	0.82508 (16)	0.0625 (7)	
N1	0.3657 (3)	0.17603 (12)	0.98246 (17)	0.0581 (8)	
N2	0.1106 (3)	0.12240 (10)	0.66521 (16)	0.0470 (7)	
N3	0.1929 (3)	0.07899 (11)	0.61082 (16)	0.0520 (8)	
C1	0.1136 (3)	0.17431 (11)	0.8339 (2)	0.0436 (8)	
C2	-0.0466 (3)	0.19551 (13)	0.7960 (2)	0.0533 (9)	
C3	-0.1214 (4)	0.23414 (14)	0.8580 (3)	0.0632 (11)	
C4	-0.0340 (4)	0.25376 (14)	0.9606 (3)	0.0665 (13)	
C5	0.1253 (4)	0.23567 (14)	0.9993 (2)	0.0596 (10)	
C6	0.2010 (4)	0.19540 (13)	0.9382 (2)	0.0498 (9)	
C7	0.3445 (3)	0.09596 (13)	0.8164 (2)	0.0485 (8)	

C8	0.1851 (3)	0.13033 (12)	0.76582 (18)	0.0414 (8)
С9	0.1181 (3)	0.07213 (12)	0.51179 (19)	0.0456 (8)
C10	0.1765 (3)	0.03012 (12)	0.43534 (19)	0.0430 (8)
C11	0.1245 (3)	0.04805 (12)	0.32402 (19)	0.0456 (8)
C12	0.0261 (4)	0.10529 (14)	0.2848 (2)	0.0619 (10)
C13	-0.0196 (4)	0.12103 (16)	0.1775 (2)	0.0676 (10)
C14	0.0306 (4)	0.08209 (16)	0.1014 (2)	0.0667 (10)
C15	0.1244 (4)	0.02818 (15)	0.1340 (2)	0.0603 (10)
C16	0.1755 (3)	0.00887 (13)	0.2453 (2)	0.0473 (8)
C17	0.2714 (3)	-0.04692 (13)	0.2787 (2)	0.0534 (10)
C18	0.3237 (3)	-0.06616 (12)	0.3865 (2)	0.0490 (9)
C19	0.4221 (4)	-0.12438 (15)	0.4175 (3)	0.0641 (11)
C20	0.4705 (4)	-0.14389 (16)	0.5208 (3)	0.0742 (13)
C21	0.4206 (4)	-0.10726 (15)	0.6017 (3)	0.0723 (11)
C22	0.3269 (4)	-0.05134 (14)	0.5762 (2)	0.0596 (10)
C23	0.2760 (3)	-0.02744 (12)	0.4675 (2)	0.0447 (8)
C24	0.4352 (5)	0.1704 (2)	1.0998 (2)	0.0851 (15)
H2	-0.10484	0.18318	0.72662	0.0639*
Н3	-0.22948	0.24698	0.83144	0.0757*
H4	-0.08417	0.27945	1.00339	0.0798*
Н5	0.18372	0.25048	1.06725	0.0716*
H7	0.39378	0.08215	0.75851	0.0582*
Н9	0.02056	0.09509	0.48613	0.0547*
H12	-0.00791	0.13259	0.33383	0.0744*
H13	-0.08517	0.15836	0.15457	0.0813*
H14	-0.00106	0.09351	0.02836	0.0801*
H15	0.15741	0.00253	0.08271	0.0725*
H17	0.30231	-0.07276	0.22679	0.0640*
H19	0.45336	-0.14929	0.36469	0.0764*
H20	0.53679	-0.18145	0.53962	0.0887*
H21	0.45241	-0.12174	0.67323	0.0865*
H22	0.29546	-0.02823	0.63070	0.0713*
H24A	0.46719	0.21406	1.12959	0.1277*
H24B	0.52845	0.14138	1.11401	0.1277*
H24C	0.35525	0.15194	1.13268	0.1277*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1028 (7)	0.0585 (5)	0.0677 (5)	0.0011 (4)	0.0176 (5)	0.0132 (4)
S 1	0.0554 (4)	0.0686 (5)	0.0428 (4)	-0.0061 (3)	0.0100 (3)	-0.0092 (3)
01	0.0610 (13)	0.1054 (17)	0.0592 (13)	0.0087 (12)	-0.0049 (10)	-0.0130 (12)
O2	0.0646 (13)	0.0666 (12)	0.0617 (12)	-0.0183 (10)	0.0263 (10)	-0.0031 (10)
N1	0.0694 (16)	0.0683 (15)	0.0333 (12)	-0.0026 (12)	0.0076 (11)	-0.0079 (11)
N2	0.0551 (13)	0.0515 (12)	0.0352 (11)	0.0019 (10)	0.0131 (10)	-0.0046 (9)
N3	0.0600 (14)	0.0615 (13)	0.0347 (12)	0.0041 (11)	0.0127 (10)	-0.0103 (10)
C1	0.0547 (16)	0.0401 (13)	0.0410 (14)	-0.0090 (11)	0.0215 (12)	-0.0026 (11)
C2	0.0561 (17)	0.0506 (15)	0.0574 (17)	-0.0084 (13)	0.0225 (14)	-0.0053 (13)

C3	0.0625 (19)	0.0526 (16)	0.085 (2)	-0.0038 (14)	0.0378 (17)	-0.0041 (16)
C4	0.095 (3)	0.0477 (16)	0.075 (2)	-0.0053 (16)	0.055 (2)	-0.0096 (15)
C5	0.091 (2)	0.0487 (16)	0.0480 (16)	-0.0079 (15)	0.0339 (16)	-0.0090 (13)
C6	0.0706 (19)	0.0436 (14)	0.0406 (14)	-0.0100 (13)	0.0239 (13)	-0.0041 (11)
C7	0.0562 (16)	0.0547 (15)	0.0354 (13)	-0.0003 (12)	0.0132 (12)	-0.0057 (11)
C8	0.0504 (15)	0.0433 (13)	0.0330 (13)	-0.0080 (11)	0.0152 (11)	-0.0037 (10)
C9	0.0561 (16)	0.0464 (14)	0.0343 (13)	-0.0019 (12)	0.0120 (12)	-0.0022 (11)
C10	0.0514 (15)	0.0441 (13)	0.0337 (13)	-0.0074 (11)	0.0114 (11)	-0.0054 (10)
C11	0.0569 (16)	0.0455 (14)	0.0335 (13)	-0.0095 (12)	0.0103 (11)	-0.0059 (11)
C12	0.089 (2)	0.0559 (16)	0.0392 (15)	0.0073 (15)	0.0136 (14)	-0.0011 (13)
C13	0.094 (2)	0.0603 (17)	0.0434 (16)	0.0009 (16)	0.0084 (16)	0.0050 (14)
C14	0.096 (2)	0.0651 (19)	0.0341 (15)	-0.0196 (18)	0.0083 (15)	0.0018 (14)
C15	0.083 (2)	0.0653 (18)	0.0354 (14)	-0.0200 (16)	0.0202 (14)	-0.0123 (13)
C16	0.0590 (16)	0.0473 (14)	0.0371 (13)	-0.0133 (12)	0.0154 (12)	-0.0083 (11)
C17	0.0653 (18)	0.0554 (16)	0.0461 (16)	-0.0120 (14)	0.0265 (13)	-0.0138 (13)
C18	0.0510 (16)	0.0436 (14)	0.0555 (17)	-0.0076 (12)	0.0192 (13)	-0.0077 (12)
C19	0.072 (2)	0.0532 (16)	0.073 (2)	0.0051 (15)	0.0296 (17)	-0.0012 (15)
C20	0.078 (2)	0.0541 (18)	0.090 (3)	0.0105 (16)	0.0211 (19)	0.0066 (17)
C21	0.089 (2)	0.0621 (19)	0.0595 (19)	0.0060 (17)	0.0081 (17)	0.0120 (15)
C22	0.077 (2)	0.0533 (16)	0.0454 (16)	0.0013 (14)	0.0103 (14)	0.0003 (13)
C23	0.0504 (15)	0.0436 (13)	0.0386 (13)	-0.0086 (11)	0.0086 (11)	-0.0028 (11)
C24	0.092 (3)	0.124 (3)	0.0344 (16)	-0.008 (2)	0.0078 (16)	-0.0069 (18)

Geometric parameters (Å, °)

Cl1—C7	1.762 (3)	C16—C17	1.379 (4)
S1—O1	1.426 (3)	C17—C18	1.388 (3)
S1—O2	1.441 (2)	C18—C19	1.424 (4)
S1—N1	1.630 (3)	C18—C23	1.432 (4)
S1—C7	1.766 (3)	C19—C20	1.335 (5)
N1—C6	1.423 (4)	C20—C21	1.418 (5)
N1-C24	1.467 (3)	C21—C22	1.359 (4)
N2—N3	1.405 (3)	C22—C23	1.426 (4)
N2—C8	1.288 (3)	C2—H2	0.9300
N3—C9	1.269 (3)	С3—Н3	0.9300
C1—C2	1.389 (4)	C4—H4	0.9300
C1—C6	1.412 (4)	С5—Н5	0.9300
C1—C8	1.473 (3)	C7—H7	0.9800
C2—C3	1.374 (4)	С9—Н9	0.9300
C3—C4	1.386 (5)	C12—H12	0.9300
C4—C5	1.366 (5)	C13—H13	0.9300
C5—C6	1.389 (4)	C14—H14	0.9300
С7—С8	1.508 (4)	C15—H15	0.9300
C9—C10	1.467 (3)	C17—H17	0.9300
C10-C11	1.422 (3)	C19—H19	0.9300
C10—C23	1.421 (3)	C20—H20	0.9300
C11—C12	1.426 (4)	C21—H21	0.9300
C11—C16	1.427 (4)	C22—H22	0.9300

C12—C13	1.362 (4)	C24—H24A	0.9600
C13—C14	1.395 (4)	C24—H24B	0.9600
C14—C15	1.338 (4)	C24—H24C	0.9600
C15—C16	1.429 (4)		
01—S1—O2	120.04 (14)	C18—C19—C20	121.3 (3)
O1—S1—N1	108.40 (13)	C19—C20—C21	119.9 (3)
01—S1—C7	111.82 (14)	C20—C21—C22	121.0 (3)
O2—S1—N1	110.63 (12)	C21—C22—C23	121.2 (3)
O2—S1—C7	103.22 (12)	C10-C23-C18	119.0 (2)
N1—S1—C7	101.03 (13)	C10—C23—C22	124.0 (2)
S1—N1—C6	118.09 (17)	C18—C23—C22	117.0 (2)
S1—N1—C24	120.3 (2)	C1—C2—H2	119.00
C6-N1-C24	121.5 (3)	C3—C2—H2	119.00
N3—N2—C8	113.0 (2)	С2—С3—Н3	120.00
N2—N3—C9	112.0 (2)	C4—C3—H3	120.00
C2—C1—C6	117.9 (2)	C3—C4—H4	120.00
C2—C1—C8	119.6 (2)	C5—C4—H4	120.00
C6—C1—C8	122.5 (2)	C4—C5—H5	120.00
C1—C2—C3	121.9 (3)	C6—C5—H5	120.00
C2—C3—C4	119.2 (3)	Cl1—C7—H7	109.00
C3—C4—C5	120.5 (3)	S1—C7—H7	109.00
C4—C5—C6	120.7 (3)	С8—С7—Н7	108.00
N1-C6-C1	121.3 (2)	N3—C9—H9	118.00
N1-C6-C5	119.1 (2)	С10—С9—Н9	118.00
C1—C6—C5	119.7 (3)	C11—C12—H12	119.00
Cl1—C7—S1	111.83 (14)	C13—C12—H12	119.00
Cl1—C7—C8	111.80 (18)	C12—C13—H13	120.00
S1—C7—C8	107.60 (17)	C14—C13—H13	119.00
N2	119.4 (2)	C13—C14—H14	120.00
N2C8C7	121.9 (2)	C15—C14—H14	120.00
C1—C8—C7	118.7 (2)	C14—C15—H15	119.00
N3—C9—C10	123.9 (2)	C16—C15—H15	119.00
C9-C10-C11	116.9 (2)	C16—C17—H17	119.00
C9—C10—C23	123.1 (2)	C18—C17—H17	119.00
C11—C10—C23	120.0 (2)	C18—C19—H19	119.00
C10-C11-C12	123.7 (2)	C20-C19-H19	119.00
C10-C11-C16	119.7 (2)	C19—C20—H20	120.00
C12—C11—C16	116.6 (2)	C21—C20—H20	120.00
C11—C12—C13	121.8 (3)	C20—C21—H21	119.00
C12—C13—C14	121.1 (3)	C22—C21—H21	120.00
C13—C14—C15	119.6 (2)	C21—C22—H22	119.00
C14—C15—C16	121.9 (3)	C23—C22—H22	119.00
C11—C16—C15	119.1 (2)	N1—C24—H24A	110.00
C11—C16—C17	119.1 (2)	N1—C24—H24B	110.00
C15—C16—C17	121.9 (2)	N1—C24—H24C	109.00
C16—C17—C18	122.8 (2)	H24A—C24—H24B	110.00
C17—C18—C19	121.0 (3)	H24A—C24—H24C	109.00
	• /		

C17—C18—C23	119.5 (2)	H24B—C24—H24C	109.00
C19—C18—C23	119.6 (2)		
O1—S1—N1—C6	-169.0 (2)	S1—C7—C8—C1	-43.3 (3)
O1—S1—N1—C24	7.3 (3)	N3—C9—C10—C11	-154.0 (3)
O2—S1—N1—C6	57.5 (2)	N3—C9—C10—C23	28.1 (4)
O2—S1—N1—C24	-126.2 (2)	C9-C10-C11-C12	2.7 (4)
C7—S1—N1—C6	-51.3 (2)	C9—C10—C11—C16	-179.4 (2)
C7—S1—N1—C24	125.0 (3)	C23—C10—C11—C12	-179.3 (3)
O1—S1—C7—Cl1	50.62 (19)	C23—C10—C11—C16	-1.3 (4)
O1—S1—C7—C8	173.77 (17)	C9-C10-C23-C18	178.5 (2)
O2—S1—C7—C11	-178.99 (14)	C9—C10—C23—C22	1.3 (4)
O2—S1—C7—C8	-55.85 (19)	C11—C10—C23—C18	0.7 (4)
N1—S1—C7—Cl1	-64.50 (17)	C11—C10—C23—C22	-176.6 (3)
N1—S1—C7—C8	58.64 (19)	C10-C11-C12-C13	179.3 (3)
S1—N1—C6—C1	23.8 (3)	C16—C11—C12—C13	1.3 (4)
S1—N1—C6—C5	-156.4 (2)	C10-C11-C16-C15	-179.0 (3)
C24—N1—C6—C1	-152.4 (3)	C10-C11-C16-C17	1.6 (4)
C24—N1—C6—C5	27.4 (4)	C12—C11—C16—C15	-0.9 (4)
C8—N2—N3—C9	-179.6 (2)	C12—C11—C16—C17	179.8 (3)
N3—N2—C8—C1	-179.8 (2)	C11—C12—C13—C14	-1.0 (5)
N3—N2—C8—C7	0.4 (3)	C12—C13—C14—C15	0.4 (5)
N2-N3-C9-C10	179.6 (2)	C13—C14—C15—C16	0.0 (5)
C6—C1—C2—C3	-1.9 (4)	C14—C15—C16—C11	0.3 (5)
C8—C1—C2—C3	177.1 (2)	C14—C15—C16—C17	179.6 (3)
C2-C1-C6-N1	-179.7 (2)	C11—C16—C17—C18	-1.3 (4)
C2-C1-C6-C5	0.5 (4)	C15—C16—C17—C18	179.3 (3)
C8—C1—C6—N1	1.3 (4)	C16—C17—C18—C19	179.7 (3)
C8—C1—C6—C5	-178.6 (2)	C16—C17—C18—C23	0.6 (4)
C2C1C8N2	13.1 (4)	C17—C18—C19—C20	-178.8 (3)
C2—C1—C8—C7	-167.1 (2)	C23—C18—C19—C20	0.3 (5)
C6—C1—C8—N2	-167.9 (2)	C17—C18—C23—C10	-0.3 (4)
C6—C1—C8—C7	11.9 (4)	C17—C18—C23—C22	177.1 (3)
C1—C2—C3—C4	1.3 (4)	C19—C18—C23—C10	-179.4 (3)
C2—C3—C4—C5	0.8 (5)	C19—C18—C23—C22	-2.0 (4)
C3—C4—C5—C6	-2.2 (5)	C18—C19—C20—C21	1.5 (5)
C4—C5—C6—N1	-178.2 (3)	C19—C20—C21—C22	-1.6 (5)
C4—C5—C6—C1	1.6 (4)	C20-C21-C22-C23	-0.2 (5)
Cl1—C7—C8—N2	-100.3 (3)	C21—C22—C23—C10	179.2 (3)
Cl1—C7—C8—C1	79.9 (2)	C21—C22—C23—C18	1.9 (4)
S1—C7—C8—N2	136.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С3—Н3…О2і	0.93	2.59	3.370 (4)	142

			supportin	supporting information		
C22—H22···N3	0.93	2.29	2.913 (4)	123		
Symmetry code: (i) <i>x</i> -1, <i>y</i> , <i>z</i> .						