metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m852-m853

Poly[bis­­(μ6-benzene-1,3,5-tri­carboxyl­ato-κ7O1,O1′:O1′:O3:O3′:O5:O5′)tetra­kis­(di­methyl­formamide-κO)trimagnesium(II)]

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: w.starosta@ichtj.waw.pl

(Received 10 May 2012; accepted 21 May 2012; online 31 May 2012)

The asymmetric unit of the polymeric title compound, [Mg3(C9H3O6)2(C3H7NO)4]n, contains three MgII ions bridged by carboxyl­ate O atoms from two fully deprotonated benzene-1,3,5-tricarboxyl­ate (BTC) trianions and four metal-coordinated dimethyl­formamide (DMF) mol­ecules. One MgII ion is octa­hedrally coordinated by six carboxyl­ate O atoms. The other two cations are each octa­hedrally coordinated by four carboxyl­ate O atoms and two O atoms donated by two DMF mol­ecules: in one, the DMF mol­ecules are cis and in the other they are trans. The three MgII octa­hedra form clusters, which are bridged by the BTC trianions, generating a three-dimensional structure.

Related literature

For the crystal structures of four MgII complexes with benzene-1,3,5- tricarboxyl­ate ligands, see: Davies et al. (2007[Davies, R. P., Less, R. J., Likiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528-2535.]); Ma et al. (2007[Ma, S., Fillinger, J. A., Ambrogio, M. W., Zuo, J.-L. & Zhou, H.-C. (2007). Inorg. Chem. Commun. 10, 220-222.]); Song et al. (2010[Song, L.-F., Jiang, C.-H., Zhang, J.-J., Sun, L.-X., Xu, F., Tian, Y.-Q., You, W.-S., Cao, Z., Zhang, L. & Yang, D.-W. (2010). J. Therm. Anal. Calorim. 101, 365-370.]); Yeh et al. (2010[Yeh, C.-T., Liu, H.-K., Lin, C.-J. & Lin, C.-H. (2010). Acta Cryst. E66, m1289.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg3(C9H3O6)2(C3H7NO)4]

  • Mr = 779.54

  • Monoclinic, P 21 /c

  • a = 17.566 (4) Å

  • b = 11.961 (2) Å

  • c = 18.514 (4) Å

  • β = 116.65 (3)°

  • V = 3476.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.14 × 0.13 × 0.07 mm

Data collection
  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.979, Tmax = 0.991

  • 5218 measured reflections

  • 4986 independent reflections

  • 2425 reflections with I > 2σ(I)

  • Rint = 0.059

  • 3 standard reflections every 200 reflections intensity decay: 4.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.144

  • S = 1.00

  • 4986 reflections

  • 486 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O14i 1.997 (3)
Mg1—O24ii 2.041 (3)
Mg1—O15iii 2.072 (3)
Mg1—O12 2.169 (3)
Mg1—O11 2.202 (3)
Mg1—O21 2.233 (3)
Mg2—O23ii 2.019 (3)
Mg2—O16iii 2.023 (4)
Mg2—O12 2.058 (3)
Mg2—O41 2.081 (4)
Mg2—O31 2.091 (4)
Mg2—O26 2.113 (4)
Mg3—O21 2.279 (3)
Mg3—O22 2.104 (4)
Mg3—O13i 1.990 (3)
Mg3—O25i 2.024 (3)
Mg3—O51 2.089 (4)
Mg3—O61 2.110 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Magnesium(II) coordination polymers have been recently attracting considerable interest as possible metal-organic frameworks (MOF) with expected potential practical applications. Crystal structures of four MgII coordination polymers with benzene-1,3,5-tricarboxylate (BTC) ligand have been up to now reported (Ma et al., 2007; Davies et al., 2007; Yeh et al., 2010). Continuing our interest in MgII coordination chemistry we have synthesized a new MgII complex with BTC ligand. Its structure is reported below. The asymmetric cell of the title compound contains three symmetry independent MgII ions, each with a distorted octahedral coordination geometry, two symmetry independent fully deprotonated BTC ligand molecules and four symmetry independent dimethylformamide (DMF) molecules. While the distorted octahedral coordination of the Mg1 ion is composed of six carboxylato O atoms donated by both BTC ligands, the coordination environment of the Mg2 and Mg3 ions is built each of four ligand carboxylate O atoms and two DMF O atoms. The Mg—O bond distances collected in Table 1 do not differ from those reported in in other MgII complexes with the title ligand. Both BTC ligand molecules show µ6 bridging mode (Fig.1). Carboxylate O11 and O12 atoms of the BTC1 ligand coordinate the Mg1 ion, but the O12 atom acts as bidentate and is bonded also to the Mg2 ion. The carboxylate group with O13 and O14 atoms bridges the Mg3iv and Mg1iv ions; the carboxylate group with O15 and O16 atoms bridges the Mg1v and Mg2v ions. Ligand molecule BTC2 uses its carboxylate group with O21 and O22 atoms to bridge Mg1 and Mg3 ions; the carboxylate group with O23 and O24 atoms bridges the Mg2ii and Mg1iiion, while the carboxylate group with O25 and O26 atoms bridges the Mg3iv and Mg2 ions. (Symmetry code: ii -x, -y + 1, -z; iv x, -y + 1/2, z + 1/2; v -x + 1, y - 1/2, -z + 1/2). BTC1 and BTC2 benzene rings are planar with r.m.s of 0.0192 (2) Å and 0.0106 (2) Å, respectively. The carboxylate groups C17/O11/O12, C18/O13/O14 and C19/O15/O16 deviate from the benzene ring 1 by 29.1 (5)°, 35.1 (5)° and 9.5 (5)°, respectively. The respective values for benzene ring 2 and carboxylate groups C27/O21/O22, C28/O23/O24 and C29/O25/O26 are 21.2 (5)°, 9.3 (5)° and 42.3 (5)°. Four DMF molecules show r.m.s. values between 0.0095 (1) Å and 0.0134 (1) Å. Three MgII octahedra linked along Mg3—O21—Mg1—O12—Mg2 bonding pathway clearly visible in Fig.1. form clusters which, bridged by BTC carboxylate O atoms, give rise to channels propagating along crystal a direction with DMF molecules localized inside (Fig.2). For comparison, a two-dimensional structure of a trigonal complex in which the BTC ligand acts also in µ6 and the formate ligand in µ3 modes bridge three symmetry independent MgII ions has been recently reported (Yeh et al., 2010). In the rhombohedral layer structure of a complex with BTC and DMA (dimethyloacetamide) ligands, two BTC molecules, each showing µ3 bridging mode are observed. MgII ions and BTC molecules are nearly coplanar and four carboxylate O atoms form an equatorial plane of a distorted octahedral environment around a MgII ion with O atoms donated by two DMA molecules at apical positions (Davies et al., 2007). A similar structure but with DMF O atoms at axial positions is also known (Song et al., 2010). In an orthorhombic MgII complex with BTC ligand and DMA a three-dimensional framework with pores filled by the DMA molecules has been reported (Ma et al., 2007).

Related literature top

For the crystal structures of four MgII complexes with benzene-1,3,5- tricarboxylate ligands, see: Davies et al. (2007); Ma et al. (2007); Song et al. (2010); Yeh et al. (2010).

Experimental top

0.25 g of magnesium nitrate hexahydrate and 0.14 g of benzene-1,3,5-tricarboxylic acid were dissolved with stirring for two hours in 17 ml of DMF, inserted into a Parr autoclave and heated for three days at 400 K, than cooled to room temperatute. Colourless blocks were extracted from the reaction vessel, washed with cold ethanol and dried in the air.

Refinement top

H atoms attached to benzene-ring and methyl groups C atoms were located at calculated positions and treated as riding on the parent atoms with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (50% probability displacement ellipsoids) expanded to show the complete metal coordination spheres. Symmetry code: i x, -y + 1/2, z - 1/2; ii -x, -y + 1/2, -z; iii -x + 1, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. Packing diagram of the structure viewed along the a axis.
Poly[bis(µ6-benzene-1,3,5-tricarboxylato- κ7O1,O1':O1':O3:O3': O5:O5')tetrakis(dimethylformamide- κO)trimagnesium(II)] top
Crystal data top
[Mg3(C9H3O6)2(C3H7NO)4]F(000) = 1624
Mr = 779.54Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.566 (4) Åθ = 6–15°
b = 11.961 (2) ŵ = 0.17 mm1
c = 18.514 (4) ÅT = 293 K
β = 116.65 (3)°Block, colourless
V = 3476.9 (12) Å30.14 × 0.13 × 0.07 mm
Z = 4
Data collection top
Kuma KM-4 four-cricle
diffractometer
2425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 24.2°, θmin = 1.3°
profile data from ω/2θ scansh = 1718
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 130
Tmin = 0.979, Tmax = 0.991l = 190
5218 measured reflections3 standard reflections every 200 reflections
4986 independent reflections intensity decay: 4.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0748P)2 + 2.4811P]
where P = (Fo2 + 2Fc2)/3
4986 reflections(Δ/σ)max < 0.001
486 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mg3(C9H3O6)2(C3H7NO)4]V = 3476.9 (12) Å3
Mr = 779.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.566 (4) ŵ = 0.17 mm1
b = 11.961 (2) ÅT = 293 K
c = 18.514 (4) Å0.14 × 0.13 × 0.07 mm
β = 116.65 (3)°
Data collection top
Kuma KM-4 four-cricle
diffractometer
2425 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.059
Tmin = 0.979, Tmax = 0.9913 standard reflections every 200 reflections
5218 measured reflections intensity decay: 4.2%
4986 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.00Δρmax = 0.48 e Å3
4986 reflectionsΔρmin = 0.38 e Å3
486 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.28724 (9)0.41852 (12)0.02746 (8)0.0115 (3)
Mg20.28781 (9)0.55240 (12)0.19953 (9)0.0179 (4)
O120.30491 (18)0.4054 (2)0.15088 (17)0.0165 (7)
O140.32096 (19)0.1175 (3)0.44045 (18)0.0211 (7)
O110.3730 (2)0.2903 (3)0.10858 (18)0.0254 (8)
O150.61469 (19)0.0343 (3)0.43342 (19)0.0269 (8)
O130.2857 (2)0.2948 (3)0.4019 (2)0.0262 (8)
O160.6279 (2)0.1229 (3)0.3335 (2)0.0281 (8)
C130.3768 (3)0.2027 (4)0.3594 (3)0.0164 (10)
C120.3488 (3)0.2661 (4)0.2897 (3)0.0193 (11)
H120.29970.30900.27350.023*
C110.3932 (3)0.2664 (4)0.2437 (3)0.0185 (11)
C140.4531 (3)0.1429 (4)0.3860 (3)0.0214 (11)
H140.47140.09840.43190.026*
C170.3569 (3)0.3244 (4)0.1638 (3)0.0177 (10)
C180.3242 (3)0.2051 (4)0.4049 (3)0.0185 (10)
C160.4697 (3)0.2101 (4)0.2722 (3)0.0179 (10)
H160.50070.21250.24260.022*
C150.5018 (3)0.1497 (4)0.3440 (3)0.0183 (11)
C190.5879 (3)0.0977 (4)0.3725 (3)0.0185 (10)
O310.3879 (2)0.5254 (3)0.3146 (2)0.0348 (9)
O410.2760 (2)0.7044 (3)0.2482 (2)0.0385 (9)
C410.2128 (4)0.7361 (5)0.2531 (4)0.0461 (16)
H410.16170.70140.21930.055*
N410.2095 (4)0.8147 (4)0.3013 (4)0.0668 (17)
C420.1286 (7)0.8435 (8)0.3020 (7)0.115 (4)
H42A0.08220.82650.25030.173*
H42B0.12800.92190.31300.173*
H42C0.12270.80100.34320.173*
O210.18676 (19)0.2866 (3)0.00975 (18)0.0228 (8)
N310.4322 (3)0.6032 (5)0.4372 (3)0.0497 (14)
C310.3803 (3)0.5400 (5)0.3764 (3)0.0407 (15)
H310.33550.50460.38090.049*
C320.4186 (5)0.6223 (7)0.5086 (4)0.077 (2)
H32A0.47140.61260.55640.115*
H32B0.37740.56990.50900.115*
H32C0.39810.69700.50720.115*
C330.5010 (5)0.6656 (7)0.4322 (4)0.081 (3)
H33A0.55170.65900.48240.121*
H33B0.48520.74290.42170.121*
H33C0.51130.63590.38930.121*
O220.0627 (2)0.2178 (3)0.09433 (19)0.0311 (9)
C270.1073 (3)0.2737 (4)0.0321 (3)0.0223 (11)
C260.1161 (3)0.3541 (4)0.0967 (3)0.0175 (10)
H260.17460.34260.12040.021*
C210.0661 (3)0.3227 (4)0.0163 (3)0.0189 (11)
C250.0790 (3)0.4025 (4)0.1413 (3)0.0156 (10)
Mg30.16582 (10)0.17878 (13)0.11854 (9)0.0197 (4)
O510.2005 (2)0.0431 (3)0.0391 (2)0.0326 (9)
O610.1369 (3)0.3167 (4)0.1975 (3)0.0616 (13)
N510.2772 (3)0.0425 (4)0.0807 (3)0.0405 (12)
N610.0720 (3)0.4035 (4)0.3183 (3)0.0512 (14)
C510.2573 (4)0.0438 (4)0.0312 (3)0.0335 (13)
H510.28830.10940.05040.040*
C520.2318 (5)0.1473 (5)0.0551 (4)0.069 (2)
H52A0.17620.13970.05260.103*
H52B0.26270.20490.09310.103*
H52C0.22620.16680.00270.103*
C610.0773 (5)0.3476 (6)0.2541 (5)0.070 (2)
H610.02540.33070.25460.084*
C220.0204 (3)0.3412 (4)0.0185 (3)0.0197 (11)
H220.05400.31800.07130.024*
C530.3467 (4)0.0391 (6)0.1617 (4)0.071 (2)
H53A0.38770.09570.16710.107*
H53B0.32500.05250.20020.107*
H53C0.37330.03310.17140.107*
C280.1514 (3)0.4268 (4)0.0213 (3)0.0173 (10)
C240.0081 (3)0.4222 (4)0.1043 (3)0.0189 (11)
H240.03310.45510.13390.023*
C230.0586 (3)0.3941 (4)0.0241 (3)0.0181 (11)
C620.1435 (6)0.4292 (8)0.3309 (6)0.111 (3)
H62A0.19450.40620.28470.167*
H62B0.14550.50840.33850.167*
H62C0.13930.39070.37800.167*
C630.0109 (5)0.4319 (8)0.3775 (6)0.125 (4)
H63A0.04940.43110.35370.187*
H63B0.02940.37860.42090.187*
H63C0.01000.50520.39820.187*
O230.18677 (18)0.4056 (3)0.09475 (18)0.0226 (8)
O240.18513 (19)0.4760 (3)0.01737 (18)0.0213 (8)
O260.20657 (19)0.4791 (3)0.24270 (18)0.0238 (8)
C290.1363 (3)0.4358 (4)0.2277 (3)0.0200 (11)
O250.1109 (2)0.4163 (3)0.28056 (19)0.0263 (8)
C430.2881 (6)0.8664 (8)0.3590 (5)0.115 (4)
H43A0.30280.83800.41220.172*
H43B0.28060.94590.35850.172*
H43C0.33300.84940.34470.172*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0103 (7)0.0163 (8)0.0089 (7)0.0006 (6)0.0054 (6)0.0010 (6)
Mg20.0159 (8)0.0232 (9)0.0145 (8)0.0007 (6)0.0066 (6)0.0033 (7)
O120.0150 (16)0.0188 (17)0.0136 (16)0.0035 (14)0.0046 (13)0.0031 (13)
O140.0250 (18)0.0208 (19)0.0240 (18)0.0033 (14)0.0168 (14)0.0058 (14)
O110.029 (2)0.036 (2)0.0148 (18)0.0111 (16)0.0131 (15)0.0050 (15)
O150.025 (2)0.036 (2)0.024 (2)0.0174 (15)0.0145 (15)0.0142 (16)
O130.0266 (19)0.025 (2)0.035 (2)0.0093 (15)0.0212 (16)0.0072 (15)
O160.024 (2)0.035 (2)0.032 (2)0.0097 (15)0.0180 (16)0.0133 (16)
C130.015 (2)0.020 (3)0.013 (2)0.004 (2)0.0055 (19)0.0034 (19)
C120.010 (2)0.025 (3)0.025 (3)0.005 (2)0.010 (2)0.005 (2)
C110.014 (2)0.022 (3)0.019 (3)0.002 (2)0.007 (2)0.002 (2)
C140.020 (3)0.025 (3)0.020 (3)0.003 (2)0.009 (2)0.006 (2)
C170.011 (2)0.022 (3)0.020 (3)0.003 (2)0.0065 (19)0.005 (2)
C180.017 (2)0.022 (3)0.016 (3)0.002 (2)0.007 (2)0.003 (2)
C160.016 (2)0.027 (3)0.015 (3)0.005 (2)0.010 (2)0.006 (2)
C150.016 (2)0.025 (3)0.015 (3)0.003 (2)0.0083 (19)0.001 (2)
C190.018 (3)0.023 (3)0.015 (3)0.004 (2)0.008 (2)0.002 (2)
O310.026 (2)0.058 (3)0.014 (2)0.0034 (17)0.0037 (15)0.0009 (17)
O410.041 (2)0.039 (2)0.042 (2)0.0016 (19)0.0242 (18)0.0121 (18)
C410.058 (4)0.035 (4)0.048 (4)0.003 (3)0.027 (3)0.015 (3)
N410.107 (5)0.049 (3)0.067 (4)0.019 (3)0.059 (4)0.006 (3)
C420.156 (9)0.088 (7)0.176 (10)0.049 (6)0.139 (9)0.021 (7)
O210.0158 (19)0.0274 (19)0.0264 (19)0.0006 (14)0.0105 (14)0.0057 (15)
N310.048 (3)0.079 (4)0.027 (3)0.033 (3)0.021 (2)0.018 (3)
C310.031 (3)0.056 (4)0.028 (3)0.017 (3)0.007 (3)0.001 (3)
C320.081 (5)0.114 (7)0.040 (4)0.032 (5)0.032 (4)0.017 (4)
C330.076 (5)0.116 (7)0.058 (5)0.065 (5)0.038 (4)0.030 (5)
O220.0224 (19)0.040 (2)0.029 (2)0.0057 (16)0.0098 (16)0.0195 (17)
C270.020 (3)0.024 (3)0.024 (3)0.002 (2)0.010 (2)0.001 (2)
C260.016 (2)0.022 (3)0.017 (3)0.002 (2)0.009 (2)0.001 (2)
C210.018 (3)0.017 (2)0.022 (3)0.003 (2)0.009 (2)0.002 (2)
C250.012 (2)0.017 (2)0.017 (2)0.0018 (19)0.0051 (19)0.0003 (19)
Mg30.0226 (9)0.0199 (9)0.0195 (9)0.0003 (7)0.0119 (7)0.0010 (7)
O510.037 (2)0.031 (2)0.025 (2)0.0034 (16)0.0099 (18)0.0031 (16)
O610.070 (3)0.048 (3)0.046 (3)0.006 (2)0.008 (3)0.016 (2)
N510.046 (3)0.037 (3)0.033 (3)0.004 (2)0.014 (2)0.013 (2)
N610.061 (4)0.046 (3)0.035 (3)0.022 (3)0.012 (3)0.020 (3)
C510.041 (3)0.018 (3)0.049 (4)0.005 (2)0.027 (3)0.002 (3)
C520.079 (5)0.040 (4)0.072 (5)0.010 (4)0.021 (4)0.020 (4)
C610.076 (6)0.052 (5)0.065 (5)0.001 (4)0.017 (5)0.018 (4)
C220.016 (3)0.019 (3)0.021 (3)0.0042 (19)0.005 (2)0.000 (2)
C530.078 (5)0.077 (5)0.040 (4)0.015 (4)0.008 (4)0.016 (4)
C280.017 (3)0.017 (3)0.017 (3)0.001 (2)0.007 (2)0.002 (2)
C240.022 (3)0.024 (3)0.013 (3)0.004 (2)0.010 (2)0.005 (2)
C230.013 (2)0.023 (3)0.018 (3)0.0023 (19)0.007 (2)0.005 (2)
C620.119 (8)0.101 (8)0.149 (10)0.015 (6)0.093 (8)0.014 (7)
C630.084 (7)0.117 (8)0.126 (9)0.046 (6)0.007 (6)0.001 (7)
O230.0175 (17)0.0287 (19)0.0167 (19)0.0030 (14)0.0034 (14)0.0011 (15)
O240.0172 (18)0.0272 (19)0.0193 (18)0.0035 (14)0.0082 (14)0.0009 (15)
O260.0153 (18)0.035 (2)0.0196 (19)0.0070 (15)0.0069 (14)0.0042 (15)
C290.017 (3)0.025 (3)0.019 (3)0.004 (2)0.009 (2)0.000 (2)
O250.0253 (19)0.038 (2)0.0190 (19)0.0034 (16)0.0132 (15)0.0083 (16)
C430.148 (9)0.093 (7)0.090 (7)0.018 (7)0.042 (7)0.055 (6)
Geometric parameters (Å, º) top
Mg1—O14i1.997 (3)C33—H33B0.9600
Mg1—O24ii2.041 (3)C33—H33C0.9600
Mg1—O15iii2.072 (3)O22—C271.256 (5)
Mg1—O122.169 (3)Mg3—O222.104 (4)
Mg1—O112.202 (3)C27—C211.500 (6)
Mg1—O212.233 (3)C27—Mg32.526 (5)
Mg1—C172.523 (5)C26—C251.387 (6)
Mg2—O23ii2.019 (3)C26—C211.398 (6)
Mg2—O16iii2.023 (4)C26—H260.9300
Mg2—O122.058 (3)C21—C221.376 (6)
Mg2—O412.081 (4)C25—C241.388 (6)
Mg2—O312.091 (4)C25—C291.512 (6)
Mg2—O262.113 (4)Mg3—O13i1.990 (3)
O12—C171.279 (5)Mg3—O25i2.024 (3)
O14—C181.252 (5)Mg3—O512.089 (4)
O14—Mg1iv1.997 (3)Mg3—O612.110 (5)
O11—C171.245 (5)O51—C511.234 (6)
O15—C191.262 (5)O61—C611.160 (8)
O15—Mg1v2.072 (3)N51—C511.320 (6)
O13—C181.256 (5)N51—C521.446 (7)
O13—Mg3iv1.990 (3)N51—C531.448 (7)
O16—C191.249 (5)N61—C611.330 (9)
O16—Mg2v2.023 (4)N61—C621.411 (9)
C13—C121.383 (6)N61—C631.417 (9)
C13—C141.399 (6)C51—H510.9300
C13—C181.504 (6)C52—H52A0.9600
C12—C111.389 (6)C52—H52B0.9600
C12—H120.9300C52—H52C0.9600
C11—C161.380 (6)C61—H610.9300
C11—C171.493 (6)C22—C231.395 (6)
C14—C151.393 (6)C22—H220.9300
C14—H140.9300C53—H53A0.9600
C16—C151.390 (6)C53—H53B0.9600
C16—H160.9300C53—H53C0.9600
C15—C191.496 (6)C28—O231.242 (5)
O31—C311.223 (6)C28—O241.260 (5)
O41—C411.213 (7)C28—C231.513 (6)
C41—N411.316 (7)C24—C231.386 (6)
C41—H410.9300C24—H240.9300
N41—C431.452 (10)C62—H62A0.9600
N41—C421.468 (9)C62—H62B0.9600
C42—H42A0.9600C62—H62C0.9600
C42—H42B0.9600C63—H63A0.9600
C42—H42C0.9600C63—H63B0.9600
O21—C271.275 (5)C63—H63C0.9600
Mg3—O212.279 (3)O23—Mg2ii2.019 (3)
N31—C311.322 (7)O24—Mg1ii2.041 (3)
N31—C331.458 (7)O26—C291.249 (5)
N31—C321.461 (8)C29—O251.267 (5)
C31—H310.9300O25—Mg3iv2.024 (3)
C32—H32A0.9600C43—H43A0.9600
C32—H32B0.9600C43—H43B0.9600
C32—H32C0.9600C43—H43C0.9600
C33—H33A0.9600
O14i—Mg1—O24ii109.27 (14)H33A—C33—H33B109.5
O14i—Mg1—O15iii85.72 (14)N31—C33—H33C109.5
O24ii—Mg1—O15iii99.80 (14)H33A—C33—H33C109.5
O14i—Mg1—O12151.66 (14)H33B—C33—H33C109.5
O24ii—Mg1—O1299.06 (13)C27—O22—Mg394.1 (3)
O15iii—Mg1—O1288.64 (13)O22—C27—O21120.2 (4)
O14i—Mg1—O1192.30 (13)O22—C27—C21119.1 (4)
O24ii—Mg1—O11156.35 (15)O21—C27—C21120.7 (4)
O15iii—Mg1—O1191.13 (14)O22—C27—Mg356.2 (2)
O12—Mg1—O1160.03 (12)O21—C27—Mg364.1 (2)
O14i—Mg1—O2194.47 (13)C21—C27—Mg3174.9 (3)
O24ii—Mg1—O2183.25 (13)C25—C26—C21120.6 (4)
O15iii—Mg1—O21176.71 (15)C25—C26—H26119.7
O12—Mg1—O2189.64 (12)C21—C26—H26119.7
O11—Mg1—O2185.58 (13)C22—C21—C26119.2 (4)
O14i—Mg1—C17121.63 (15)C22—C21—C27120.7 (4)
O24ii—Mg1—C17128.79 (15)C26—C21—C27120.0 (4)
O15iii—Mg1—C1789.68 (15)C26—C25—C24119.0 (4)
O12—Mg1—C1730.46 (13)C26—C25—C29118.2 (4)
O11—Mg1—C1729.57 (13)C24—C25—C29122.8 (4)
O21—Mg1—C1787.42 (14)O13i—Mg3—O25i106.92 (15)
O23ii—Mg2—O16iii93.05 (15)O13i—Mg3—O5192.30 (15)
O23ii—Mg2—O1291.71 (13)O25i—Mg3—O5194.69 (15)
O16iii—Mg2—O1287.33 (14)O13i—Mg3—O22149.56 (15)
O23ii—Mg2—O4189.05 (15)O25i—Mg3—O22102.80 (14)
O16iii—Mg2—O4189.75 (15)O51—Mg3—O2291.66 (15)
O12—Mg2—O41177.03 (16)O13i—Mg3—O6185.01 (18)
O23ii—Mg2—O31172.81 (16)O25i—Mg3—O6186.15 (17)
O16iii—Mg2—O3188.69 (15)O51—Mg3—O61177.30 (18)
O12—Mg2—O3195.34 (14)O22—Mg3—O6190.65 (18)
O41—Mg2—O3183.98 (15)O13i—Mg3—O2190.22 (13)
O23ii—Mg2—O2690.85 (13)O25i—Mg3—O21162.75 (14)
O16iii—Mg2—O26175.89 (14)O51—Mg3—O2186.36 (14)
O12—Mg2—O2693.85 (14)O22—Mg3—O2159.94 (12)
O41—Mg2—O2689.01 (15)O61—Mg3—O2193.61 (16)
O31—Mg2—O2687.28 (14)O13i—Mg3—C27120.26 (16)
C17—O12—Mg2142.9 (3)O25i—Mg3—C27132.54 (16)
C17—O12—Mg190.2 (3)O51—Mg3—C2788.59 (15)
Mg2—O12—Mg1114.79 (14)O22—Mg3—C2729.74 (13)
C18—O14—Mg1iv134.8 (3)O61—Mg3—C2792.74 (18)
C17—O11—Mg189.7 (3)O21—Mg3—C2730.21 (13)
C19—O15—Mg1v129.2 (3)C51—O51—Mg3125.4 (3)
C18—O13—Mg3iv130.3 (3)C61—O61—Mg3135.6 (5)
C19—O16—Mg2v138.7 (3)C51—N51—C52121.0 (5)
C12—C13—C14119.5 (4)C51—N51—C53122.3 (5)
C12—C13—C18117.5 (4)C52—N51—C53116.7 (5)
C14—C13—C18123.0 (4)C61—N61—C62123.1 (7)
C13—C12—C11120.8 (4)C61—N61—C63116.7 (7)
C13—C12—H12119.6C62—N61—C63120.1 (7)
C11—C12—H12119.6O51—C51—N51124.4 (5)
C16—C11—C12118.8 (4)O51—C51—H51117.8
C16—C11—C17121.1 (4)N51—C51—H51117.8
C12—C11—C17120.1 (4)N51—C52—H52A109.5
C15—C14—C13120.3 (4)N51—C52—H52B109.5
C15—C14—H14119.9H52A—C52—H52B109.5
C13—C14—H14119.9N51—C52—H52C109.5
O11—C17—O12120.1 (4)H52A—C52—H52C109.5
O11—C17—C11120.5 (4)H52B—C52—H52C109.5
O12—C17—C11119.2 (4)O61—C61—N61129.8 (8)
O11—C17—Mg160.8 (2)O61—C61—H61115.1
O12—C17—Mg159.3 (2)N61—C61—H61115.1
C11—C17—Mg1176.7 (3)C21—C22—C23121.3 (4)
O14—C18—O13125.9 (4)C21—C22—H22119.4
O14—C18—C13117.6 (4)C23—C22—H22119.4
O13—C18—C13116.5 (4)N51—C53—H53A109.5
C11—C16—C15121.8 (4)N51—C53—H53B109.5
C11—C16—H16119.1H53A—C53—H53B109.5
C15—C16—H16119.1N51—C53—H53C109.5
C16—C15—C14118.5 (4)H53A—C53—H53C109.5
C16—C15—C19117.7 (4)H53B—C53—H53C109.5
C14—C15—C19123.7 (4)O23—C28—O24125.8 (4)
O16—C19—O15125.5 (4)O23—C28—C23116.1 (4)
O16—C19—C15115.9 (4)O24—C28—C23118.0 (4)
O15—C19—C15118.6 (4)C23—C24—C25121.5 (4)
C31—O31—Mg2122.5 (4)C23—C24—H24119.3
C41—O41—Mg2125.3 (4)C25—C24—H24119.3
O41—C41—N41126.4 (6)C24—C23—C22118.4 (4)
O41—C41—H41116.8C24—C23—C28123.0 (4)
N41—C41—H41116.8C22—C23—C28118.4 (4)
C41—N41—C43119.1 (7)N61—C62—H62A109.5
C41—N41—C42120.8 (7)N61—C62—H62B109.5
C43—N41—C42119.9 (7)H62A—C62—H62B109.5
N41—C42—H42A109.5N61—C62—H62C109.5
N41—C42—H42B109.5H62A—C62—H62C109.5
H42A—C42—H42B109.5H62B—C62—H62C109.5
N41—C42—H42C109.5N61—C63—H63A109.5
H42A—C42—H42C109.5N61—C63—H63B109.5
H42B—C42—H42C109.5H63A—C63—H63B109.5
C27—O21—Mg1141.7 (3)N61—C63—H63C109.5
C27—O21—Mg385.7 (3)H63A—C63—H63C109.5
Mg1—O21—Mg3117.68 (15)H63B—C63—H63C109.5
C31—N31—C33120.8 (5)C28—O23—Mg2ii142.6 (3)
C31—N31—C32122.0 (5)C28—O24—Mg1ii127.5 (3)
C33—N31—C32116.9 (5)C29—O26—Mg2148.8 (3)
O31—C31—N31123.8 (5)O26—C29—O25124.1 (4)
O31—C31—H31118.1O26—C29—C25117.9 (4)
N31—C31—H31118.1O25—C29—C25118.0 (4)
N31—C32—H32A109.5C29—O25—Mg3iv129.0 (3)
N31—C32—H32B109.5N41—C43—H43A109.5
H32A—C32—H32B109.5N41—C43—H43B109.5
N31—C32—H32C109.5H43A—C43—H43B109.5
H32A—C32—H32C109.5N41—C43—H43C109.5
H32B—C32—H32C109.5H43A—C43—H43C109.5
N31—C33—H33A109.5H43B—C43—H43C109.5
N31—C33—H33B109.5
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg3(C9H3O6)2(C3H7NO)4]
Mr779.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.566 (4), 11.961 (2), 18.514 (4)
β (°) 116.65 (3)
V3)3476.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.14 × 0.13 × 0.07
Data collection
DiffractometerKuma KM-4 four-cricle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.979, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5218, 4986, 2425
Rint0.059
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.144, 1.00
No. of reflections4986
No. of parameters486
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O14i1.997 (3)Mg2—O412.081 (4)
Mg1—O24ii2.041 (3)Mg2—O312.091 (4)
Mg1—O15iii2.072 (3)Mg2—O262.113 (4)
Mg1—O122.169 (3)Mg3—O212.279 (3)
Mg1—O112.202 (3)Mg3—O222.104 (4)
Mg1—O212.233 (3)Mg3—O13i1.990 (3)
Mg2—O23ii2.019 (3)Mg3—O25i2.024 (3)
Mg2—O16iii2.023 (4)Mg3—O512.089 (4)
Mg2—O122.058 (3)Mg3—O612.110 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

References

First citationDavies, R. P., Less, R. J., Likiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528–2535.  Web of Science CSD CrossRef Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationMa, S., Fillinger, J. A., Ambrogio, M. W., Zuo, J.-L. & Zhou, H.-C. (2007). Inorg. Chem. Commun. 10, 220–222.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-F., Jiang, C.-H., Zhang, J.-J., Sun, L.-X., Xu, F., Tian, Y.-Q., You, W.-S., Cao, Z., Zhang, L. & Yang, D.-W. (2010). J. Therm. Anal. Calorim. 101, 365–370.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-T., Liu, H.-K., Lin, C.-J. & Lin, C.-H. (2010). Acta Cryst. E66, m1289.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m852-m853
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds